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We show how the world!ine quantum Monte Carlo procedure, wblch usuaIIy relies оп an 
artificia! time discretization, сап Ье formulated direct1y in continuous time, rendering the scheme 
exact. For an arbitrary system with discrete Hilbert space, попе of the configuration update 
procedures contain smaII parameters. We find that Фе most elТective update strategy involves the 
motion ofworldIine discontinuities (both in space and tirne), i.e., the eva!uation of the Green's 
function. Being based оп !оса! updates on!y, our method neverthe!ess aIIows one to work with 
the grand canonicaI ensemble and non-zero winding numbers, and to ca!cu!ate any dynamic 
corre!ation function as еаsПу as expectation values of,e.g., tota! energy. The principles found 
for the update in continuous time generaIize to any continuous variables in the space of discrete 
virtuaI transitions, and in princip!e a!so make it possible to sirnu!ate continuous systems exact!y. 

1. INТRODUCTION 

Quantum Monte-Carlo (МС) simulation is the most powerful available method, ifnot the 
only опе, of obtaining accurate results for complex systems, where analytic solutions are not 
possible and exact diagonalization methods do not work because ofthe enormous Hilbert space. 
However, most МС schemes are far from ideal, and suffer from significant shortcornings. These 
include (see, e.g., the most recel1t review article Ref. [1]) 

а) systematic errors due to artificial time discretization, which in most schemes scales as 
(.м)2, where дт is the time slice width; 

Ь) restriction ofthe simulation to the zero winding number sector М = О (а conftguration 
in which world lines connect the initial state IQ1,a2, ... ,aL) at т = О to the final state 
11'1,1'2, ... , "п) at т = {З, with the set {1'i} being obtained Ьу cyclica1ly permuting {Йi} М 
times (and a1l topologica1ly equivalent configurations), is said to have а winding number М). 
Such а restriction results in systematic errors too, which however vanish with increasing system 
size. Also, опе loses the ability to study topological excitations in the system, e.g., vortices or 
supercurrent states; 

с) working with а fixed number of particles N = const (canonica1 ensemble); 
d) critical slowing down problem, which arises close to а second-order phase transition. 

This problem is closely related to constraints (Ь) and (с), and is indicative of inefficient 
procedures used to update configurations with large length scales; 

е) slow accumulation of statistics when caIculating correlation functions of operators not 
present in the initial Harniltonian, e.g., the Green's function; 
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t) sma1l acceptance rates in update procedures. These тау Ье due to sma1l parameters 
present in the formulation of tlle МС scheme, or systems described Ьу Hamiltonians with 
different energy scales (e.g., when the hopping matrix element t is much sma1ler than the 
typica! potential energy change И ~ t), or the necessity of global Metropolis updates, which 
arise in certain cluster-update algorithms; 

g) anomalous dependence of the computation time оп system size (due to self-averaging 
effects in the thermodynamic limit, the computation time required to achieve given ассшасу 
is expected to Ье system-size independent); 

h) notorious sign problem, which emerges when the configuration weight is not positive 
definite. Since we do not see апу reasonable solution of the sign problem in the general case, 
in what fo1lows we exclude it from the discussion. 

То eliminate some of these shortcomings, а number of different МС schemes was 
developed. Unfortunately, попе ofthe existing schemes succeeded in so!ving аН ofthem (leaving 
the sign problem aside) in the general case: there are extremely efficient algorithms which are 
far from universal, while the efficiency of existing universal algorithms is far from high for а 
large number of problems. 

The standard worldline algorithm is basect оп imaginary time discretization and utilizes 
the smaH parameter tbT « 1 in ап approximate treatment of noncommuting operators in the 
Hamiltonian, known as Trotter break-up [2,3]. Physical intuitiveness and easy programming 
probably make this method the опе most widely used. Оп another hand, its weak points range 
over the whole list from (а) to (п, the most severe ones being (е) and (п. 

In the world1ine a!gorithm, опе describes the configuration Ьу specifying the system state 
IOOk) at аН time slices Tk = k ЬТ, where k = О, 1, ... , К/3 and ТкfЗ = I/Т == (З. The system 
state is then conventionally defined in the basis set in which the potential energy ofthe system is 
diagonal, i.e., in the site representation. Let us consider, as а typical example, the Hamiltonian 
of interacting particles оп а lattice 

н = -t L: ala j + L: Uijninj , (1) 
(ij) ij 

where аl creates а particle оп site i, t is the hopping matrix element, ni = а! ai, and (ij) denotes 
nearest-neighbor sites. From now оп, we саП points in time at which the system changes state 
«kinks». The typica! separation in time between two adjacent kinks оп the same site is of order 
l/t and independent of ЬТ, so that for smaH ЬТ there are some 1/(tbT) ~ 1 Нmе intervals 
between them. The acceptance rate of the variation suggesting creation of а new kink-antikink 
pair is proportional to the square of а smal1 parameter, (tbT)2. Оп the other hand, when 
the МС procedure suggests shifting ап already existing kink to the nearest point in time, the 
сопеsропdiпg variation of the configuration is accepted with probability '" 0(1). Thus, оп 
average, Ьу selecting different ra'ndom time s1ices, it takes some 1/(tbT)2 attempts to create а 
new kink-antikink pair and 1/(tbT) attempts to тоуе а юnk to the nearest position in time. Still, 
the updated configuration is оnlу slightly different from the previous опе, and expectation values 
calculated before and after the variation are strongly сопеlаtеd. An uпсопеlаtеd contribution of 
the given configuration fragment is obtained Ьу shifting the kink а distance of order l/t, which 
requires some 1/(tьт)З operations, since the kink shift process is diffusive in nature. This means 
that the аutосопеlаtiоп time in the standard world1ine algorithm grows <х (ЬТ)-З еуеп in the 
absence of critical slowing down. Since аl1 update procedures are local, the algorithm is subject 
to critical slowing down near the transition temperature. 
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In order to calculate the Green' s fиnction Q (i, 7), two worldline discontinuities are inserted 
at time slices 71 = О and 72 = 7 ОП other words, опе extra worldline is inserted in or removed 
from the interval [71,72]) [3,4]. Опе then probes different configurations using standard update 
procedures and collects statistics in а d-dimensional histogram, which describes the spatial 
separation i between the discontinuities. The length of the time interval is then changed, and 
the same calculation is repeated. Опе МС step, i.e., the number ofupdate operations performed 
between successive «measurements», whereupon another point is included in the statistics ofthe 
calculated quantity, is proportional to LdfЗ, where L d is the number oflattice sites considered. 
Тlшs, it requires about L d fЗ operations to include only опе point in the (d + l)-dimensional 
spacetime histogram for G. 

