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We show how the worldline quantum Monte Carlo procedure, which usually relies on an
artificial time discretization, can be formulated directly in continuous time, rendering the scheme
exact. For an arbitrary system with discrete Hilbert space, none of the configuration update
procedures contain small parameters. We find that the most effective update strategy involves the
motion of worldline discontinuities (both in space and time), i.e., the evaluation of the Green’s
function. Being based on local updates only, our method nevertheless allows one to work with
the grand canonical ensemble and non-zero winding numbers, and to calculate any dynamic
correlation function as easily as expectation values of, e.g., total energy. The principles found
for the update in continuous time generalize to any continuous variables in the space of discrete
virtual transitions, and in principle also make it possible to simulate continuous systems exactly.

1. INTRODUCTION

Quantum Monte-Carlo (MC) simulation is the most powerful available method, if not the
only one, of obtaining accurate results for complex systems, where analytic solutions are not
possible and exact diagonalization methods do not work because of the enormous Hilbert space.
However, most MC schemes are far from ideal, and suffer from significant shortcomings. These
include (see, e.g., the most recent review article Ref. [1])

a) systematic errors due to artificial time discretization, which in most schemes scales as
(A7)?, where A7 is the time slice width;

b) restriction of the simulation to the zero winding number sector M = 0 (a configuration
in which world lines connect the initial state |a,,,...,cr) at 7 = 0 to the final state
[Y1,7Y2,---,vz) at 7 = (3, with the set {~;} being obtained by cyclically permuting {c;} M
times (and all topologically equivalent configurations), is said to have a winding number M).
Such a restriction results in systematic errors too, which however vanish with increasing system
size. Also, one loses the ability to study topological excitations in the system, e.g., vortices or
supercurrent states;

c) working with a fixed number of particles N = const (canonical ensemble);

d) critical slowing down problem, which arises close to a second-order phase transition.
This problem is closely related to constraints (b) and (c), and is indicative of inefficient
procedures used to update configurations with large length scales;

e) slow accumulation of statistics when calculating correlation functions of operators not
present in the initial Hamiltonian, e.g., the Green’s function;
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f) small acceptance rates in update procedures. These may be due to small parameters
present in the formulation of the MC scheme, or systems described by Hamiltonians with
different energy scales (e.g., when the hopping matrix element ¢ is much smaller than the
typical potential energy change U >> t), or the necessity of global Metropolis updates, which
arise in certain cluster-update algorithms;

g) anomalous dependence of the computation time on system size (due to self-averaging
effects in the thermodynamic limit, the computation time required to achieve given accuracy
is expected to be system-size independent);

h) notorious sign problem, which emerges when the configuration weight is not positive
definite. Since we do not see any reasonable solution of the sign problem in the general case,
in what follows we exclude it from the discussion.

To eliminate some of these shortcomings, a number of different MC schemes was
developed. Unfortunately, none of the existing schemes succeeded in solving all of them (leaving
the sign problem aside) in the general case: there are extremely efficient algorithms which are
far from universal, while the efficiency of existing universal algorithms is far from high for a
large number of problems.

The standard worldline algorithm is based on imaginary time discretization and utilizes
‘the small parameter tAT < 1 in an approximate treatment of noncommuting operators in the
Hamiltonian, known as Trotter break-up [2, 3]. Physical intuitiveness and easy programming
probably make this method the one most widely used. On another hand, its weak points range
over the whole list from (a) to (f), the most severe ones being (¢) and (f).

In the worldline algorithm, one describes the configuration by specifying the system state
|ai;) at all time slices 7, = k A7, where k = 0,1,...,Kp and 7, = 1/T = (. The system
state is then conventionally defined in the basis set in which the potential energy of the system is
diagonal, i.e., in the site representation. Let us consider, as a typical example, the Hamiltonian
of interacting particles on a lattice

H=—t a,;[aj + ZUijnmj ; (1)
(i5) 1y

where af- creates a particle on site ¢, ¢ is the hopping matrix element, n; = a:f a;, and (i7) denotes
nearest-neighbor sites. From now on, we call points in time at which the system changes state
«kinks». The typical separation in time between two adjacent kinks on the same site is of order
1/t and independent of A7, so that for small A7 there are some 1/(tAT) > 1 time intervals
between them. The acceptance rate of the variation suggesting creation of a new kink-antikink
pair is proportional to the square of a small parameter, (tA7)2. On the other hand, when
the MC procedure suggests shifting an already existing kink to the nearest point in time, the
corresponding variation of the configuration is accepted with probability ~ O(1). Thus, on
average, by selecting different random time slices, it takes some 1/(tA7)? attempts to create a
new kink-antikink pair and 1/(tA7) attempts to move a kink to the nearest position in time. Still,
the updated configuration is only slightly different from the previous one, and expectation values
calculated before and after the variation are strongly correlated. An uncorrelated contribution of
the given configuration fragment is obtained by shifting the kink a distance of order 1/t, which
requires some 1/ (tAr)? operations, since the kink shift process is diffusive in nature. This means
that the autocorrelation time in the standard worldline algorithm grows oc (A7)~2 even in the
absence of critical slowing down. Since all update procedures are local, the algorithm is subject
to critical slowing down near the transition temperature.
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In order to calculate the Green’s function G (i, 7), two worldline discontinuities are inserted
at time slices 7, = 0 and 7, = 7 (in other words, one extra worldline is inserted in or removed
from the interval [T, 72]) [3, 4]. One then probes different configurations using standard update
procedures and collects statistics in a d-dimensional histogram, which describes the spatial
separation ¢ between the discontinuities. The length of the time interval is then changed, and
the same calculation is repeated. One MC step, i.e., the number of update operations performed
between successive «measurementss, whereupon another point is included in the statistics of the
calculated quantity, is proportional to L3, where L is the number of lattice sites considered.
Thus, it requires about L?¢j3 operations to include only one point in the (d + 1)-dimensional
spacetime histogram for G.

In a way, the standard worldline procedure of calculating G(z,7) has an anomalous
dependence on N and 3, since it takes at least (N3)? operations to update the whole
histogram (typically G decays in space and time, and large scale behavior requires much more
computation). We note, that winding numbers and the grand canonical ensemble average can
be incorporated, in principle, in the worldline algorithm. It is sufficient to consider separate
contributions to the statistics of G(z,7) when ¢ = ML and 7 = nf with integer M and n.
However, in practice, only small systems at rather high temperatures can be considered using
this algorithm.

