ДЖОЗЕФСОНОВСКИЙ МАССИВ МЕЗОСКОПИЧЕСКИХ ОБЪЕКТОВ. МОДУЛЯЦИЯ СВОЙСТВ СИСТЕМЫ ХИМИЧЕСКИМ ПОТЕНЦИАЛОМ

А. И. Белоусов, С. А. Верзаков, Ю. Е. Лозовик*

Институт спектроскопии Российской академии наук 142092, Троицк, Московская обл., Россия

Поступила в редакцию 8 декабря 1997 г.

Рассматривается фазовая диаграмма двумерного джозефсоновского массива мезоскопических объектов (сверхпроводящих гранул, сверхтекучего гелия в пористой среде, ловушек с бозе-конденсированными атомами и т.п.). Учет квантовых флуктуаций как модуля, так и фазы сверхпроводящего параметра порядка проводится в рамках бозонной решеточной модели Хаббарда. Модуляция среднего числа заполнения n₀ узлов системы («числа куперовских пар» на гранулу, числа атомов в ловушке и т. п.) приводит к изменению состояния массива, причем характер этих изменений существенно зависит от рассматриваемой области фазовой диаграммы. В области значительных квантовых флуктуаций фаз сверхпроводящего параметра порядка изменение химического потенциала приводит к осцилляциям с чередованием сверхпроводящего (сверхтекучего) и нормального состояний массива. Напротив, в области слабого взаимодействия бозонов свойства системы монотонным образом зависят от n_0 . Понижение температуры и увеличение силы взаимодействия частиц приводит к уменьшению ширины области изменения n₀, в которой свойства системы слабо зависят от среднего числа заполнения. Фазовая диаграмма массива получена отображением рассматриваемой квантовой системы на классическую двумерную ХУ-модель с перенормированной джозефсоновской константой связи и согласуется с результатами наших квантовых расчетов методом Монте-Карло интегрирования по траекториям.

1. ВВЕДЕНИЕ

Успехи в технике микролитографии позволили создавать регулярные массивы мезоскопических джозефсоновских объектов. К системам такого рода, активно исследующимся экспериментально и теоретически, можно отнести, например, сверхтекучий гелий в пористой среде¹⁾ (см. [2] и цитируемую там литературу), решетки мезоскопических джозефсоновских контактов [3, 4] или ультрамалых сверхпроводящих гранул [5, 6]. Интересной физической реализацией джозефсоновского массива являются джозефсоновские переходы в создаваемых с помощью литографии структурах со сверхтекучим ³He [7]. Значительные успехи в экспериментах с бозе-конденсатом атомов, охлажденных лазерным излучением и последующим испарением [8–10], позволяют надеяться и на осуществление джозефсоновского массива из близких магнитооптических ловушек с бозе-конденсированными атомами²⁾, либо кластерами бозе-конденсированных ато-

^{*}E-mail: lozovik@isan.troitsk.ru

¹⁾ Двумерные джозефсоновские массивы (с мезоскопическими элементами) со сверхтекучим гелием можно, в принципе, осуществлять, создавая на подложке соответствующий «рисунок» из цезия (так как цезий не смачивается гелием [1]).

²⁾ Интерференция двух бозе-конденсатов недавно исследовалась в [11].

мов, охлажденных и локализованных в узлах системы стоячих электромагнитных волн. Наконец, другой замечательной реализацией джозефсоновского массива могла бы быть система джозефсоновски связанных «озер» из бозе-конденсированных экситонов в одиночных либо двойных квантовых ямах и расположенных в минимумах случайного поля, обусловленного шероховатостью поверхностей ям, т.е. в «естественных» квантовых точках [12], либо в массиве искусственных квантовых точек.

Для определенности изложение далее будем проводить на примере системы сверхпроводящих мезоскопических гранул или джозефсоновских контактов, однако полученные результаты относятся и ко всем упомянутым выше системам. Рассмотрим регулярный массив мезоскопических гранул, находящийся на проводящей подложке и отделенный от нее тонким слоем диэлектрика. Напряжение, приложенное к проводящей подложке, выполняет роль химического потенциала куперовских пар, определяющего среднее число заполнения n_0 гранул системы [13, 14]. В случае, например, сверхтекучего гелия в пористом материале химический потенциал атомов можно варьировать (за счет вклада вандерваальсова взаимодействия) путем изменения толщины пленки адсорбированного гелия [15, 16]. Управление же состоянием массива мезоскопических ловушек с охлажденными атомами может осуществляться изменением среднего числа атомов в системе (например, их захватом из внешнего потока).