In а way, the standard worldline procedure of calculating Q(i,7) has ап anomalous 
dependence оп N and fЗ, since it takes at least (N /3)2 operations to update the whole 
histogram (typically G decays in space and time, and large scale behavior requires much more 
computation). We note, that winding numbers and the grand canonical ensemble average сап 
Ье incorporated, in principle, in the worldline algorithm. It is sufficient to consider separate 
contributions to the statistics of Q(i, 7) when i = М L and 7 = nfЗ with integer М and n. 
However, in practice, only small systems at rather high temperatures сап Ье considered using 
this algorithm. 

The determinant method based оп the Hubbard - Stratonovich transformation [5-7] also 
uses the discrete-time Trotterbreak-up, and thus becomes more and more inefficient due to long 
аиtосопеlаtiоп times when д7 -+ О (points (а) and (!) above). It has ап important advantage 
over the worldline method in calculating the Green's [ипсНоп, since it works with the grand 
canonical ensemble. However with increasing system size, the calculation time scales as L 3 

(point (g» and some of the procedures Ьесоте ill-conditioned at low temperatures. 
Another technique allowing Green's function calculations is called Green-function МС 

(or, more generally, the projection-operator method) [8]. It is applicable at zero temperature 
only, and the final result for Q(i, 7 = О) depends оп the trial wave function (we are not aware 
of whether it is possible to calculate the time dependence of Q(i, 7) Ьу this method). 

The stochastic series expansion (SSE) technique [1,9,10], which stems from the 
Handscomb's method [11], relies оп the direct Taylor expansion of the statistical operator. 
This scheme is exact (contains по systematic епоrs). SSE has clearly demonstrated that 
time discretization is ап artificial trick that is not at а1l necessary for МС simulation. Since 
ап elementary update in the SSE scheme is equivalent to roughly 1/(tд7)3 updates in the 
standard worldline method, it results in а significant drop in computation Нте for high-precision 
calculations. The rest of the problems, i.e., (b)-(f), survive in the SSE approach (point (!) 
still applies, because Ьу expanding in powers of the [и1l Hamiltonian опе has to compare 
weights сопеsропdiпg to the юпеНс- and potential-energy tепns, and if, e.g., И » t in the 
Hamiltonian (1), then srnall acceptance rates appear in the update procedures). Still, away from 
the transition point, for large systems at low temperature, for which И ......, t, the SSE method 
is superior in evaluating basic thermodynamic properties like the total energy and density -
density or сипепt - сипепt сопеlаtiоп fиnctions. 

А qualitatively new class of extremely efficient МС schemes [12] has Ьееп developed in 
recent years [13-18]. Тhese schemes are based оп the so-called loop cluster update (LCU) 
algorithm, which performs nonlocal updates for worldline loops with sizes as large as the system 
itself. Apart from solving the problem of critical slowing down, it also allows опе to work in 
the grand canonical ensemble and with nonzero winding numbers. From this method we learn 
that problems (Ь), (с) and (d) сап Ье circumvented. Unfortunately, the LCU algorithm, as far 
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as we know, is not universa1. It applies to spin systems and to hard-core Hubbard models, but 
was never formulated for the genera11attice Hamiltonian, like interacting soft-core bosons with 
arbitrary Uij , arbitrary density (chernica1 potentia1), or on-site disorder. Another shortcorning 
of the LCU, which in а sense сап a1so Ье called nonuniversality, is that it does not admit of 
а universa1 code. It shou1d Ье noted that LCU allows for considerable generalization to the 
cases of externa1 magnetic fie1d and disorder, but generally speaking the cost is 10st efficiency 
because of the exponentially small acceptance rates for large 100ps'). 

It is shown in Ref. [19] how to build а path integra1 in continuous time for quantum 
systems in а discrete basis. The configuration is specified Ьу transition times and system states 
before and after the transition. Within this description опе сап formally think about taking the 
limit дТ -+ О in the standard approach. However, to imp1ement this description опе has to 
formulate the update process. In the standar4. wor1dline a1gorithm, опе of the basic procedures 
is generation of new kink-antikink pairs when system evo1ution оп а given site changes from 
I(.\:) -+ I(.\:} -+ I(.\:} to I(.\:) -+ 1, =j (.\:) -+ I(.\:}· In the continuous limit, the acceptance rate for 
such а variation vanishes as (Дт)2, and thus the problem of qualitatively new update princip1es 
arises. 

Recent1y, two independent continuous time schemes utiJizing the ideas of Ref. [19] were 
deve10ped [18,20]. Beard and Wiese [18] find that with the LCU a1gorithm, опе сап go direct1y 
to the continuous-time limit дТ -+ О, thus rendering the LCU a1gorithm exact. 

The genera1 solution to the problem of configuration update in continuous time is found 
in Ref. [20]. The resulting continuous-time wor1dline (CТWL) method is exact, and like SSE, 
is 1/(tдт)З times more efficient t1lan fiпitе-дт lоса1 schemes. It a1so comp1etely eliminates 
problem (f), since попе of the procedиres relies оп small parameters (potential energy is 
accounted for in the exponent, and опе does not have to weight re1ative contributions to the 
statistics of the potential and kinetic energy terms, as happens in SSE). 

In its original formulation, the CТWL approach did not solve problems (Ь)-(е), and was 
tested оп1у оп а simple sing1e-partic1e Hamiltonian [20]. Iп the present artic1e, we present а 
comp1ete description of the CTWL approach to the statistics of arbitrary many-particle system 
with discrete Hilbert space. We demonstrate that it enables опе to solve problem (е) in а 
physically il1tuitive way Ьу formu1ating the localupdate procedиres in terms ofthe motion oftwo 
wor1dline discontinuities (in what follows we саll them «worms,» in space and time, i.e., in terms 
of а caJcu1ation of the Green's functiol1. Duril1g опе МС step (consisting of N fЗ /t operations) 
the who1e histogram for g(i, Т) is updated, which means that G is caJculated as efficiently м, 
say, the tota1 energy, and is not affected Ьу point (g). Since 9(i = [MxLx, MyL y, .. . ], nfЗ) 
with integer Мх , Му , ••• and n describes а system with n extra partic1es al1d winding numbers 
{М}, we are working in t1le grand canol1ica1 ensemble. This solves problems (Ь) and (с). 