The determinant method based on the Hubbard — Stratonovich transformation [5-7] also
uses the discrete-time Trotter break-up, and thus becomes more and more inefficient due to long
autocorrelation times when AT — 0 (points (a) and (f) above). It has an important advantage
over the worldline method in calculating the Green’s function, since it works with the grand
canonical ensemble. However with increasing system size, the calculation time scales as L’
(point (g)) and some of the procedures become ill-conditioned at low temperatures.

Another technique allowing Green’s function calculations is called Green-function MC
(or, more generally, the projection-operator method) [8]. It is applicable at zero temperature
only, and the final result for G(¢, 7 = 0) depends on the trial wave function (we are not aware
of whether it is possible to calculate the time dependence of G(i,7) by this method).

The stochastic series expansion (SSE) technique [1,9,10], which stems from the
Handscomb’s method [11], relies on the direct Taylor expansion of the statistical operator.
This scheme is exact (contains no systematic errors). SSE has clearly demonstrated that
time discretization is an artificial trick that is not at all necessary for MC simulation. Since
an elementary update in the SSE scheme is equivalent to roughly 1/(tA7)* updates in the
standard worldline method, it results in a significant drop in computation time for high-precision
calculations. The rest of the problems, i.e., (b)-(f), survive in the SSE approach (point (f)
still applies, because by expanding in powers of the full Hamiltonian one has to compare
weights corresponding to the kinetic- and potential-energy terms, and if, e.g., U > t in the
Hamiltonian (1), then small acceptance rates appear in the update procedures). Still, away from
the transition point, for large systems at low temperature, for which U ~ t, the SSE method
is superior in evaluating basic thermodynamic properties like the total energy and density —
density or current — current correlation functions.

A qualitatively new class of extremely efficient MC schemes [12] has been developed in
recent years [13-18]. These schemes are based on the so-called loop cluster update (LCU)
algorithm, which performs nonlocal updates for worldline loops with sizes as large as the system
itself. Apart from solving the problem of critical slowing down, it also allows one to work in
the grand canonical ensemble and with nonzero winding numbers. From this method we learn
that problems (b), (c) and (d) can be circumvented. Unfortunately, the LCU algorithm, as far
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as we know, is not universal. It applies to spin systems and to hard-core Hubbard models, but
was never formulated for the general lattice Hamiltonian, like interacting soft-core bosons with
arbitrary U;;, arbitrary density (chemical potential), or on-site disorder. Another shortcoming
of the LCU, which in a sense can also be called nonuniversality, is that it does not admit of
a universal code. It should be noted that LCU allows for considerable generalization to the
cases of external magnetic field and disorder, but generally speaking the cost is lost efficiency
because of the exponentially small acceptance rates for large loops!.

It is shown in Ref. [19] how to build a path integral in continuous time for quantum
systems in a discrete basis. The configuration is specified by transition times and system states
before and after the transition. Within this description one can formally think about taking the
limit A7 — 0 in the standard approach. However, to implement this description one has to
formulate the update process. In the standard worldline algorithm, one of the basic procedures
is generation of new kink-antikink pairs when system evolution on a given site changes from
|a) — |a) — |a) to |a) — |y # @) — |a). In the continuous limit, the acceptance rate for
such a variation vanishes as (Ar)?, and thus the problem of qualitatively new update principles
arises.

Recently, two independent continuous time schemes utilizing the ideas of Ref. [19] were
developed [18, 20]. Beard and Wiese [18] find that with the LCU algorithm, one can go directly
to the continuous-time limit A7 — 0, thus rendering the LCU algorithm exact.

The general solution to the problem of configuration update in continuous time is found
in Ref. [20]. The resulting continuous-time worldline (CTWL) method is exact, and like SSE,
is 1/(tAT)* times more efficient than finite-Ar local schemes. It also completely eliminates
problem (f), since none of the procedures relies on small parameters (potential energy is
accounted for in the exponent, and one does not have to weight relative contributions to the
statistics of the potential and kinetic energy terms, as happens in SSE).

In its original formulation, the CTWL approach did not solve problems (b)-(e), and was
tested only on a simple single-particle Hamiltonian [20]. In the present article, we present a
complete description of the CTWL approach to the statistics of arbitrary many-particle system
with discrete Hilbert space. We demonstrate that it enables one to solve problem (¢) in a
physically intuitive way by formulating the local update procedures in terms of the motion of two
worldline discontinuities (in what follows we call them «worms») in space and time, i.e., in terms
of a calculation of the Green’s function. During one MC step (consisting of N3/t operations)
the whole histogram for G(7, 7) is updated, which means that G is calculated as efficiently as,
say, the total energy, and is not affected by point (g). Since G(i = [MzLz, MyL,,...],n0)
with integer M, M,, ... and n describes a system with n extra particles and winding numbers
{M}, we are working in the grand canonical ensemble. This solves problems (b) and (c).

Closer examination of the loop building rules [14, 18] for the Heisenberg Hamiltonian shows
their remarkable similarity to the evolution of an extra worldline segment. The crucial difference
is that only closed loops are considered by the LCU algorithm, while our scheme considers all
the intermediate configurations as well, and utilizes them for the Green’s function calculation.
Working in the extended configuration space, which includes discontinuous worldlines, we use
local Metropolis-type [21] updates only. However, when discontinuities annihilate, and we

D To stress this important point, we find it reasonable to distinguish between «efficient» LCU algorithms
and others. By <«efficient> LCU we mean algorithms in which detailed balance is taken care of in the
cluster-building rules, not in having a global Metropolis step with small acceptance rates for large clusters.
Nevertheless, in certain cases «inefficient> LCU code works reasonably well [15].
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return to the configuration space of closed worldlines, the net result of the update is of global
character. Since CTWL with «worm» updates effectively mimics single-loop LCU, we may
hope that it possesses all the remarkable features inherent in LCU, and in particular that it
solves, or at least softens, the problem (d).

To summarize, we propose a method which is exact, complete (allows calculation of any
correlation function), and universal (applies to arbitrary quantum systems with discrete Hilbert
space, and enables one to write a unified code, that is simultaneously applicable to lattice bosons
and arbitrary spins, with arbitrarily long-range interactions and disorder). The sign problem now
becomes the only stumbling block on the way of making quantum MC an «ideal» computational
tool for studying complex systems.