Рассматриваемые системы, характер происходящих процессов в которых определяется бозонными степенями свободы, удобно описывать решеточной бозонной моделью Хаббарда [17, 18] с гамильтонианом

$$\hat{H} = \frac{t}{2} \sum_{\langle i,j \rangle} \left(2a_i^{\dagger} a_i - a_i^{\dagger} a_j - a_j^{\dagger} a_i \right) + \frac{U}{2} \sum_i \left(a_i^{\dagger} a_i \right)^2 - \mu \sum_i a_i^{\dagger} a_i.$$
(1)

Узел *i* в такой модели соответствует одной сверхпроводящей грануле либо поре с гелием, одной ловушке с бозе-конденсатом и т. п. Операторы $a_i^{\dagger}(a_i)$ — бозевские операторы рождения (уничтожения) «эффективного» бозона на узле $i = \overline{1, N^2}$ решетки $N \times N$. Первый член в гамильтониане учитывает кинетическую энергию частиц, соответствующую энергии джозефсоновского туннелирования и описываемую параметром *t*. Второй член в (1) описывает взаимодействие эффективных бозонов на грануле с характерной энергией $U_i > 0$.

Модель (1) интересна тем, что она позволяет исследовать свойства массивов мезоскопических структур, относительные флуктуации модуля сверхпроводящего параметра порядка в которых велики. В этой связи отметим, что использование квантовой *XY*-модели оправдано лишь в силу малости этих флуктуаций [14], т.е. в случае массивов макроскопических гранул.

При T = 0 решеточная система (1), имеющая фазу моттовского изолятора и сверхпроводящую фазу, исследовалась как аналитически [17–19], так и методами компьютерного моделирования [20, 21]. В данной работе мы будем интересоваться свойствами системы (1) при конечных температурах, отвлекаясь от интересных квантовых фазовых переходов при T = 0 [22]. В работах [23] исследование ограничивалось случаем целочисленного (соизмеримого) заполнения, когда среднее число бозонов на узле (грануле) $n_0 = \langle a_i^{\dagger} a_i \rangle$ — целое. При T = 0 добавление еще хотя бы одной частицы в сколь угодно большую систему кардинально меняет ее свойства. А именно, система при нецелом среднем числе бозонов на гранулу остается сверхпроводящей при любых величинах взаимодействия U/t между частицами [17–22]. Очевидно, что это удивительное поведение должно быть присуще лишь предельной точке T = 0. Действительно, как показано ниже, при конечных температурах свойства системы слабо меняются в полосе $n_0 = k \pm \delta n_0$ вблизи целочисленного заполнения, ширина $2\delta n_0$ которой уменьшается с понижением температуры.

Целью настоящей работы является исследование изменений, которым подвергается характер упорядочения в массиве гранул при варьировании напряжения подложки (химического потенциала эффективных бозонов). При этом мы не используем упрощающего предположения о малости относительных флуктуаций модуля сверхпроводящего параметра порядка. Результаты, представленные ниже, соответствуют рассмотрению массива мезоскопических объектов, среднеквадратичные флуктуации числа частиц в которых сравнимы с их средним числом. В разд. 2 мы изложим результаты расчетов по теории среднего поля. Использованный метод соответствует отображению исходной бозонной модели (1) на эффективную классическую XY-модель с перенормированной джозефсоновской константой связи. Для уточнения результатов аналитических расчетов мы используем квантовый метод Монте-Карло интегрирования по траекториям (см. разд. 3). Обсуждение и сравнение результатов, проводимое в разд. 4, завершает изложение материала.

2. БОЗОННАЯ МОДЕЛЬ ХАББАРДА В ПРИБЛИЖЕНИИ СРЕДНЕГО ПОЛЯ

Качественную оценку фазовой диаграммы модели (1) можно получить, следуя подходу, изложенному в работах [19, 23, 24]. В рамках этого метода граница упорядоченного состояния определяется исчезновением локальной плотности сверхтекучей компоненты в эффективном функционале, описывающем длинноволновые возбуждения системы. Последний может быть получен обычным образом с использованием преобразования Хаббарда–Стратоновича (см., например, [25]) и последующим разложением эффективного функционала по компонентам флуктуирующего поля [19, 24]. Из условия обращения в нуль локальной плотности сверхтекучей компоненты для системы, описывающейся гамильтонианом (1), находим соотношение для определения границы упорядоченного состояния:

$$\tilde{q}^{2} = 4 \sum_{n=0}^{\infty} \left[\exp\left(-\frac{0.5\tilde{q}^{2}(n-\tilde{\eta})^{2}}{\tilde{T}}\right) - \exp\left(-\frac{0.5\tilde{q}^{2}(n+1-\tilde{\eta})^{2}}{\tilde{T}}\right) \right] \times \\ \times \frac{n+1}{2(n-\tilde{\eta})+1} \left[\sum_{n=0}^{\infty} n \exp\left(-\frac{0.5\tilde{q}^{2}(n-\tilde{\eta})^{2}}{\tilde{T}}\right) \right]^{-1}.$$

$$(2)$$

Здесь мы использовали независимые безразмерные параметры, определяющие состояние системы:

$$\tilde{q} = \sqrt{\frac{U}{t}}, \qquad \tilde{T} = \frac{k_B T}{t}, \qquad \tilde{\eta} = \frac{\mu}{U} - \frac{2t}{U}.$$

Среднее число частиц на гранулах системы, находящейся в разупорядоченном состоянии, определяется уравнением

$$n_0 = \frac{\sum\limits_{n=0}^{\infty} n \exp\left\{-0.5\tilde{q}^2(n-\tilde{\eta})^2/\tilde{T}\right\}}{\sum\limits_{n=0}^{\infty} \exp\left\{-0.5\tilde{q}^2(n-\tilde{\eta})^2/\tilde{T}\right\}}.$$
(3)

Сплошные линии на рис. 1*а* представляют фазовую диаграмму системы (1) в переменных $\{\sqrt{U/t}, \mu/U\}$, полученную решением уравнения (2) при различных температурах k_BT/t . Область малых значений параметра U/t (малой энергии взаимодействия частиц) соответствует сверхпроводящему (S) состоянию системы.