Closerexamination ofthe loop building ru1es [14,18] forthe Heisenberg Hamiltonian shows 
their remarkable similarity to the evolution of ап extra worldline segment. The crucial difference 
is that оп1у closed loops are considered Ьу the LCU algorithm, while oиr scheme considers аll 
the intermediate configиrations as well, al1d utilizes them for the Green's function caJculatiol1. 
Working in the extended configиration space, which includes discol1tinuous worldlines, we use 
lоса1 Metropolis-type [21] updates опlу. However, when discontinuities anniliilate, and we 

1) То stress this important point, we find it reasonable to distinguish between «efficient,) LCU algorithms 
and others. Ву «efficient" LCU we mean algorithms in which detailed balance is taken care of in the 
cluster-building rules, not in having а global Metropolis step with small acceptance rates for large clusters. 
Nevertheless, in certain cases «inefficient" LCU code works reasonably well [15]. 
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return to the сопfщuгаtiоп space of closed worldlines, the net result of the update is of global 
character. Since CТWL with «worm,) updates effectively mimics single-loop LCU, we тау 
hope that it possesses all the remarkable features inherent in LCU, апд in particular that it 
solves, or at least softens, the problem (д). 

То summarize, we propose а method which is exact, comp/ete (allows calculation of апу 
correlation fиnction), апд universa! (applies to arbitrary quantum systems with discrete Hilbert 
space, апд enables опе to write а uпШед соде, that is simultaneously applicable to lattice bosons 
апд arbitrary spins, with arbitrarily long-range interactions апд disorder). The sign problem now 
becomes the on1y stumbling block оп the way ofmaking quantum МС ап «ideal,) computational 
tool for studying complex systems. 

This paper is organized as follows. In Section 2 we formulate the general principles of the 
continuous-time worldline approach. In Section 3 we introduce the update procedures that we 
find to Ье the most effective апд sufficient for simulation of the quantum statistics of тапу­
particle systems. In Section 4 we demonstrate the advantages of the new method Ьу presenting 
some of resиlts that cannot Ье obtained Ьу апу other МС approach: the Green's fиncHon апд 
the critical index of the l-D boson Hubbard тодеl at the quantum critical point, апд the 
lоw-епегgу properties ofthe strongly-disordered Bose glass phase. In Section 5 (апd Appendix 
А) we discuss the feasibility of increasing the еffiсiепсу of our method in the case oflong-range 
interactions, апд consider the feasibility of generalizing the method to continuous systems. 

2. GENERAL PRINCIPLES 

Let НО апд V Ье the diagonal апд off-diagonal parts of the Hamiltonian Н in а chosen 
representation corresponding to the fиll set {а} of eigenstates of НО, with Hola) = Еа 'а). 
The statistical operator сап then ordinarily Ье related to the Matsubara evolution operator а 
in the interaction picture, i.e., we write e-f3Н = e-f3Но а, with 

f3 f3 ~ 

а = 1 - J dT V(T) + ... + (-l)m J dTm '" J dT] V(Tm )'" V(T]) + ... , (2) 

о о о 

where V(T) = eTHoVe-ТНо. Without loss ofgenerality апд in accordance with typical forms 
of Hamiltoniansof interest, V сап Ье written as а sum of elementary terms Q 8' whose action 
оп апу fиncHon from the set {а} results in another fиnction from this set: 

(3) 
s 

Siпсе V is Hermitian, for апу 8 in the sum (3) there exists ап 8' such that Qs' = Q!. We 
rewrite Eq. (2) in components (below Еа'У == Еа - Е'У): 

f3 

аа'У = ба'У + L J dT qa'Y(8)etEa -r + ... 
s О 

f3 Т, 

+ L J dTm ... J dT] qa,,(8m)eTm E,," ... q>''У(8])еТIЕ~-r + ... 
Sl"",Sm О О 
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Note that there is по additional summation over the indices of the intermediate complete 
sets (1abeled Ьу Greek letters), since these are defmed in а unique way Ьу соnfщuratiоns of 
(81,82, .•. ,8т )· 

We confine ourselves to the сме of finite-range interaction, which is defined Ьу the 
requirement that for each term 81 of elementary operators {Q _} there exists on1y а finite number 
of terms 82 for which the condition 

(5) 

is not met. In case of finite-range interaction, the structure of the series (4) is drastically 
simplified, the simplification being of crucial importance for practical realization of our 
a1gorithm. From (5) it follows that ир to ап iпеlеvапt change in the indexing of energies 
and matrix elements, опе сап ignore the chronological order of Qs,(71) and Qs,(72) in the 
evolution operator. This suggests representing а genera1 term of the series (4) in the following 
form. First, we introduce the notion of а «kink of type 8», which is characterized Ьу а time 7, 

а matrix element qOl.'Y(8), and а diagonal-energy difference ЕOI.'У. The former two we will refer 
to as parameters of the kink. It is essential that (i) to obtain parameters of а kink опе need 
not know ехрНсit1у the whole state la), ос 11') -10саl information is enough; ОО to specify а 
particular structure of а term in Eq. (4), including the chronological order of аll noncommuting 
operators, it is enough to specify for each kink its associated neighbors, i.e., the noncommuting 
kinks nearest in time. 

N ow our goal is to describe in general terms а stochastic process that directly evaluates 
Eq. (4). For simp1icity, we assume that аll qa{3(8) are positive real numbers. (ln manyparticular 
altemative cases, а straightforward generalization is possible, but usua11y at the expense of 
convergence.) Summations and integrations in Eq. (4) then сап Ье regarded, ир to а normalizing 
factor, as ап averaging over the statistics of different configurations of kinks, each configuration 
being defined Ьу а certain number of kinks of certain types, their associations and particular 
positions in imaginary time. The Monte Carl0 process should examine these statistics Ьу 
generating different kink configurations in accordance with their weights. The global process will 
consist of а number of elementary subprocesses, each being responsible for certain modifications 
of а particular type. 

An update procedure of а general type should involve subprocesses of creation and 
annillilation of kinks. Clearly, the qualitative difference between discrete- and continuous­
time QMC schemes is associated with processes of just this kind. То introduce the general 
principles of construction of subprocesses that change the total number of kinks, we consider 
some particular (but still rather rich) class of elementary transformations (which seems to Ье 
sufficient for аll practical purposes). Ву ап elementary transformation we теап а subprocess 
which either only creates or only annihi1ates а certain number of kinks. The set of elementary 
subprocesses сап Ье decomposed into self-balanced creation-annihilation pairs. Our task then 
is to specify the structure of creatioll and annihi1ation subprocesses, and to derive the Ьаlапсе 
equation that would guarantee that the statistics generated Ьу each pair of subprocesses does 
really correspond to that introduced Ьу Eq. (4). 