This paper is organized as follows. In Section 2 we formulate the general principles of the
continuous-time worldline approach. In Section 3 we introduce the update procedures that we
find to be the most effective and sufficient for simulation of the quantum statistics of many-
particle systems. In Section 4 we demonstrate the advantages of the new method by presenting
some of results that cannot be obtained by any other MC approach: the Green’s function and
the critical index of the 1-D boson Hubbard model at the quantum critical point, and the
low-energy properties of the strongly-disordered Bose glass phase. In Section 5 (and Appendix
A) we discuss the feasibility of increasing the efficiency of our method in the case of long-range
interactions, and consider the feasibility of generalizing the method to continuous systems.

2. GENERAL PRINCIPLES

Let Hy and V be the diagonal and off-diagonal parts of the Hamiltonian H in a chosen
representation corresponding to the full set {a} of eigenstates of Hy, with Ho|la) = E4|a).
The statistical operator can then ordinarily be related to the Matsubara evolution operator o
in the interaction picture, i.e., we write e #H = ¢=FHog with

B B T2
0’=1—/dTV(T)+...+(—1)m/dTm---/dT1V(Tm)'-'V(T1)+... , )
0 0 0

where V(1) = e"HoVe~7Hs Without loss of generality and in accordance with typical forms
of Hamiltonians of interest, V' can be written as a sum of elementary terms @), whose action
on any function from the set {a} results in another function from this set:

V=>"Qs, Qila)=-gn)l) (1=17(s0). 3)

Since V is Hermitian, for any s in the sum (3) there exists an s’ such that Q, = Q!. We
rewrite Eq. (2) in components (below E,, = E, — E,):

B
S0 .

B T2
+ > /drm--'/dn Qav(Sm)e™For - gy (s)e™PMr + (4)
0

SiyeesSm
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Note that there is no additional summation over the indices of the intermediate complete
sets (labeled by Greek letters), since these are defined in a unique way by configurations of
(31,52) e 7Sm)-

We confine ourselves to the case of finite-range interaction, which is defined by the
requirement that for each term s; of elementary operators {Q, } there exists only a finite number
of terms s, for which the condition

[Qs,(1), Qsy(12)] =0 &)

is not met. In case of finite-range interaction, the structure of the series (4) is drastically
simplified, the simplification being of crucial importance for practical realization of our
algorithm. From (5) it follows that up to an irrelevant change in the indexing of energies
and matrix elements, one can ignore the chronological order of @, (m) and Q,, () in the
evolution operator. This suggests representing a general term of the series (4) in the following
form. First, we introduce the notion of a «kink of type s», which is characterized by a time 7,
a matrix element g,,(s), and a diagonal-energy difference E,.,. The former two we will refer
to as parameters of the kink. It is essential that (i) to obtain parameters of a kink one need
not know explicitly the whole state |a ), or |y ) — local information is enough; (ii) to specify a
particular structure of a term in Eq. (4), including the chronological order of all noncommuting
operators, it is enough to specify for each kink its associated neighbors, i.e., the noncommuting
kinks nearest in time.

Now our goal is to describe in general terms a stochastic process that directly evaluates
Eq. (4). Forsimplicity, we assume that all g,3(s) are positive real numbers. (In many particular
alternative cases, a straightforward generalization is possible, but usually at the expense of
convergence.) Summations and integrations in Eq. (4) then can be regarded, up to a normalizing
factor, as an averaging over the statistics of different configurations of kinks, each configuration
being defined by a certain number of kinks of certain types, their associations and particular
positions in imaginary time. The Monte Carlo process should examine these statistics by
generating different kink configurations in accordance with their weights. The global process will
consist of a number of elementary subprocesses, each being responsible for certain modifications
of a particular type.

An update procedure of a general type should involve subprocesses of creation and
annihilation of kinks. Clearly, the qualitative difference between discrete- and continuous-
time QMC schemes is associated with processes of just this kind. To introduce the general
principles of construction of subprocesses that change the total number of kinks, we consider
some particular (but still rather rich) class of elementary transformations (which seems to be
sufficient for all practical purposes). By an elementary transformation we mean a subprocess
which either only creates or only annihilates a certain number of kinks. The set of elementary
subprocesses can be decomposed into self-balanced creation-annihilation pairs. Our task then
is to specify the structure of creation and annihilation subprocesses, and to derive the balance
equation that would guarantee that the statistics generated by each pair of subprocesses does
really correspond to that introduced by Eq. (4).

Let some subprocess create n kinks of given type sy, s,,. .., $,, the temporal positions of
the kinks being specified by the n-dimensional vector 7 = {7, 7, ..., 7o }. In the most general
case, the creation procedure involves two steps.

First, one suggests to create n new kinks at 7 € I, where I' is a certain region in the
n-dimensional space of times 7y, 73, ..., T,. The probability density W (1) of choosing a given
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T is, generally speaking, arbitrary, provided W(r) is nonzero at every physically meaningful
configuration of kinks.

In the second step, one either accepts (with probability P,..(7)) or rejects the suggested
modification.

The annihilation procedure is much simpler. The n kinks of given type sy, s3,...,$, and
with T € T are either removed (with probability P,.,,(7)) or remain untouched.

The equation of balance for the given pair of subprocesses reads

AO Pc W(T) Pacc(T) dr — dAn(T) Da Prem(T) =0. (6)

Here Ay (A, (1)) is the probability (probability density) of finding a configuration without the

specified n kinks (with the specified n kinks at the given 7). We have also introduced the

probabilities p, and p, of addressing the creation and annihilation subprocedures. In the next

section we will see how it can turn out quite naturally that these probabilities do not coincide.
The statistical interpretation of Eq. (4) implies

= dr ] q(s;) exp(AE;;), )
j=1

dA,(T)
Ao

where q(s;) = qq;,(s;) and AE; = E,,; — Ep,. Combining (6) and (7) we obtain the necessary
and sufficient condition for the pair of subprocesses to be self-balanced:

W(T) Pacc(T) = R(T), R(T) = p_a Hq(sj)exp(AEjTj)- (8)

Prem(T) pC J=1

Given W(r), the condition (8) is satisfied, e.g., by the following obvious choice of P,
and Prep:

Prestr) = { BOIW R < W )
Pty = {WOVRE, RO > W) )

From (9) it can be seen that there is a certain reason for choosing W (1) < R(7), as in this case
P,.. becomes independent of 7, and the accept — reject decision can be made before suggesting
a particular configuration, thus saving computational time. However, if the structure of the
function R(7) is complicated, the numerical generation of the corresponding distribution will
be very expensive. In this case it is better to take W (1) o< R(T), where R(7) is some «coar-
se-grained» approximation to R(7) with a simple form.