При $k_B T/t \rightarrow 0$ неупорядоченное состояние системы соответствует целому сред-

Рис. 1. Фазовая диаграмма модели Хаббарда (1) в координатах $\{\sqrt{U/t}, \mu/U\}$. S — сверхпроводящее состояние; N — нормальное (металлическое) состояние; I — изолятор Мотта (заштрихованная область на рис. 6). *а*) Расчет по теории среднего поля. Сплошные линии получены решением уравнения (2) и соответствуют исчезновению локальной плотности сверхтекучей компоненты. На штриховых линиях происходит топологический переход Костерлица–Таулесса (6). *6*) Результаты расчетов методом Монте-Карло при $k_BT/t = 0.8$

Рис. 2. Фазовая диаграмма модели Хаббарда (1) в координатах $\{q, \mu/U\}$ и $\{q, \Theta\}$. *a*) Расчет по теории среднего поля. Сплошные линии получены решением уравнения (2). Пунктирные линии соответствуют совместному решению системы уравнений (2), (3). *б*) Результаты расчетов методом Монте-Карло. Темные квадраты — фазовая диаграмма 2 + 1-мерной XYмодели (при целочисленных $n = k \gg 1$) [34]. Вдоль пунктирной линии движется система при $\{U/t, k_BT/t\} = \{3.5, 0.8\}$ и изменении химического потенциала μ/U (см. ниже рис. 4, 5)

нему числу частиц на грануле $n_0 = k$, определяя область существования моттовского изолятора (I) [17]. Сверхтекучее состояние системы соответствует в этом пределе случаю несоизмеримого заполнения, т. е. нецелому среднему числу частиц на грануле. Рисунок 1*a* показывает, что при T = 0 и полуцелых значениях химического потенциала $\mu = 0.5 + k$, сверхпроводящее состояние существует при сколь угодно сильном взаимодействии между частицами, что согласуется с результатами работ [17, 18].

При конечных температурах увеличение силы взаимодействия бозонов переводит систему в разупорядоченное состояние при любых значениях химического потенциала (см. рис. 1*a*). Из рисунка также видно, что с ростом температуры область существо-

вания упорядоченного состояния сдвигается в сторону больших значений химического потенциала.

Переходу к случаю системы макроскопических гранул соответствуют увеличение плотности частиц n_0 и уменьшение роли флуктуаций модуля параметра порядка. Проследить изменения, происходящие с системой (1) при увеличении n_0 , удобнее всего на плоскости $\{q, \Theta\}$, где мы используем безразмерную температуру $\Theta = k_B T/tn_0$ и квантовый параметр $q = \sqrt{U/tn_0}$ — управляющие параметры, определяющие также состояние квантовой XY-модели. Соответствующая фазовая диаграмма показана на рис. 2*a*. Как видно из рисунка, для любых взаимодействий U оценка границы упорядоченного состояния модели Хаббарда по теории среднего поля лежит выше соответствующей границы квантовой XY-модели и приближается к ней с увеличением среднего числа заполнения n_0 узлов решетки. Наш расчет подтверждает, что при $n_0 \gg 1$ фазовая диаграмма периодична по параметру μ/U [14].

Пунктирными линиями на рис. 2*а* показано семейство кривых, в точках которых система с плотностью n_0 становится разупорядоченной. Точки их пересечения с линиями $\Theta = \text{const}$ определяют фазовую диаграмму системы на плоскости $\{q, \Theta\}$, соответствующую n_0 частицам на гранулу. Подобный анализ показывает, что при несоизмеримой плотности бозонов и малых температурах (см. ниже) упорядоченное (сверхпроводящее) состояние массива существует при сколь угодно больших значениях параметра q, т.е. сколь угодно большой величине квантовых флуктуаций фаз сверхпроводящего параметра порядка в терминах квантовой XY-модели.

Рассмотренный подход позволяет лишь качественно оценить характерные особенности фазовой диаграммы рассматриваемой системы. Сравнение с результатами численного моделирования показывает (см. ниже), что уравнения (2), (3) дают значительно завышенную оценку температуры $\Theta_c(q; \mu/U)$ разупорядочения. Для получения более точных количественных оценок необходимо определить температуру исчезновения глобальной (а не локальной, как это делалось в изложенном выше методе) сверхтекучей плотности массива. Оценкой такой температуры может служить температура Костерлица–Таулесса топологического фазового перехода в соответствующей классической XY-модели, отображение на которую исходной системы производится разложением эффективного функционала Гинзбурга–Ландау относительно слабых флуктуаций фаз параметра порядка.