Let some subprocess create n kinks of given type 81,82, ... , 8 n , the temporal positions of 
the kinks being specified Ьу the n-dimensional vector 7 = {71, 72, •.. ,7 n}. In the most general 
case, tlle creation procedure involves two steps. 

First, опе suggests to create n new kinks at 7 Е Г, where Г is а certain region in the 
n-dimensional space of times 71, 72, ... , 7 n. The probabi1ity density W (7) of choosing а given 
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Т is, generally speaking, arbitrary, provided W(T) is nonzero at every physically meaningful 
configuration of kinks. 

In the second step, опе either accepts (with probability Раее(Т» or rejects the suggested 
modification. 

The annihi1ation procedure is much simpler. The n kinks of given type 81,82, ... ,8n and 
with Т Е Г are either removed (with probabi1ity Ртет(т» or remain untouched. 

The equation of balance for the given pair of subprocesses reads 

(6) 

Here Ао (Аn(т» is the probability (probabi1ity density) of fmding а configuration without the 
specified n kinks (with the specified n kinks at the given Т). We have also introduced the 
probabi1ities Ре and Ра of addressing the creation .and annihi1ation subprocedures. In the next 
section we will see how it сап turn out quite naturally that these probabi1ities do not coincide. 

The statistical interpretation of Eq. (4) implies 

(7) 

where q(8j) == qcx;{3/Sj) and ~Ej == Еа; -Е{3з. Combining (6) and (7) we obtain the necessary 
and sufficient condition for the pair of subprocesses to Ье self-balanced: 

W(T) Раее(т) = R(T) 
Ртет(т) , 

n 

R(T) = Ра П q(8j)exp(~EjTj). 
Ре j=1 

(8) 

Given W(T), the condition (8) is satisfied, e.g., Ьу the following obvious choice of Расе 
and РТет : 

{ R(r)/W(r) , 
1 , 

р. () = { W(r)/R(r) , 
тет r 1 , 

if R(r) < W(r) 
otherwise 

if R(r) > W(r) 
otherwise 

(9) 

(10) 

From (9) it сап Ье seen that there is а certain reason for choosing W(r) <х R(r), as in this case 
Расе becomes independent of т, and the accept - reject decision сап Ье made before suggesting 
а particular configuration, thus saving computational time. However, if the structure of the 
function R(r) is complicated, the numerical generation of the corresponding distribution will 
Ье very expensive. In this case it is better to take W(r) <х ЁЦт), where Н(т) is some «coar­
se-grained» approximation to R( т) with а simple form. 

We do not consider here а general theory of subprocesses that do not change the number 
of kinks, since it is basically the well-known theory of taking multidimensional integrals Ьу 
standard Monte Carlo procedures. Particular examples of such subprocesses сап Ье found in 
Ref. [20] and in the next section. 

The foregoing approach does not involve апу explicit truncation of the series (4). Опе 

rnight wonder, however, what the effect of implicit truncation in the practical realization of 
the process would Ье, due to the finite size of the computer memory. То this end we note that 
еуеп for simulations of many-particle systems, where the typical number of kinks Nkink (that 
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is, the typica1 number ofterms in the series (4» that contribute to the final result is really large, 
and опе might expect the memory jaccuracy probJem, the effect сап Ье easily made absolutely 
negligibJe. Indeed, from the Centra1 Limit Theorem, it follows that the number of kinks in 
significant configurations has а Gaussian distribution with the peak at Nkink and а ha1f-width 
of order J Nkink (cf. Ref. [9]). If опе just reserves at least twice as тuсЬ memory as necessary 
to describe the сопfщurаtiоп with Nkink elements, then during а computation spanning the 
age of the Universe, the system will not fluctuate to states which cannot Ье fit into memory. 
The implicit trиncation error thus сап Ье made astronomically small. 

З. UPDATE PROCEDURES 

А. Кink motion 

Let us first consider update procedures that are straightforward genera1izations of those 
known in the discrete-time worldline a1gorithm, and work with closed trajectories only. ТЬе 
simplest process involves transformations that do not change the number of kinks, but change 
their types, time positions, and tempora1 ordering, [20] 

The number of operators involved in the transformation, their types, and time positions are 
not constrained, except that the two configurations Ьауе nonzero weight. Obviously, опе 
could suggest тапу different realizations of Eq. (11), and some might work more efficiently 
than others, depending оп the system. Here we describe the procedure called «kink motion»; 
other procedures Ьауе too тuсЬ in соттоп to Ье described separately, and allow trivial 
modifications. 

То тоуе а kink, we first select it at random from the list of existing kinks and decide оп the 
time interval to Ье considered. Suppose that we have chosen а transition described Ьу (Qo, то). 
We then find kinks of the same type that are nearest in time (both to the left and to the right 
of то), i.e., Qo or QJ, and consider their times тl < то and Т2 > то as the boundaries of the 
time «window» transformed Ьу this procedure (in certain configurations at high temperature, 
it тау happen that (тl, Т2) = (О, /3) ). It is allowed to have апу number of kinks of different 
types Qa т Qo, QJ within (тl, Т2), Thus the typical initial configuration has the form 

···1 Qa,(Ta,)Qa,(Ta,) ... QO(To) ... Qan (тап) 1 
~ ~ 

(12) 

(as explained аЬоуе, опе has to consider only those kinks which do not commute with Qo). 
The second step is to analyze аll possibJe configurations obtained from (12) Ьу removing 

Qo from point То and inserting it at arbitrary т' Е (тl, Т2)' We keep the time positions and 
the chronologica1 ordering of аН the other operators Q а" Q а" ... , Q аn untouched. ТЬе new 
position of the selected kink Qo in time is decided according to the statistical weight of the 
final сопfщurаtiоп as defined Ьу Eq. (4). This is done in complete analogy with the classical 
МС procedure of taking multidimensional integra1s. 