We do not consider here a general theory of subprocesses that do not change the number
of kinks, since it is basically the well-known theory of taking multidimensional integrals by
standard Monte Carlo procedures. Particular examples of such subprocesses can be found in
Ref. [20] and in the next section.

The foregoing approach does not involve any explicit truncation of the series (4). One
might wonder, however, what the effect of implicit truncation in the practical realization of
the process would be, due to the finite size of the computer memory. To this end we note that
even for simulations of many-particle systems, where the typical number of kinks Ny, (that
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is, the typical number of terms in the series (4)) that contribute to the final result is really large,
and one might expect the memory/accuracy problem, the effect can be easily made absolutely
negligible. Indeed, from the Central Limit Theorem, it follows that the number of kinks in
significant configurations has a Gaussian distribution with the peak at Nj;nx and a half-width
of order v/ Nyini (cf. Ref. [9]). If one just reserves at least twice as much memory as necessary
to describe the configuration with Ny;.. elements, then during a computation spanning the
age of the Universe, the system will not fluctuate to states which cannot be fit into memory.
The implicit truncation error thus can be made astronomically small.

3. UPDATE PROCEDURES

A. Kink motion

Let us first consider update procedures that are straightforward generalizations of those
known in the discrete-time worldline algorithm, and work with closed trajectories only. The
simplest process involves transformations that do not change the number of kinks, but change
their types, time positions, and temporal ordering, [20]

(a] Qay(72,)Qa,(Ta,) - - - Qa, (Ta,) [7) — (@] Qb (16,)Q0,(T0,) - .- Qo () 7). (11)

The number of operators involved in the transformation, their types, and time positions are
not constrained, except that the two configurations have nonzero weight. Obviously, one
could suggest many different realizations of Eq. (11), and some might work more efficiently
than others, depending on the system. Here we describe the procedure called «kink motion»;
other procedures have too much in common to be described separately, and allow trivial
modifications.

To move a kink, we first select it at random from the list of existing kinks and decide on the
time interval to be considered. Suppose that we have chosen a transition described by (Qy, 70).
We then find kinks of the same type that are nearest in time (both to the left and to the right
of 7p), i.e., Qg or Qg, and consider their times 7y < 7y and 7, > Ty as the boundaries of the
time «window» transformed by this procedure (in certain configurations at high temperature,
it may happen that (7, 7) = (0, 3) ). It is allowed to have any number of kinks of different
types Q. # Qo, Qg within (1, 7). Thus the typical initial configuration has the form

Qa\(72)Qa,(Ta,) - - Qo(70) ... Qa, (Ta) | -+, 12)

1 T2

(as explained above, one has to consider only those kinks which do not commute with Q).

The second step is to analyze all possible configurations obtained from (12) by removing
Q) from point 75 and inserting it at arbitrary 7' € (71, 72). We keep the time positions and
the chronological ordering of all the other operators Q,,, @q,, - - - , @4, untouched. The new
position of the selected kink Qg in time is decided according to the statistical weight of the
final configuration as defined by Eq. (4). This is done in complete analogy with the classical
MC procedure of taking multidimensional integrals.

The acceptance rate of the kink motion procedure is unity, since the differential
measure of the initial configuration is zero. In this way, all noncommuting kinks in the
Hamiltonian (except kink-antikink pairs, which are dealt with in the next subsection) can
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change places. In dimensions d > 1, the kink motion procedure must be supplemented
with a «local loop» procedure, which generates small loops in real space, e.g., by replacing
Qinitg, (T1)Qitgmitg+g:(T2)) — Qising,(T3)Qitg,—itg,+4,(Ts), Where gy, gy are the nearest
neighbor indices.

B. Creation and annihilation of kink-antikink pairs

In this subsection we make use of the general theory of Sec. 2 and explain how the
elementary procedure of creation and annihilation of kink-antikink pairs is organized in practice.
An important new principle realized in our algorithm is the possibility of selecting different
update procedures with certain probabilities (see also Appendix A). These probabilities, p, and
D¢, are at our disposal, and if necessary, can be used to «fine tune» the efficiency of the MC
process as a whole. The most natural starting point for the update is to address at random
some configuration fragment. It can be characterized by the kink Qq(7), or by the system
state |a(ip)) between the two adjacent kinks that change this state (in computer memory, all
|ce(ip)) between kinks are assigned labels; the configuration itself is described as a linked graph
by specifying nearest-neighbor associations (in space and time) between the labels). We choose
the latter variant and address site labels. Thus the probability of applying an update procedure
to a given fragment is o< 1/Nj,p, where Ny, is the total number of labels characterizing the
initial configuration. By inserting (deleting) n extra kinks, we increase (decrease) N;q; by

n
E mQj,
=1

where mg, gives the number of states changed by the kink @ ;. Thus, the ratio p, /o in Eq. (8)
is proportional to

Nigp/(Nip + Z mg;),

j=1

when addressing the creation of n kinks, and

(Nlab - ZmQ]) /Nias,

J=1

when addressing the annihilation procedure.

To fix the values of p, and p., we count the number of possible kink — antikink processes
that can be applied to a given fragment. This number is denoted by N,,,.. The simplest choice is
then to assign equal weight, 1/N,,,, to all possibilities. For example, if we consider a model
with the nearest-neighbor hopping in 1D, then there are three possibilities for the site state
|ce(d)): to insert Q;—;+1Qi+1—; OF Q;i—1Q;_1—; and to delete a pair of kinks that change
this state to the left and to the right in time, provided they form a kink-antikink pair (i.e., are
of the Q;+1-iQ;i—i+1 type). In this case mg, = 2 as well, and we finally have

: Da N lab — 4
— = ————  (creation) ; —_—= —
Pe Ny +4 Pe Niap
Obviously, in the thermodynamic limit and at low temperature, these ratios are very close to
unity. Again, this is only a particular example; other choices may prove to be more efficient
under certain conditions.

(annihilation) . (13)

578



XOTD, 1998, 114, evin: 2(8) Exact, Complete, and Universal Continuous-Time. . .