Используя подход работ [19, 24, 26], нетрудно показать, что эффективное действие искомой классической двумерной XY-модели имеет вид

$$S(\{\varphi_{\mathbf{k}}\}) = \frac{J_{XY}}{2} \sum_{\mathbf{k}} |\mathbf{k}|^2 \varphi_{\mathbf{k}} \varphi_{-\mathbf{k}} \approx J_{XY} \sum_{\langle i,j \rangle} \left[1 - \cos\left(\varphi_i - \varphi_j\right)\right],$$

$$J_{XY}\left(\frac{\mu}{U}; \frac{t}{U}; \frac{k_B T}{t}\right) = \frac{t\Delta^2}{4},$$
(4)

где J_{XY} — константа связи эффективной XY-модели, зависящая от безразмерных параметров μ/U ; t/U; k_BT/t . Для локальной сверхтекучей плотности $\Delta^2/4$ системы имеет место соотношение

$$\Delta = \frac{\text{Tr}\left\{ (\hat{a}^{\dagger} + \hat{a}) \exp(-\beta \hat{H}_{mf}) \right\}}{\text{Tr}\left\{ \exp(-\beta \hat{H}_{mf}) \right\}},$$

$$\hat{H}_{mf} = \frac{U}{2} \hat{n}^{2} + (2t - \mu)\hat{n} - t\Delta(\hat{a}^{\dagger} + \hat{a}).$$
(5)

Линия температур фазовых переходов Костерлица–Таулесса в эффективной XY-модели [27] определяет искомую границу сверхтекучего состояния рассматриваемого массива гранул:

$$k_B T_c = 0.98 J_{XY}(\mu/U; t/U; k_B T_c/t).$$
(6)

Результаты оценок по формулам (4), (5) показаны на рис. 1*а* штриховыми линиями. Отметим, что, хотя два изложенных выше подхода дают сходное качественное поведение границы упорядоченной фазы, температура топологического фазового перехода в эффективной XY-модели (6) оказывается значительно меньшей, чем температура исчезновения локальной сверхтекучей плотности, которая определяется из уравнения (2). Сравнение полученной таким образом фазовой диаграммы с результатами расчетов Монте-Карло (см. ниже и рис. 1) показывает их неплохое количественное согласие.

3. КВАНТОВЫЙ МЕТОД МОНТЕ-КАРЛО. ИЗМЕРЯЕМЫЕ ВЕЛИЧИНЫ

Применение процедуры дискретизации Троттера позволяет оценить все термодинамические средние операторов *D*-мерной квантовой системы по классической D + 1-мерной, причем больцмановским весом конфигураций соответствующей классической системы служит произведение матричных элементов высокотемпературной матрицы плотности, вычисляемых приближенно. Для исследования свойств модели (1) мы использовали квантовый метод Монте-Карло в модификации «шахматная доска» (подробное изложение процедуры дискретизации и организации шага Монте-Карло при моделировании бозонных решеточных систем в большом каноническом ансамбле см. в [28]). В этом методе степенями свободы дискретизованной системы являются числа заполнения $\{n_i^p\}$ узлов трехмерной решетки $N \times N \times 4P$, образованной 4P-кратным размножением исходной решетки $N \times N$ вдоль оси мнимого времени. Число разбиений P выбиралось таким образом, чтобы величина параметра $\epsilon = q^2/P^2\Theta^2$, характеризующего ошибку дискретизации, не превышала 0.06.

В каждой расчетной точке фазовой диаграммы, положение которой определяется параметрами { $\sqrt{U/t}$, k_BT/t } и химическим потенциалом μ/U , рассчитывалась плотность ν_s сверхтекучей компоненты. Для нахождения этой величины мы использовали как флуктуации топологического числа закручивания (winding number) [20, 28], так и корреляционную функцию парамагнитного тока [29]. Мы нашли, что когда среднее число частиц на гранулу $n_0 < 2$ и q > 2, статистические ошибки второго метода значительно выше ошибок в определении сверхтекучей плотности через флуктуации числа закручивания, что делает его применение нецелесообразным.

Мы также измеряли величину n_0 , которая управляется химическим потенциалом системы, и модуль сжимаемости κ , определяемый как

$$\kappa = k_B T \frac{\partial n_0}{\partial \mu} = \frac{1}{4PN^2} \left\langle \sum_{p=0}^{4P-1} \sum_i \left(n_i^p \right)^2 \right\rangle - \left(n_0 \right)^2.$$
(7)

Оказалось удобным проводить измерения при U/t = const и $k_B T/t = \text{const}$, изменяя значение химического потенциала μ/U . В качестве примера на рис. 26 в координатах $\{q, \Theta\}$ показана линия, по которой движется система при $\{U/t, k_B T/t\} = \{3.5, 0.8\}$. Положение системы на этой линии при данном значении химического потенциала можно определить, измерив среднее число частиц на гранулу n_0 . Кроме того, мы провели ряд расчетов при фиксированном n_0 (в каноническом ансамбле). Можно ожидать, что при одинаковой плотности частиц n_0 результаты моделирования не будут зависеть от выбора ансамбля для систем достаточно большого размера. Мы проверили это предположение и нашли, что в интересующей нас области изменения управляющих параметров, для системы размера $N \times N = 6 \times 6$ различие в измеряемых величинах не превышает 10%, что позволяет при анализе результатов одновременно использовать данные, полученные заданием плотности n_0 (в рамках канонического распределения) и химического потенциала (что соответствует использованию большого канонического ансамбля).