The acceptance rate of the kink motion procedure is unity, since the differential 
measure of the initial configuration is zero. In this way, аН noncommuting kinks in the 
Hamiltonian (except kink-antikink pairs, which are dealt with in the next subsection) сап 
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change places. In dimensions d > 1, the kink motion procedure must Ье supplemented 
with а «local loop» procedure, which generates smallloops in real space, e.g., Ьу replacing 
Qi--+i+g,(Тl)Qi+g,--+i+g,+9,(Т2) --t Qi--+i+9,(Тз)Qi+g,--+i+g,+g,(Т4), where 91,92 are the nearest 
neighbor indices. 

В. Creation and annibllation of kink-antikink pairs 

In this subsection we make use of the general theory of Sec. 2 апд explain how the 
elementary procedure of creation апд annihilation ofkink-antikink pairs is organized in practice. 
An important new principle realized in our a1gorithm is the possibility of selecting different 
update procedures with certain probabilities (see also Appendix А). These probabilities, Ра апд 
Ре, are at our disposa1, апд if necessary, сап Ье used to «fine tune» the efficiency of the МС 
process as а whole. The most natural starting point for the update is to address at random 
some configuration fragment. It сап Ье characterized Ьу the kink QO(TO), or Ьу the system 
state la(io)} between the two adjacent kinks that change this state (in computer memory, аll 
la(io)} between kinks are assigned labe1s; the configuration itselfis described as а linked graph 
Ьу specifying nearest-neighbor associations (in space and time) between the labels). We choose 
the latter variant and address site labels. Thus the probability of applying ап update procedure 
to а given fragment is <Х 1/N1ab , where N1ab is the total number of labels characterizing the 
initial configuration. Ву inserting (deleting) n extra kinks, we increase (decrease) NlaЬ Ьу 

n 

where mQj gives the number ofstates changed Ьу the kink Qj. Thus, the ratio Ра/Ре in Eq. (8) 
is proportional to 

n 

Nlab/(Nlab + L mQ), 
j=1 

when addressing the creation of n kinks, and 

when addressing the annihi1ation procedure. 
То flX the values of Ра and Ре, we count the number of possible юnk - antikink processes 

that сап Ье applied to а given fragment. This numberis denoted Ьу NpToe ' The simplest choice is 
then to assign equal weight, l/NpToe , to аll possibilities. For ехаmрlе, ifwe consider а model 
with the nearest-neighbor hopping in lD, then tl1ere are three possibilities for the site state 
la(i)}: to insert Qi--+i+1Qi+l--+i or Qi--+i-1Qi-l--+i and to delete а pair of kinks that change 
this state to the left and to the right in time, provided they form а kink-antikink pair (i.e., are 
of the Qi±l--+iQi--+i±1 type). In this case mQj = 2 as well, and we finally have 

Ра = Nlab 

Ре N1ab + 4 
(creation) ; Ра = Nlab - 4 

Ре N 1ab 
(annihilation) . (13) 

Obviously, in the thermodynamic limit and at 10w temperature, these ratios are very close to 
unity. Again, this is оn1у а particular example; other choices тау prove to Ье more efficient 
under certain conditions. 
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Опсе the configuration fragment and update procedure are selected, we proceed along the 
lines described in Sec. 2. Here we would like to comment оп the choice of probability density 
W(T). It would Ье perfect from the acceptance rate point of view to take W(T) <х R(T). 
However, this сап turn out to Ье а very expensive procedиre. То i1lustrate the point, consider 
а configuration fragment oflength Т/,т = ТТ - Т/. Due to the large interaction radius between 
particles, ап effective field acting оп updated states сап change тanу times during Т/,т' If 
the number of time slices thus induced оп the interval (Т/, ТТ) is NT/,r :;:}> 1, then complete 
parametrization ofthe R(T ) fиnction мll require calculation ofthe NT/,)NT/,r + 1)/2 partial 
probabilities, according to the number ofways опе сап distribute two юnks among NT/,r time 
subintervals. 

The solution of the problem lies in choosing W(T) = W(E, Т), where W(E, Т) is ап 
analytic fиnction with the same properties as W(T), controlled Ьу а parameter Е that is used 
to minimize the variance of IW(E, Т) - R(T)I. The most obvious physical choice of Е is the 
теап field potential acting оп the updated states during Т/,т from the rest of the system 

(14) 

- _ ехр (-Е(Т2 - Тl») 
W(E,T) - 1 ' 

T r 'Pz 

1 = J dT2 J dTl ехр (-Е(Т2 - Тl») . (15) 

'Т, Тl 

Опе immediately recognizes in W(E, Т) the statistics of the kink-antikink pair in the biased 
two-level system [20], which, through the mean-field definition of the Ым energy Е, most 
c!osely approximates the loca! statistics of kink-antikink pairs in а real system. 

The procedиres described in the last two subsections represent а direct generalization of 
!осаl procedиres already known in the discrete-time wor!dline method. Their continuous-time 
versions are, lюwеvег, only specific realizations of а much wider class of possible procedures, 
thus making the overall CТWL scheme more flexible. 

С. Creation - annihilation, jump, and reconnection procedures Сог worldline discontinuities 

Up to now, we have considered procedиres for working with closed worldlines. These are 
sufficient to simulate quantum statistics in the canonical ensemble and in the М = О sector. То 
overcome this essential drawback, and to calculate the Green's fипсНоп, опе usually introduces 
ап extra worldline segment and simulates quantum statistics in the presence of two worldline 
discontinuities at points (i 1, Тl) and (i2 , Т2), This process is higbly inefficient, because опе has 
to probe аН degrees of freedom in the configuration (numbering rougbly '" Ld /3) to collect 
statistics for only two extra degrees of freedom. In practice, this method was never used to 
calculate Green's function in large systems, e.g., with Ld (3 '" 104. The solution we find for 
this problem is in considering the two worldline discontinuities to ье real dynamic variables 
in the Hamiltonian, which are aHowed to mоуе through the configиration both in space and 
time. It turns out that this motion сап ье arranged to Ье ergodic, and probes all possible system 
states. Опе сап еуеп completely ignore all the other update procedures, such as moving other 
kinks and working with kink-antikink раш, probably at the expense of being less efficient, 
but still remaining accurate, complete, and universal. Below we describe the details of update 
procedures with worldline discontinuities «<worms,», which were first introduced in Ref. [20]. 