Once the configuration fragment and update procedure are selected, we proceed along the
lines described in Sec. 2. Here we would like to comment on the choice of probability density
W(t). It would be perfect from the acceptance rate point of view to take W(T) o« R(T).
However, this can turn out to be a very expensive procedure. To illustrate the point, consider
a configuration fragment of length 7, , = 7. — 7;. Due to the large interaction radius between
particles, an effective field acting on updated states can change many times during 7. If
the number of time slices thus induced on the interval (7, 7,) is N, . >> 1, then complete
parametrization of the R(7 ) function will require calculation of the N, | (N7, +1) /2 partial
probabilities, according to the number of ways one can distribute two kinks among N,, = time
subintervals.

The solution of the problem lies in choosing W (r) = W(E,7), where W(E, 7) is an
analytic function with the same properties as W (r), controlled by a parameter E that is used
to minimize the variance of [W(E, ) — R(7)|. The most obvious physical choice of E is the
mean field potential acting on the updated states during 7;, from the rest of the system

l,r

exp(-Em,,) = R(n,77) , (14)

exp (—E(m — 1)
T

W(-E,T)= ), I=/dT2/dTICXp (—E(Tz—‘l’l)). (15)

One immediately recognizes in W (E, 7) the statistics of the kink-antikink pair in the biased
two-level system [20], which, through the mean-field definition of the bias energy E, most
closely approximates the local statistics of kink-antikink pairs in a real system.

The procedures described in the last two subsections represent a direct generalization of
local procedures already known in the discrete-time worldline method. Their continuous-time
versions are, however, only specific realizations of a much wider class of possible procedures,
thus making the overall CTWL scheme more flexible.

C. Creation — annihilation, jump, and reconnection procedures for worldline discontinuities

Up to now, we have considered procedures for working with closed worldlines. These are
sufficient to simulate quantum statistics in the canonical ensemble and in the M = 0 sector. To
overcome this essential drawback, and to calculate the Green’s function, one usually introduces
an extra worldline segment and simulates quantum statistics in the presence of two worldline
discontinuities at points (i, 71) and (43, 73). This process is highly inefficient, because one has
to probe all degrees of freedom in the configuration (numbering roughly ~ L%3) to collect
statistics for only two extra degrees of freedom. In practice, this method was never used to
calculate Green’s function in large systems, e.g., with L¢3 ~ 10%. The solution we find for
this problem is in considering the two worldline discontinuities to be real dynamic variables
in the Hamiltonian, which are allowed to move through the configuration both in space and
time. It turns out that this motion can be arranged to be ergodic, and probes all possible system
states. One can even completely ignore all the other update procedures, such as moving other
kinks and working with kink-antikink pairs, probably at the expense of being less efficient,
but still remaining accurate, complete, and universal. Below we describe the details of update
procedures with worldline discontinuities («<worms»), which were first introduced in Ref. [20].

We start with the general expression for the Matsubara Green’s function (see, e.g.,
Ref. [22]) in the interaction picture
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G(i,j,11,m2) = —€"Tr |e P T, (ay(n)al(m)o) | (16)

where T, is the 7-ordering operator, which was explicitly written before in defining the
Matsubara evolution operator ¢ in Eq. (2); Q is the grand canonical potential. To be specific,
we assume here that H, is diagonal in the site representation; in the general case, one might
imagine that the index 7 refers to some parametrization of eigenstates of Hy. Since we now
work in the grand canonical ensemble, the Hamiltonian contains an extra term

N =Y, (17

where g is the chemical potential. Formally, the only difference between the statistics given by
Eq. (4) and the Green’s function (16) is that we have two extra kinks, a;(y) and a;‘. (1,). Hence
one has the possibility of calculating the Green’s function in a unified process, together with
standard thermodynamic averages («energy», for the sake of brevity). To this end, it is necessary
just to work in an extended configuration space, where two classes of configurations are present:
(i) with continuous worldlines, and (ii) with two worldline discontinuities, corresponding to the
kinks a;(7;) and a} (m). (Clearly, configurations of class (i) contribute to «energy», while those
of the class (ii) contribute to the Green’s function.) The transitions between the two classes
are performed by the processes of creation and annihilation of the kinks a;(7;) and a;f.(rg),
in accordance with the general balance principles Eq. (8). For computational purposes, it is
reasonable to redefine the Green’s function by a trivial scaling transformation a; — 7n*a;,
a;f. — na;f., where the constant 7 is adjusted to produce the optimal acceptance (rejection)
probability. :
Alternatively, one can arrive at the above scheme by the standard trick of introducing a
source to the configuration action S (the notation 7 for the source is chosen deliberately):

B B B
/dTV(T) — /dTV(T) + Z/dT (nf(T) a;(1) + (1) a:f('r)) , (18)
0 o

0

and defining the Green’s function as a functional derivative of the generating functional (the
partition function with the source)

L &z
Z bni(r1)ém;(m2)

The numerical procedure equivalent to the variational derivative in the limit n — 0 means
that only configurations with (i) zero and (ii) two worldline discontinuities are included in the
statistics. Confining ourselves to just these configurations, we do not have to deal any longer
with infinitesimally small 77, and can choose 7) to be a certain finite constant. (This is crucial for
any realistic computational process, since 7 — 0 clearly means that the time of accumulation
of statistics goes to infinity.) Indeed, a particular value of 7 just defines the relative weights
of classes (i) and (ii), thus changing the relative norm of the Green’s function with respect
to «energy» by the known factor of |n|?. (Incidentally, one may pay no attention at all to
the normalizing statistics for the Green’s function, as the norm can ultimately be fixed by the
condition G(7,, 7,7 + 0) = —density.)

A typical configuration with two «worms» is shown in Fig. 1 («live» picture taken from
the computer). To update it we apply the following transformations:

GG, j,m,m2) = 19

n,n*—0
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=
|

I Fig. 1. A typical 8-site configuration
with two worldline discontinuities marked

by filled circles. The width of the solid
] line is proportional to the site occupation
number, and dashed lines are empty sites

—

00 N O Lt A WN -
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Fig. 2. Jump procedure for the annihilation operator. a) Initial configuration fragment;
b) suggested variation (in the antijump procedure, (b) is the initial configuration and (a) is
the suggested variation)

Creation and annihilation of two worldline discontinuities

We delete a pair, ai(n)al (1) or a;‘ (11)a;(m2), when discontinuities happen to meet at the
same site 7 and there are no other kinks between them that can change the state of . The
only difference between this and the kink-antikink procedure is that now we transform only
a single-site state, thus mg = 1. The annihilation procedure addresses the pair of worms,
but the creation procedure (which makes sense only when there are no worms) addresses the
randomly selected configuration fragment label. The ratio of probabilities p,/p. to address
update procedures that transform the same configuration fragment back and forth is now

Pe — Niap  (creation), Pe — Niuy—2 (annihilation) . (20)
c c
This ratio is macroscopically large, which is obviously unpleasant for the computational process.
However, we have R(T) ~ |n|?, with the freedom of choosing 7. By setting |n|> ~ 1/(Nias),
where (N;,;) is the average number of labels in the configuration, we obtain an update procedure
that is not based on small parameters (in practice, any rough estimate like (L%3) for (Niqp)
is sufficient). The rest is done in exactly the same manner as described in Sec. 3B.