4. ОПИСАНИЕ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Рассмотрим сначала результаты расчетов в области q < 1.5, когда взаимодействие между частицами слабое и теория среднего поля (см. рис. 1*a*, 2*a*) предсказывает монотонную зависимость температуры фазового перехода от плотности частиц n_0 . На рис. 3 представлены результаты расчетов плотности сверхтекучей компоненты как функции среднего числа заполнения, $\nu_s(n_0)$, при q = 1, $\Theta = 1$ (светлые символы). С ростом числа заполнения значение ν_s выходит на константу, равную модулю спиральности (helicity modulus) $\gamma(q, \Theta)$ в 2+1-мерной (квантовой) XY-модели [30, 31]. Ранее мы нашли [23],

Рис. 3. Зависимости доли сверхтекучей компоненты ν_s от среднего числа заполнения n_0 . Сплошными линиями показаны результаты интерполяции данных полиномами четвертой степени. Размер стрелок соответствует оценкам $\delta n(q, \Theta) = \kappa(q, \Theta)|_{n_0=1}$, см. (8)

Рис. 4. а) Зависимость сверхтекучей плотности ν_s от химического потенциала μ/U . б) Зависимости среднего числа частиц n_0 (темные символы) и модуля сжимаемости κ (светлые символы) от химического потенциала μ/U : квадраты — $\{U/t, k_BT/t\} = \{2.0, 0.8\}$; треугольники — $\{U/t, k_BT/t\} = \{2.5, 0.8\}$. Интерполяция сплайнами проведена для удобства рассмотрения. Неуказанные статистические ошибки меньше размеров соответствующих символов

что в данной области фазовой диаграммы фактический выход на этот предел, соответствующий малой роли квантовых флуктуаций модуля параметра порядка, происходит уже при $n_0 = 4 \div 5$. Монотонность зависимости $\nu_s(n_0)$ позволяет заключить, что результаты опытов над системой изолированных гранул не будут сильно отличаться от результатов, полученных для системы гранул на подложке с приложенным к ней потенциалом. Оказалось, что подобным образом система ведет себя вплоть до $q \simeq 2.3$. С дальнейшим ростом квантового параметра q и понижением температуры Θ функция $\nu_s(n_0)$ перестает быть монотонной функцией среднего числа заполнения n_0 . На рис. 3 ($\{q, \Theta\} = \{2.75, 0.5\}$, темные символы) заметны характерные осцилляции зависимости $\nu_s(n_0)$, причем минимумы достигаются при целых значениях $n_0 = k$. При достаточно больших плотностях бозонов ($n_0 > 7$ в области $\{q, \Theta\} \approx \{2.5, 0.5\}$, см. [23]) осуществляется переход к квазиклассическому пределу и плотность сверхтекучей компоненты $\nu_s(n_0)$ будет периодической функцией среднего числа заполнения с периодом единица [14].

На рис. 4*а* показаны графики зависимостей сверхтекучей плотности от химического потенциала системы, пропорционального приложенному к подложке напряжению. Квадраты относятся к системе при $\sqrt{U/t} = 2$, $k_BT/t = 0.8$, треугольники — $\sqrt{U/t} = 2.5$, $k_BT/t = 0.8$. Особенность при $n_0 \simeq 1$ (провал в графиках $\nu_s(\mu/U)$ и $\kappa(\mu/U)$ при $\mu/U \simeq 1.2$), плохо заметная при $q \simeq 2$ (квадраты на рис. 4) становится ясно выраженной при $q \simeq 2.5$ (треугольники). Рисунок подтверждает, что случаю соизмеримых заполнений соответствуют меньшие величины плотности сверхтекучей компоненты, т. е. увеличение отстройки средней плотности бозонов от целочисленных значений $n_0 = k$ приводит к расширению фазовой диаграммы модели (1) на плоскости $\{q, \Theta\}$.

При дальнейшем увеличении величины квантового параметра q различия в свойствах системы при целых и нецелых плотностях бозонов становятся все более существенными. Действительно, рассматривая результаты вычислений по теории среднего поля (см. рис. 1*a*), можно предположить, что существует некоторое значение параметра U/t, при котором линия $\sqrt{U/t} =$ const пересекает область разупорядоченного состояния с $n_0 \simeq 1$. Дальнейшее увеличение константы взаимодействия U должно приводить к

Рис. 5. а) Зависимость сверхтекучей плотности ν_s от химического потенциала μ/U . б) Зависимости среднего числа частиц n_0 (темные символы) и модуля сжимаемости κ (светлые символы) от химического потенциала μ/U : квадраты — $\{U/t, k_BT/t\} = \{3.5, 0.8\}$; треугольники — $\{U/t, k_BT/t\} = \{5.0, 0.8\}$

возможности пересечения также и разупорядоченной области с $n_0 \simeq 2$ и т. д. Результаты расчетов, представленные на рис. 5, подтверждают это предположение. Заметим, что при $\sqrt{U/t} = 5.0$ (треугольники на рис. 5) и целых значениях параметра μ/U изменение химического потенциала практически не приводит к изменению среднего числа частиц на узлах системы. Эту особенность, характерную для диэлектрика, можно также видеть из рис. 56, на котором приведена зависимость модуля сжимаемости κ от химического потенциала μ/U .