We start with the general expression for the Matsubara Green's fиnction (see, e.g., 
Ref. [22]) in tlle interaction pictиre 
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Q(i,j,TI,T2) = -е,вQТr [e-,вНотт (аi (ТI)а}(Т2)0")] , (16) 

where ТТ is the T-ordering operator, whicl1 was explicitly written before in defining the 
Matsubara evolution operator о" in Eq. (2); Q is the grand canonical potential. То ье specific, 
we assume here that Но is diagonal in the site representation; in the genera1 сме, опе might 
imagine that the index i refers to some parametrization of eigenstates of Но. Since we now 
work in the grand canonical ensemble, the Hami1tonian contains ап extra term 

(17) 

where IL is the chemical potential. Formally, the on1y difference between the statistics given Ьу 
Eq. (4) and the Green's function (16) is that we have two extra kinks, ai(TI) and а} (Т2), Непсе 
опе has the possibility of calculating the Green's function in а unified process, together with 
standard thermodynamic averages «<energy», for the sake ofbrevity). То this end, it is necessary 
just to work in ап extended configuration space, where two classes of configurations are present: 
(i) with continuous worldlines, and (ii) with two worldline discontinuities, corresponding to the 
kinks ai(TI) and а} (Т2), (Clearly, configurations of class О) contribute to «energy», while those 
of the class (ii) contribute to the Green's function.) The transitions between the two classes 
are performed Ьу the processes of creation and annihilation of the Ьnks ai(TI) and а}(Т2), 
in accordance with the general Ьаlапсе principles Eq. (8). For computational purposes, it is 
reasonable to redefine the Green's function Ьу а trivia1 scaling transformation ai ---+ 1/*ai, 
а} ---+ 1/aj, where the constant 1/ is adjusted to produce the optimal acceptance (rejection) 
probability. . 

Alternatively, опе сап arrive at the аЬоуе scheme Ьу the standard trick of introducing а 
source to the configuration action S (the notation 1/ for the source is chosen deliberately): 

,в ,в ,в 

f dTV(T) --+ f dTV(T) + L f dT (1/:(Т) ai(T) + 1/i(T) а!(т») , 
о о t О 

(18) 

and defining the Green's function as а functional derivative of the generating functional (the 
partition function with the source) 

(19) 

The numerical procedure equivalent to the variational derivative in the limit 1/ ---+ О теаns 

that опlу configurations with О) zero and (Н) two worldline discontinuities are included in the 
statistics. Confining ourselves to just these configurations, we do not have to dea1 апу longer 
with infinitesima11y small1/, and сап choose 1/ to Ье а certain finite constant. (This is crucia1 for 
апу realistic computational process, since 1/ ---+ О clearly means that the time of accumulation 
of statistics goes to infinity.) Indeed, а particular value of 1/ just defines the relative weights 
of classes (i) and (ii), thus changing the relative norm of the Green's function with respect 
to «energy» Ьу the known factor of 11/12. (lncidentally, опе тау рау по attention at аН to 
the normalizing statistics for the Green's function, as the norm сап ultimately ье flXed Ьу the 
condition Q(i, i, т, т + О) = -density.) 

А typical configuration with two «wопns» is shown in Fig. 1 «<live» picture taken from 
the computer). То update it we apply the following transformations: 
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8г---------------~ 

4~--------,_~--r_-------

5-----.....-.. 

~------·······п[ 

8 ____ ........ IIL....-_ .... _ 

а 

-------_ .............................. . 

Fig. 1. А typica! 8-site configuration 
with two worldline discontinuities marked 
Ьу Шlеd circles. Тhe width of the soIid 
Iiпе is proportiona! to the site occupation 
number, and dashed lines are empty sites 

б 
..........•.................... .....---_ ........................••••.. 

-----' ............................................................. . 

Fig. 2. Jump procedure for the annihiIation operator. а) Initia! configuration fragment; 
Ь) suggested variation (in the antijump procedure, (Ь) is the initia! configuration and (а) is 

the suggested variation) 

Creation and annihilation 01 two worldline discontinuities 

We delete а pair, ai(Tl)aI(T2) or aI(Tl)ai(T2), when discontinuities happen to meet at the 
same site i and there are по other юnks between them that сan change the state of i. The 
only difference between this and the kink-antikink procedure is that now we transform only 
а single-site state, thus mQ = 1. The annihilation procedure addresses the pair of worms, 
but the creation procedure (which makes sense оn1у when there are по worms) addresses the 
randomly selected configuration fragment label. The ratio of probabilities Ра/Ре to address 
update procedures that transform the same configuration fragment back and forth is now 

Ра = N1ab (creation), 
Ре 

Ра = Nlab - 2 (annihilation) . 
Ре 

(20) 

This ratio is macroscopically large, which is obviously unpleasant for the computational process. 
However, we have R(T) ...... 11712, with the freedom of choosing 17. Ву setting 11712 ...... 1/(Nlab), 
where (N1ab ) is the average пumЬег oflabels in the confIgUration, we obtain an update procedure 
that is not based оп small parameters (in practice, апу rough estimate like (Ld{3) for (N1ab ) 

is sufficient). The rest is done in exactly the same mаппег as described in Sec. ЗВ. 

Jump 

This update procedure is illustrated in Fig. 2. We select опе ofthe worldline discontinuities 
and suggest shifting it in space Ьу inserting ап ordinary юnk (hopping operator) to the left (in 
time) of the annihilation operator and to the right of the creation operator. As а result, the 
worm <~umps» to another site. The пumЬег of kinks changes Ьу one in this procedure, but 
Ра/Ре is unity, because we address it uроп the availability ofworms, and not according to the 
number of labels. A1so, since we are dealing with оn1у опе extra юnk here, the structure of 
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а б 

---_ ............................................................ . 

Fig. 3. Reconnection procedure for the annihi1ation operator. а) Initial configuration 
fragment; Ь) suggested variation (in the antireconnection procedure, (Ь) is the initial 

configuration and (а) is the suggested variation) 

the R(7) function (see Sec. 2) is much simpler, and we choose W(7) = R(7)/ J d7R(7). The 
integral is over the time interval of the updated fragment. The opposite procedure is called an 
«anti - jump». 

Reconnection 

Formally, this update procedure, which is shown in Fig. З, is technically identical to the 
(~итp», but now an extra kink is inserted to the right of the annihilation operator and to the left 
of the creation operator. We still distinguish between them, because in the jump procedure the 
corresponding particle trajectories do not exchange places, while they do so in the reconnection 
update. Figure З makes it clear that we have effectively reconnected worldline segments 
of different trajectories. Note that in ferrnionic systems, any reconnectionjantireconnection 
procedure results in а change of the configuration sign. 