Jump

This update procedure is illustrated in Fig. 2. We select one of the worldline discontinuities
and suggest shifting it in space by inserting an ordinary kink (hopping operator) to the left (in
time) of the annihilation operator and to the right of the creation operator. As a result, the
worm «jumps» to another site. The number of kinks changes by one in this procedure, but
Da /D is unity, because we address it upon the availability of worms, and not according to the
number of labels. Also, since we are dealing with only one extra kink here, the structure of
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Fig. 3. Reconnection procedure for the annihilation operator. a) Initial configuration
fragment; b) suggested variation (in the antireconnection procedure, (b) is the initial
configuration and (a) is the suggested variation)

the R(r) function (see Sec. 2) is much simpler, and we choose W () = R(7)/ f dTR(1). The
integral is over the time interval of the updated fragment. The opposite procedure is called an
«anti — jump».

Reconnection

Formally, this update procedure, which is shown in Fig. 3, is technically identical to the
«jump», but now an extra kink is inserted to the right of the annihilation operator and to the left
of the creation operator. We still distinguish between them, because in the jump procedure the
corresponding particle trajectories do not exchange places, while they do so in the reconnection
update. Figure 3 makes it clear that we have effectively reconnected worldline segments
of different trajectories. Note that in fermionic systems, any reconnection/antireconnection
procedure results in a change of the configuration sign.

Shift in time

The motion of worldline discontinuities in time is essentially the kink motion process (see
Sec. 3A). Suppose that we have decided to shift an annihilation kink @y = a;. The only
difference from the scheme (12) is in the definition of the updated time interval. Its boundaries
(1, ™2) now correspond to the time positions of the nearest left and right neighbors (kinks) of
any type that operate on the same state 5. Of course other possibilities are allowed as well, if
one has some physical arguments in favor of, say, extending the time window farther to the
next-nearest kink, or a kink of a special type.

The update procedures thus defined comprise an ergodic stochastic process that operates on
the entire configuration space of the system. All configurations, including those with nonzero
winding numbers and different number of particles, are accounted for. Extra particles are
inserted/removed from the system when at;(;) makes a complete loop in time (relative to
a;(1)), i.e., when 7, — 1, changes by multiples of 4. Winding numbers are introduced when
7 —1 changes by multiples of L. The key point of our approach is that each local update makes
a contribution to the G(z,7) histogram, except rare cases in which there are no worms in the
configuration; these configurations contribute to the «diagonal» (or conventional) statistics of
closed worldlines. Contrary to the standard calculation, we do not adjust all degrees of freedom
to the current positions of worms, but rather probe and update the whole configuration through
their motion. This almost trivial modification results in a factor of (L¢3) acceleration of the
scheme!

It is instructive to draw an analogy between the motion of worldline discontinuities and the
loop cluster update rules. As is easily seen, the basic elements of the single-loop LCU method
known as «optional decay» and «forced transition» [18] correspond to a particular evolution
of the worldline discontinuities («optional decay» corresponds to the «jump» procedure, and
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«forced continuation» to the «antireconnection» procedure). A closed loop is obtained after
annihilating the pair a and af. Notice, however, that in our scheme (i) not only closed loops,
but also all intermediate configurations are physically meaningful and are included into the
statistics; (ii) nothing is based on the special structure of the system Hamiltonian; (iii) the
update is always local (it is known that acceptance rates for large loops become very small when
an external magnetic field in the Z-direction is applied to the Heisenberg system (magnetic
field is equivalent to a finite chemical potential in bosonic language); this problem is simply
absent in local schemes).

The statistics of discontinuities in space and time is given by G (¢, 7), i.e., it is defined by the
Hamiltonian. In general, the optimal update scheme depends on the quantity being calculated,
and thus one might wish to control the statistics of worldline discontinuities «at will». This can
be easily achieved by introducing a fictitious spacetime dependent potential acting between the
«worm» ends, so that their relative positions are now distributed according to the function

GG, m) QG, 1),

where Q(i,7) is arbitrary. In this way, one can change the typical size and shape of the loops
generated by the «worm» algorithm.

The scope of the present paper is such that we are unable to discuss here many important
details concerning the practical implementation of our algorithm (optimal triple-linked storage,
particular forms of Egs. (9), (10) for each subprocess, optimal management of subprocesses,
etc.). Readers interested in these issues are encouraged to take advantage of our FORTRAN
code with comments.

4. ILLUSTRATIVE RESULTS

To demonstrate the advantages of the CTWL algorithm, we have calculated properties of
the 1-D boson Hubbard model (Eq. (1) with U;; = Uy 6;;) for various coupling constants Uy
and particle densities p.

Comparison with the exact diagonalization results for small systems has demonstrated the
lack of any detectable systematic error. In particular, for a system with eight lattice sites and
six bosons, and on-site repulsion U = 0.5, the exact diagonalization result for the ground-state
energy is Eg = —10.49209, while long-run Monte Carlo simulations yield Eg = —10.4922(2),
i.e., a result with relative accuracy better than 10~*.

It is well known that a commensurate system with p = 1 undergoes a superfluid —
Mott-insulator transition of the Berezinskii — Kosterlitz — Thouless [23, 24] when the on-site
interaction is strong enough (for the most accurate estimate of the transition point U, = 1.645¢,
see Ref. [25]). In the superfluid phase, including the critical point, one can utilize knowledge of
the long-wavelength behavior of the system. As explained by Haldane [26], the energy associated
with extra particles and nonzero winding numbers is quadratic in M and N — N (for simplicity,
in what follows we count particle numbers from the commensurate value: N — N — L and
N — N — L). This means that the corresponding probability distribution in M and N is a
Gaussian, i.e.,

L 2 B 2
W(N, M) o exp [_2ﬂAs(0)M V- ] x
x exp [— "K;(O) (%M2 - %(N - 'N)2>] . (21)
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The zero argument of the superfluid stiffness A; and compressibility x denotes values at T = 0.
Here K—! = m/A,k is the index that controls the asymptotic behavior of the correlation
functions, and c is the speed of sound.