При T = 0 решеточная бозонная система в отсутствие беспорядка испытывает фазовый переход типа сверхпроводник-диэлектрик [17]. Применительно к исследуемой системе, можно предположить, что с повышением температуры область существования моттовского изолятора уменьшается и сдвигается в сторону больших U/t, так что при движении, например, вдоль линий $\mu/U = k$ сверхтекучая фаза сменяется нормальной (металлической). Дальнейшее увеличение константы взаимодействия, когда величина моттовской диэлектрической щели возрастает настолько, что тепловые возбуждения становятся несущественными, приведет к кроссоверному установлению состояния изолятора [32]. Оценка положения границы состояния изолятора при $n_0 = 1$, определенная из наших расчетов, показана на рис. 16. Для сравнения приведены также несколько линий постоянной плотности $n_0 =$ const. Более подробное исследование перехода металл-изолятор кроссоверного типа требует рассмотрения систем значительно больших размеров (см. [24, 33, 34].

Анализ рис. 1–5 приводит к выводу, что интересные эффекты, вызванные несоизмеримостью заполнения узлов системы, существуют лишь в достаточно сильно взаимодействующих системах и при достаточно низких температурах. Для бозонной модели Хаббарда (1) область их существования может быть оценена неравенствами q > 2.3, $\Theta < 0.7$. Количественно величину отстройки δn среднего числа частиц от целочисленного значения $n_0 = k$, при которой будет наблюдаться значительное изменение свойств системы, можно выразить через модуль сжимаемости:

$$\delta n \approx \left. \frac{\partial n_0}{\partial \mu} \right|_{n_0 = k} k_B T = \left. \kappa \right|_{n_0 = k}.$$
(8)

Известно, что модуль сжимаемости (обратно пропорциональный флуктуациям фаз в 2+1-мерной XY-модели, см. (7)) значительно убывает с ростом величины квантового параметра q и с уменьшением температуры Θ . Мы нашли, что при $n_0 = 1$ для модели Хаббарда (1) справедливы следующие оценки: $\delta n \approx 1.2$ при $\{q, \Theta\} \approx \{0.5, 1\}; \delta n \approx 0.3$ при $\{q, \Theta\} \approx \{2.5, 0.8\}$, тогда как в области $\{q, \Theta\} \approx \{2.75, 0.5\}$ имеем $\delta n \approx 0.06$. В качестве иллюстрации на рис. 3 показаны величины $\delta n(q, \Theta)$, найденные для точек $\{q, \Theta\} = \{1, 1\}$ (светлые символы) и $\{q, \Theta\} = \{2.5, 0.8\}$ (темные символы). Рисунок демонстрирует неплохое соответствие между теоретической оценкой (8) и результатами расчетов Монте-Карло.

Из изложенных выше результатов следует фазовая диаграмма системы, показанная на рис. 16 (в координатах { $\sqrt{U/t}$, μ/T } при $k_BT/t = 0.8$) и рис. 26 (в координатах { q, Θ }). Положение границы упорядоченного сверхпроводящего состояния оценивалось по универсальному скачку сверхтекучей плотности [30] и по положению пика ее температурной производной [35].

Квантовые фазовые переходы (при T = 0) в двумерной модели Хаббарда (1) определяются критическими свойствами соответствующей эффективной трехмерной системы [17, 32]. При конечных температурах джозефсоновский массив будет проявлять костерлиц-таулессовское критическое поведение на некоторой линии $\Theta_c(\mu/U, q)$. Попытаемся оценить влияние квантовых флуктуаций на температуру этого перехода, предполагая ее достаточно малой (см. ниже). Интерес представляют два случая: а) система находится при соизмеримой плотности частиц $n_0 = k$ и при некоторой температуре $\Theta_c(q)$ переходит из сверхпроводящего состояния в нормальное; б) фазовый переход при температуре $\Theta_c(n_0)$ происходит вследствие изменения плотности n_0 .

Для области вблизи точки $q_c^{XY} \approx 2.5$ квантового перехода 2+1-мерной XY-модели (см. рис. 26) для температуры $\Theta_c(q)$ топологического фазового перехода Костерлица-Таулесса в работе [24] была получена оценка $\Theta_c(q) \sim |q - q_c^{XY}|^{\zeta_1}$ с показателем $\zeta_1 \approx 0.67$. При выводе этой оценки предполагалось, что температура системы меньше температуры $2D \rightarrow 3D$ -кроссовера: $\Theta \leq \Theta_{3D}, \Theta_{3D} \sim |q - q_c^{XY}|^{\nu}$ при $\nu \approx \zeta_1$. Это позволило оценить плотность сверхтекучей компоненты $\nu_s(q,\Theta)$, определяющую температуру $\Theta_c(q)$ фазового перехода, как $\nu_s(q,\Theta) \approx \nu_s(q,0)$. Очевидно, что подобные рассуждения, справедливы также и в окрестности точек $q_c^H|_{n_0=k}$ квантовых фазовых переходов модели Хаббарда (1) при целочисленном заполнении гранул массива $n_0 = k (q_c^H|_{n_0=1} \approx 2.8,$ см. [20]). Следовательно, можно ожидать, что имеет место соотношение

$$\Theta_c(q;k) \sim \left| q_c^H \right|_{n_0=k} - q \right|^{0.67}.$$
(9)