Shift in tiтe 

The motion of worldline discontinuities in time is essentially the kink motion process (see 
Sec. ЗА). Suppose that we have decided to shift an annihilation kink Qo = ai. The only 
difference from the scheme (12) is in the definition ofthe updated time interva1. Its boundaries 
(7, , 72) now correspond to the time positions of the nearest left and right neighbors (kinks) of 
any type that operate оп the same state i. Of course other possibilities are allowed as well, if 
one has some physical arguments in favor of, say, extending the time window farther to the 
next-nearest kink, or а kink of а special type. 

The update procedures thus defined comprise an ergodic stochastic process that operates оп 
the entire configuration space of the system. АН configurations, including those with nonzero 
winding numbers and different number of particles, are accounted for. Extra particles are 
insertedjremoved from the system when at j (72) makes а complete 100р in time (relative to 
ai(7,)), i.e., when 72 - 7, changes Ьу multiples of (3. Winding numbers are introduced when 
j - i changes Ьу multiples of L. The key point of our approach is that each 10са1 update makes 
а contribution to the Q(i,7) histogram, except rare cases in which there are по worrns in the 
configuration; these configurations contribute to the «diagona1» (or conventional) statistics of 
closed worldlines. Contrary to the standard calculation, we do not adjust аll degrees of freedom 
to the current positions of worms, but rather probe and update the whole сопfщurаtiоп through 
their motion. This almost trivia1 modification results in а factor of (Ld (3) acceleration of the 
scheme! 

It is instructive to draw an analogy between the motion ofworldline discontinuities and the 
100р cluster update rules. As is easily seen, the basic elements of the single-loop LCU method 
known as «optiona1 decay» and «forced transition» [18] correspond to а particular evolution 
of the worldline discontinuities (<<optional decay» corresponds to the «jump» procedure, and 
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«forced continuation» to the «antireconnection» procedure). А closed loop is obtained after 
annihilating the pair а and at. Notice, however, that in our scheme О) not only closed loops, 
but a1so аН intermediate configurations are physically meaningful and are included into the 
statistics; (ii) nothing is based оп the special structure of the system Hamiltonian; (iii) the 
update is always local (it is known that acceptance rates for large loops Ьесоте very smaH when 
ап external magnetic field in the Z-direction is applied to the Heisenberg system (magnetic 
field is equivalent to а finite chemical potential in bosonic language); this problem is simply 
absent in local schemes). 

The statistics of discontinuities in space and time is given Ьу Q(i, Т), i.e., it is defined Ьу the 
Hamiltonian. In general, the optimal update scheme depends оп the quantity being ca1culated, 
and thus опе might wish to control the statistics ofworldline discontinuities «at will». This сап 
Ье easily achieved Ьу introducing а fictitious spacetime dependent potential acting between the 
«worm» ends, so that their relative positions are now distributed according to the function 

Q(i, Т) Q(i, Т) , 

where Q( i, Т) is arbitrary. In this way, опе сап change the typical size and shape of the loops 
generated Ьу the «worm» a1gorithm. 

The scope of the present paper is such that we are uпаЫе to discuss here тапу important 
details concerning the practical implementation of our algorithm (optimal triple-linked storage, 
particular forms of Eqs. (9), (10) for each subprocess, optimal management of subprocesses, 
etc.). Readers interested in these issues are encouraged to take advantage of our FORTRAN 
code with comments. 

4. ILLUSTRAТIVE RESULTS 

То demonstrate the advantages of the CТWL algorithm, we have ca1culated properties of 
the 1-D boson Hubbard model (Eq. (1) with Uij = UО 8ij ) for various coupling constants UО 
and particle densities р. 

Comparison with the exact diagonalization results for small systems has demonstrated the 
lack of апу detectable systematic error. In particular, for а system with eight lattice sites and 
six bosons, and on-site repulsion И = 0.5, the exact diagonalization result for the ground-state 
energy is Еа = -10.49209, while long-run Monte Carlo simulations yield Еа = -10.4922(2), 
i.e., а result with relative accuracy better than 10-4. 

It is well known that а commensurate system with р = 1 undergoes а superfluid -
Mott-insulator transition ofthe Berezinskii - Kosterlitz - Thouless [23,24] when the on-site 
interaction is strong enough (for the most accurate estimate ofthe transition point UО = 1.645t, 
see Ref. [25]). In the superfluid phase, including the critical point, опе сап utilize knowledge of 
the long-wavelength behavior ofthe system. As explained Ьу Haldane [26], the energy associated 
witll extra particles and nonzero winding numbers is quadratic in М and N - N (for simplicity, 
in what follows we count particle numbers from the commensurate value: N --+ N - L and 
N --+ N - L). This means that the corresponding probability distribution in М and N is а 
Gaussian, i.e., 

W(N, М) сх: ехр [- 2fif.(0) м2 - 2L~(0) (N - N)2] сх: 
сх:ехр [_7Г~(0) (~M2_ f(N-N)2)]. (21) 

583 



N. V. Prokof'ev, В. V. Svistunov, 1. S. Tupitsyn ЖЭТФ, 1998, 114, выn. 2(8) 

The zero argument ofthe superfluid stiffness As and compressibility к, denotes values at Т = О. 

Here К- 1 = 1ГvАsк, is the index that controls the asymptotic behavior of the correlation 
functions, and с is the speed of sound. 

At the critical point, K(L), к,(L) and As(L) are system-size dependent quantities, with 
K(L -+ (0) -+ 1/2. Since the speed of sound is unrenormalizable in а homogeneous system, 
it is sufficient to study scaling equations for the critical index only. In fact, the solution of 
the renormalization group (RG) equations for K(L) сап Ье «visualized,) Ьу considering the 
logarithmic derivative of the Green's fиnction, since its index is just К /2: 

K(1)=_2 d1nQ(r) l=lnr. 
dlnr ' 

(22) 

Here we have introduced the variable т2 = х2 + (ct)2, which Ьу conformaI invariance describes 
asymptotic decay of Q both in space and time. 