At the critical point, K (L), k(L) and A,(L) are system-size dependent quantities, with
K(L — 00) — 1/2. Since the speed of sound is unrenormalizable in a homogeneous system,
it is sufficient to study scaling equations for the critical index only. In fact, the solution of
the renormalization group (RG) equations for K (L) can be «visualized» by considering the
logarithmic derivative of the Green’s function, since its index is just K/2:

dInG(r)

K= -2=

l=Inr. (22)
Here we have introduced the variable 2 = x? + (ct)?, which by conformal invariance describes
asymptotic decay of G both in space and time.

Expressions (21) and (22) allow for a comprehensive test of the new algorithm. It is
also tempting to consider a large system right at the quantum critical point and to evaluate
its properties under the most unfavorable conditions for the standard worldline method. To
calculate the critical index and the speed of sound, we considered a ring with 100 lattice sites and
B =100/t. The critical parameters of the Hamiltonian are Uy = 1.645¢ and p = 1.94¢ [25]. We
had no problems in accumulating sufficient statistics of winding numbers and N for this system
(the corresponding calculation is virtually impossible using the standard worldline algorithm).
Simple manipulations with the exponents in (21) result in the following expressions:

No N-ry I [W(0, N)/W(0,0)]
2N +ry) Y In[W(0,—N)/W(0,0)]
=B [WONWE,-N)
Loy PV W20, 0) ’
L M? W (0, M)W(O,—M)}
A(0) = = —, =_mh 23
R e a0 @
If one is interested in evaluating directly K(0) then
_ (ongm)'?
K(0) “AINMT (24)

The choice of N and M here is arbitrary, but for numeric reasons, the optimal N and M
correspond to values where (py, gy) ~ 1. The advantage of working with nonzero winding
numbers in the grand canonical ensemble is obvious: in a single MC calculation, one collects all
the necessary information about the parameters in the effective long-wavelength action, which is
very convenient in determining quantum critical points from K = K. For the aforementioned
system we found ¢/t = 2.4(1), and K (I = In(100)) = 0.47(1).

One note is in order here. The Gaussian distribution (21) implies that the system is in
the superfluid phase. In the general case one has to define the compressibility as « = dp/dp,
where by definition p = N /L. The superfluid stiffness A, is defined as the coefficient relating
persistent current and gauge phase when ¢ — 0; this yields [27] A, = WL/ B.

Finally, we used our method to evaluate the Green’s function G(i,7) and to extract the
critical index of the Berezinskii — Kosterlitz— Thouless transition from its asymptotic behavior;
one can then check the consistency of all calculations. Since the CTWL simulation yields a
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Fig. 4. Short-time behavior of the Green’s function G(0, 7) of the commensurate 1-D Hubbard model
at the quantum critical point

Fig. 5. Long-range behavior of G(i, 7), demonstrating conformal invariance

two-dimensional histogram for G(i, 7), much more accurate results for K(I) are obtained by
computing logarithmic derivatives along different directions in the (x, 7) plane with subsequent
angular averaging. The speed of sound, which is necessary for such a calculation, is extracted
from the asymmetry between z and 7 in the asymptotic decay of G. For the Green’s function
calculation, we considered a ring with 450 lattice sites and 8 = 200/¢t. In Fig. 4, we show the
short-range behavior of the Green’s function in the 7-direction, with the characteristic jump
at 7 = 0. The dashed curve is a linear interpolation between the calculated points. In Fig. 5,
we present the full-scale behavior of G(z, 7) by plotting it as a function of r = (2% + (ct)?)!/?
along the time and x = c¢r directions. In accordance with conformal invariance, for large r the
two curves are indistinguishable to within the statistical errors. The speed of sound obtained
from the Green’s function is ¢/t = 2.4(1), and analysis of the logarithmic derivative (22) yields
K (I =1n(100)) = 0.46(2).

It is worth noting that our calculations for W (V, M) and G were performed on a Pentium-
90 PC. None of these results (e.g., for L > 100) can be obtained by other methods, even with
the use of supercomputers.

The strong on-site disorder at low temperatures is a severe trial for most Monte Carlo
schemes. Cluster methods suffer from inefficient global Metropolis updates here, while standard
canonical-ensemble algorithms suffer from slowing down due to one-particle local minima in
the effective action (the lowest single-particle states are well localized, and probing different
configurations requires deep sub-barrier motion). The unique feature of our «worm» update
method — the possibility of locally seeding an extra world line at any point in the spacetime
continuum — obviates these problems.

To demonstrate the efficiency of our method, we present the results of just one nontrivial
calculation — the dependence of the average particle number on the chemical potential in the
Bose glass (BG) phase of the 1-D disordered Hubbard model, Fig. 6. We consider a system
with L = 60 sites at 8§ = 150, U = 3t. Disorder is introduced by randomly distributing the
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L =60 Fig. 6. Number of particles vs. chemical
ﬂ: 150/ potential in a large Bose glass cluster
U=3t at macroscopically low temperature

A= 6t

4 N s ) ) R )
345 3.55 365 375 3.85 395 uht

on-site potential ) . €;n; between —A and A, with A = 6¢. The curve (N)(u) allows precise
determination of the low-energy quasiparticle spectrum of the system to order 0.01¢, which is
equivalent to the calculation of the total system energy to a relative accuracy of order 10~%.
The entire plot of (N)(u) was obtained in a few days of CPU time on a PentiumPRO-200
processor.

To obtain further evidence of the effectiveness of our method in more familiar problems,
the reader is referred to a calculation of the superfluid — Bose glass-Mott insulator phase
diagram in the 1-D disordered boson Hubbard model [28].

5. CONCLUDING REMARKS

Although the CTWL algorithm developed here is quite general, some aspects deserve special
discussion. What if the interaction radius rg is large? All of the procedures update configuration
fragments with the typical duration 7, — 7; ~ 1/¢. Since the method is exact, we trace all the
kinks within the interaction radius, because they contribute to the function R(7). This means
that the interval (7;, 7,.) is further split into N, ~ rdz > 1 subintervals (z is the coordination
number), and each subinterval requires special consideration. If ry is as large as the system
size, then the whole scheme is in trouble, becoming a «victim of exactness».