Аналогичные рассуждения можно применить и к случаю несоизмеримой плотности бозонов $n_0 \neq k$. Как показано в работах [17, 20], в области $q > q_c^H$ справедливо соотношение $\nu_s \sim |n_0 - k|^{\zeta_2}$ с $\zeta_2 \approx 1.0$. Следовательно, для температуры $\Theta_c(n_0)$ топологического фазового перехода Костерлица–Таулесса имеет место соотношение

$$\Theta_c(n_0) \sim |n-k|^{1.0}.$$
 (10)

Наши квантовые расчеты качественно согласуются с предсказаниями (9) и (10), однако подтвердить их справедливость с достаточной точностью затруднительно вследствие значительных ошибок в определении положения линии квантовых фазовых переходов $\mu(U/t; T = 0)$.

Рис. 6. Сверхтекучая плотность системы как функция температуры $\Theta = k_B T/t n_0$ при q = 3.0: светлые символы — $n_0 = 1.306$; темные символы — $n_0 = 1.194$. Штриховой линией показана прямая $\nu_s = 2\Theta/\pi$. На вставке приведены результаты расчетов сверхтекучей плотности системы как функции $k_B T/t$ при $\sqrt{U/t} = 2.5$ и $\mu/U = 0.75$

Большой интерес вызывает вопрос о существовании эффектов возвратной сверхпроводимости, когда в некоторой области изменения квантового параметра q разупорядочение наступает не только с повышением, но и с понижением температуры Θ. Существование возвратных эффектов неоднократно предсказывалось в рамках квантовой ХУ-модели (см. работу [13] и ссылки в ней), причем, насколько известно авторам, компьютерное моделирование не позволяет с однозначностью подтвердить [31, 36] или опровергнуть [34] существование этого явления. Проведенные ранее численные расчеты модели Хаббарда не обнаружили эффектов низкотемпературной нестабильности или возвратной сверхпроводимости [20, 23]. В настоящей работе мы исследовали низкотемпературную область $q \approx 2.5, \Theta < 0.5$ бозонной модели Хаббарда как при различных нецелых числах заполнения, так и при фиксированном значении химического потенциала. Результаты, представленные на рис. 6, показывают отсутствие эффектов возвратной сверхпроводимости, по крайней мере в исследованной области изменения управляющих параметров. Особое внимание было уделено области $\{\sqrt{U/t}, \mu/U\} \approx \{2.5, 0.8\}, в$ которой было предсказано низкотемпературное разупорядочение [19]. Результаты численного моделирования ясно показали отсутствие подобных эффектов в данной области. Более того, не согласуется с этими предсказаниями и проведенный нами расчет границы упорядоченного состояния в рамках теории среднего поля (см. разд. 2). Отметим, что уравнение (2), определяющее границу упорядоченного состояния, в данном методе является более аккуратным, чем использованное в цитированной работе, в том смысле, что при его выводе не делалось предположение $n_0 \gg 1$ (последнее справедливо при $\mu/U \gg 1$ [19]).

Подводя итоги, изложим основные результаты работы. В рамках бозонной решеточной модели Хаббарда мы провели анализ влияния квантовых флуктуаций фазы и модуля сверхпроводящего или сверхтекучего параметра порядка на характер упорядочения в двумерных мезоскопических джозефсоновских и гранулированных системах. Численный расчет квантовым методом Монте-Карло показал, что характер изменений свойств системы, вызванных модуляцией среднего числа заполнения элементов массива химическим потенциалом (потенциалом подложки), определяется параметром $q = \sqrt{U/tn_0}$ (т. е. отношением характерной кулоновской энергии заряда гранулы к энергии джозефсоновского туннелирования). В области q < 1.5, которая является квазиклассической для квантовой XY-модели и областью сильных флуктуаций модуля параметра порядка для модели Хаббарда (1), свойства системы нечувствительны к среднему числу частиц на гранулах. В области значительных квантовых флуктуаций параметра порядка (q > 2, $\Theta < 0.8$) мы нашли зависимость (более ярко выраженную при меньших температурах) состояния системы от среднего числа частиц в ней.

Работа была поддержана грантами Российского фонда фундаментальных исследований и программой «Физика твердотельных наноструктур».