The idea of solving such a problem is demonstrated by the stochastic series expansion
method [1,9,10]. One might well wonder why continuous-time schemes, which contain as
an essential ingredient an evaluation of time integrals, work as efficiently as SSE, which has
all these integrals being evaluated exactly right at the start? Also, why is keeping the potential
energy U in the T-exponent not at all an advantage if U ~ t? The point is that the MC process
is exact only for asymptotically long computation times, and there is no reason to calculate
anything more precisely than the unavoidable statistical error, especially if the corresponding
calculation becomes the bottleneck for the whole scheme. Evaluating time integrals in CTWL
or reproducing exponents by expanding in power series in U ~ t are just two cases that illustrate
this point.

Suppose that all particles in the system interact with one another, so that formally ry = L,
but [drp(r)U(r) = F(L) # oo. We divide the interaction Hamiltonian into two parts,
HD.(r < )+ H?,(r > 1), by introducing the truncation radius

dr pU[) =t. (25)

[r|>r
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We then write Hy = Hz(,ll)t and combine Hffl)t with V' (see Sec. 2), i.e., the long-range part
of the interaction Hamiltonian is now considered to consist of diagonal kinks. Because of the
definition (25), the total number of kinks within the time interval ~ 1/t remains finite and
independent of system size.

The case of a divergent integral f drp(r)U(r) = F(L) — oo is more subtle, since the
number of diagonal kinks within the time interval ~ 1/¢, given by F'(L), is now large (if F'(L)
is a logarithmic function of L, we do not regard this problem as serious). On the other hand,
for long-range interactions the so called «mean-field approximation» becomes more accurate.
Since the mean-field potential is easy to account for analytically (and numerically), one now
has to deal with fluctuations, and these quite often satisfy the condition

/ dr(p(r) —=p) U(r) | =6F(L) # o0 . (26)

In Appendix A we explain how to organize the Monte Carlo process using the mean-field
approximation for the configuration weight. The net result is that even for long-range potentials,
the calculation time can remain independent of system size.

In this paper we have concentrated on the Green’s function calculation by restricting the
number of worldline discontinuities to 0 or 2. Of course the scheme can be trivially extended
to include the case with a larger number of discontinuities, if one is interested in the two- or
n-particle Green’s function or n-point vertex. More generally, our scheme makes it possible
to work with Hamiltonians that do not conserve the number of particles, i.e., when there are
sources with finite strength in the bare Hamiltonian.

Although in this paper we consider a system with discrete Hilbert space in detail, the
principles of update in continuous time developed here are much more general. Mathematically,
we construct an exact method (in the statistical limit) of averaging over a distribution represented
as a series of integrals with an ever-increasing number of variables, but with essential similarity
among the terms of the series, allowing their local comparison (weighting). We may call
such structures integrals with a variable number of variables — VNV integrals. Physically,
we sum a perturbative expansion in the interaction picture for some observable of a large but
essentially finite-size system. (For a system with discrete Hilbert space, the only continuous
variables in this expansion are the times of virtual transitions.) But perturbative expansions
for continuous systems also have the structure of VNV integrals, with additional integrations
over some continuous variables. Thus (apart from the fact that for spatially continuous systems
one cannot expand the kinetic part of the Hamiltonian and must use the potential energy as a
perturbation), there is no qualitative difference between perturbative expansions for continuous
and discrete systems. The general method of evaluating VNV integrals is given by Egs. (6)
and (8)-(10), where the vector 7 now stands for any set of continuous variables, and the function
R(7) is defined straightforwardly, given the particular form of the series. '

We would like to thank V. Kashurnikov, A. Sandvik, M. Troyer, H. Evertz, B. Beard, and
N. Kawashima for inspiring discussions of existing Monte Carlo schemes and valuable comments
on the final version of the paper. This work was supported by Grant Ne INTAS-93-2834-ext
(of the European Community) and partially by the Russian Foundation for Basic Research
(Grant Ne 95-02-06191a).
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APPENDIX

Long-range potentials

Suppose that we are dealing with the case F'(L) — oo, but finite 6 F(L). The idea is
to organize the Monte Carlo process in such a way, that in most updates we simply ignore
fluctuations, and account for distant particles by replacing them with a homogeneous density
distribution. Obviously, for the scheme to remain accurate, in some updates we have to consider
deviations from the mean-field distribution. The goal is to address the procedure dealing with
distant fluctuations with the small probability which is at least inversely proportional to the
number of operations in this procedure.

Consider again the balance equation for the given pair of subprocesses, but now including
the possibility of completing the same update procedure in a number of ways:

Jx Jx
AgpW(r) Y APPI.(r)dr — dAn(r)pa Yy ¥ PD, (1) =0. (A1)
3=0 3=0

Here 4 is the probability of using the j-th version of the update procedure. We require

Jx
z'y(’)=l, and o> v...> 7.
3=0

We also assume that the procedure j, corresponds to the exact treatment of all fluctuations.
Other quantities have exactly the same meaning as in (6). The self-balance condition now reads
(compare Eq. (8))

.7.* j* :
W)y A9 PO =Rm) Y 19 P,(r). (A2)
j=0

J=0

To satisfy (A.2) we suggest the following scheme. Let RY)(r) be the distribution
corresponding to the exact treatment of fluctuations up to the distance r¢ with 7@ « ) «
< ... < rY) = [, and the mean-field treatment of more distant (r > ) particles. We can
write then

R9 =RO+§RV+.. . 6RY, RYUI=R. (A3)

If 6F is finite and 7@ is sufficiently large, then all §RY} are small. We then choose 7 = 1
and

RO(T)/W (1), if RO(1) < W(r)
POL(r) = { , (a4
1, otherwise
W (r)/RO(T), if RO(1) > W ()
PO (1) = { , (A.5)
1, otherwise

and solve the self-balance condition deductively by requiring
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k k
WY 1P PLm = RO Y 4P PO, A8
=0 j=0
or equivalently
k—1
y®[w P& - R® PEL]=6R®Y " 19 PY, . (A7)
3=0

The final answer can be written

SR® YR 40 PO 1/[vOW(r)], if 6R® > 0
P " ] , A8
0, otherwise

—[6R® XL 4D PO 1/ YW REN(T)], if 6R® < 0
P;]:zn — [ 3=0 ] [ ] . (A9)
0, otherwise

Since all §R*) are assumed to be small, it is possible to keep v® <« 1 (for k = 1,2, ...34.),
but large enough to avoid situations with P*) > 1 or P%) > 1,

acc rem
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