Литература

- 1. F. J. Nacker and J. Dupont-Roc, Phys. Rev. Lett. 67, 2966 (1991).
- 2. J. D. Reppy, J. Low. Temp. Phys. 67, 207 (1992).
- H. S. J. van der Zant, F. C. Fritschy, J. E. Mooij et al., Phys. Rev. Lett. 69, 2971 (1992); J. E. Mooij, R. Fazio, G. Shön et al., Phys. Rev. Lett. 65, 645 (1990).
- 4. В. Ф. Гантмахер, В. М. Теплинский, В. Н. Зверев, Письма в ЖЭТФ 62, 873 (1995).
- 5. A. F. Hebard and M. A. Paalanen, Phys. Rev. Lett. 65, 927 (1990).
- 6. A. L. Dobryakov, Yu. E. Lozovik, A. A. Puretzky et al., Appl. Phys. A 54, 100 (1992).
- Yu. M. Mucharsky, A. Loshak, K. Schwab et al., Czech. J. Phys. 46, 115 (1996); S. V. Pereversev, A. Loshak, S. Backhaus et al., Nature 388, 449 (1997).
- 8. M. N. Anderson, J. R. Ensher, M. R. Mathews et al., Science 269, 198 (1995).
- 9. C. C. Bradley, C. A. Sackoff, J. J. Tollett et al., Phys. Rev. Lett. 75, 1687 (1995).
- 10. K. B. Davis, M.-O. Mewes, M. R. Andrew et al., Phys. Rev. Lett. 75, 3969 (1995).
- 11. M. R. Andrews, C. G. Towsend, H.-J. Miesner et al., Science 275, 637 (1997).
- 12. Yu. E. Lozovik, submitted to Physica E; Ю. Е. Лозовик, О. Л. Берман, ЖЭТФ 111, 1879 (1997); Yu. E. Lozovik, O. L. Berman, and V. G. Tsvetus, Pis'ma ZhETF 66, 332 (1997).
- J. B. Kim and M. Y. Choi, Phys. Rev. B 52, 3624 (1995); B. J. Kim, J. Kim, M. Y. Choi et al., Phys. Rev. B 56, 395 (1997).
- 14. C. Bruder, R. Fazio, A. P. Kampf et al., Phys. Scr. T42, 159 (1992).
- 15. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv. Phys. 10, 165 (1961).
- 16. G. T. Zimanyi, P. A. Crowell, R. T. Scalettar et al., Phys. Rev. B 50, 6515 (1994).
- M. P. A. Fisher and G. Grinstein, Phys. Rev. Lett. 60, 208 (1988); M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Phys. Rev. B 40, 546 (1989); M. P. A. Fisher, G. Grinstein, and S. M. Girvin, Phys. Rev. Lett. 64, 587 (1990).
- 18. M. C. Cha, M. P. A. Fisher, S. M. Girvin et al., Phys. Rev. B 44, 6883 (1991).
- 19. A. P. Kampf and G. T. Zimanyi, Phys. Rev. B 47, 279 (1993).
- 20. W. Krauth, N. Trivedi, and D. Ceperley, Phys. Rev. Lett. 67, 2703 (1991); W. Krauth and N. Trivedi, Europhys. Lett. 14, 627 (1991).
- 21. В. А. Кашурников, А. В. Красавин, Б. В. Свистунов, Письма в ЖЭТФ 64, 92 (1996).
- 22. A. V. Otterlo and K. H. Wagenblast, Phys. Rev. Lett. 72, 3598 (1994); E. Roddick and D. Stroud, Phys. Rev. B 51, 8672 (1995).
- А. И. Белоусов, С. А. Верзаков, Ю. Е. Лозовик, ЖЭТФ 113, 261 (1998); А. И. Белоусов, Ю. Е. Лозовик, Письма в ЖЭТФ 66, 649 (1997).

- 24. S. Doniach, Phys. Rev. B 24, 5063 (1981).
- В. Н. Попов, Континуальные интегралы в квантовой теории поля и статистической физике, Атомиздат, Москва (1976).
- 26. J. J. Alvarez and C. A. Balseiro, Sol. St. Comm. 98, 313 (1996).
- 27. P. Olsson, Phys. Rev. B 52, 4511 (1995).
- 28. A. Blaer and J. Han, Phys. Rev. A 46, 3225 (1992).
- 29. G. G. Batrouni, B. Larson, R. T. Scalettar et al., Phys. Rev. B 48, 9628 (1993).
- 30. P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).
- 31. M. Jacobs, J. V. Jose, M. A. Novotny et al., Phys. Rev. B 38, 4562 (1988).
- 32. S. L. Sondhi, S. M. Girvin, J. P. Carini et.al., Rev. Mod. Phys. 69, 315 (1997).
- Yu. E. Lozovik and S. G. Akopov, J. Phys. C 14, L31 (1981); S. G. Akopov and Yu. E. Lozovik, J. Phys. C 15, 4403 (1982).
- 34. А. І. Belousov and Yu. E. Lozovik, Sol. St. Comm. 100, 421 (1996); А. И. Белоусов, Ю. Е. Лозовик, ФТТ 39, 1513 (1997); С. А. Верзаков, Ю. Е. Лозовик, ФТТ 35, 818 (1997).
- 35. F. F. Assaad, W. Hanke, and D. J. Scalapino, Phys. Rev. B 50, 12835 (1994).
- 36. D. Marx and P. Nielaba, J. Chem. Phys. 102, 4538 (1995).