Expressions (21) and (22) allow for а comprehensive test of the new algorithm. It is 
also tempting to consider а large system right at the quantum critical point and to evaluate 
its properties under the most unfavorable conditions for the standard worldline method. То 
caIculate the criticaI index and the speed of sound, we considered а ring with 100 lattice sites and 
/3 = 100/t. The critical parameters ofthe Hamiltonian are ИО = 1.645t and /L = 1.94t [25]. We 
had по problems in accumulating sufficient statistics ofwinding numbers and N for this system 
(the corresponding caIculation is virtually impossible using the standard worldline algorithm). 
Simple rnanipulations with the exponents in (21) result in the following expressions: 

N = N 2 - rN r _ ln [W(O, N)/W(O, О)] 
2(N2 + rN)' N - ln [W(O, -N)/W(O, О)] , 

к,(0)=!iN2 , _ Iп[W(О,N)W(О,-N)] 
L PN PN - - W2(O,O) , 

Ав(О) = ~/3 M
gM

2, gM = ln [W(O, M)W(O, -М)] 
- W2(0,0) . (23) 

If опе is interested in evaluating directly К(О) then 

(р )1/2 
К(О) = NgM 

1ГINМI 
(24) 

The choice of N and М here is arbitrary, but for numeric reasons, the optimal N and М 
correspond to values where (р N , g м) ,...., 1. The advantage of working with nonzero winding 
numbers in the grand canonical ensemble is obvious: in а single МС caIculation, опе collects аll 
the necessary information about the parameters in the effective long-wavelength action, which is 
very convenient in determining quantum critical points from К = Кс • For the aforementioned 
system we found c/t = 2.4(1), and K(l = ln(100» = 0.47(1). 

Опе note is in order here. The Gaussian distribution (21) implies that the system is in 
the superfluid phase. In the general case опе has to define the compressibility as к, = dp / d/L, 
where Ьу definition р = N / L. The superfluid stiffness As is defined as the coefficient relating 
persistent current and gauge phase when <.р -+ О; this yields [27] Ав = М2 L / /3. 

Finally, we used our method to evaluate the Green's fиnction Q(i, Т) and to extract the 
critical index ofthe Berezinskii - Kosterlitz - Thouless transition from its asymptotic behavior; 
опе сап then check the consistency of аН caIculations. Since the CТWL simulation yields а 

584 



ЖЭТФ, 1998, 114, выn. 2(8) 

§ 1.5 
.~ 

.z 
'" 1.0 
-~ 

00.5 

о 0.5 1.0 1.5 2.0 
Time (in units 1It) 

Рис. 4 

Exact, Comp/ete, and Universa/ Continuous-Time . .. 

Green's function 
1.0 

о -~0,1') 

\ • -~x = c-r,1') 

0.5 ,_, 

~~~IiIOPta---~ 

о 50 100 150 200 
r = (х2 + c2-r2)1I2 

Рис. 5 

Fig.4. Short-time behavior ofthe Green's function 9(0, Т) ofthe commensurate l-D Hubbard model 
at the quantum critical point 

Fig. 5. Long-range behavior of 9(i, Т), demonstrating conformal invariance 

two-dimensional histogram for g(i, Т), much more accиrate results for K(l) are obtained Ьу 
computing 10garithmic derivatives along different directions in the (х, Т) plane with subsequent 
angular averaging. The speed of sound, which is necessary for such а calculation, is extracted 
from the asymmetry between х and Т in the asymptotic decay of g. For the Green's function 
calculation, we considered а ring with 450 lattice sites and (З = 200ft. In Fig. 4, we show the 
short-range behavior of the Green's function in the T-direction, with the characteristic jump 
at Т = О. The dashed curve is а linear interpolation between the calculated points. In Fig. 5, 
we present the full-scale behavior of g(x, Т) Ьу plotting it as а function of r = (х2 + (ct)2)1/2 
along the time and х = СТ directions. In accordance with conformal invariance, for large r the 
two curves are indistinguishable to within the statistical errors. The speed of sound obtained 
from the Green's function is cft = 2.4(1), and analysis ofthe logarithmic derivative (22) yields 
K(l = ln(100» = 0.46(2). 

It is worth noting that our calculations for W(N, М) and 9 were performed оп а Pentium-
90 РС. None ofthese results (e.g., for L > 100) сап Ье obtained Ьу other methods, even with 
the use of supercomputers. 

The strong on-site disorder at low temperatиres is а severe trial for most Monte Carlo 
schemes. Cluster methods suffer from inefficient global Metropolis updates here, while standard 
canonical-ensemble algorithms suffer from slowing down due to one-particle local minirna in 
the effective action (the lowest single-particle states are well localized, and probing different 
configиrations requires deep sub-barrier motion). The unique featиre of our «worm» update 
method - the possibility of locally seeding an extra world line at any point in the spacetime 
continuum - obviates these problems. 

То demonstrate the efficiency of our method, we present the results of just one nontrivial 
calculation - tl1e dependence of the average particle number оп the chemical potential in the 
Bose glass (BG) phase of the l-D disordered Hubbard model, Fig. 6. We consider а system 
with L = 60 sites at (З = 150, И = 3t. Disorder is introduced Ьу random1y distributing the 
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Fig. 6. Number of particles vs. chemicaI 
potential in а large Bose glass cluster 

at macroscopically low temperature 

on-site potential 2:i fini between -д and д, with д = 6t. The curve (N)(J.L) allows precise 
determination of the low-energy quasiparticle spectrum of the system to order 0.01t, which is 
equivalent to the calculation of the total system energy to а relative ассшасу of order 10-4. 
The entire plot of (N)(J.L) was obtained in а few days of CPU time оп а РепtiumРRО-200 
processor. 

То obtain further evidence of the effectiveness of ош method in more farniliar problems, 
the reader is геfепеd to а ca1culation of the superfluid - Bose glass-Mott insulator phase 
diagram in the l-D disordered boson Hubbard model [28]. 

5. CONCLUDING REМARКS 

Although the CТWL algorithm developed here is quite general, some aspects deserve special 
discussion. What ifthe interaction radius То is large? All ofthe procedures update configuration 
fragments with the typical duration T r - 71 '" 1ft. Since the method is exact, we trace all the 
kinks within the interaction radius, because they contribute to the function R(7). This means 
that the interval (71, 7 r) is further split into N TI, r '" Tt Z » 1 subintervals (z is the coordination 
number), and each subinterval requires special consideration. If То is as large as the system 
size, then the whole scheme is in trouble, becoming а «victim of exactness». 

The idea of solving such а problem is demonstrated Ьу the stochastic series expansion 
method [1,9,10]. Опе might well wonder why continuous-time schemes, which contain as 
ап essential ingredient ап evaluation of time integrals, work as efficiently as SSE, which has 
аН these integrals being evaluated exactly right at the start? Also, why is keeping the potential 
energy И in the 7-exponent not at аН ап advantage if И '" t? The point is that the МС process 
is exact опlу for asymptotically long computation times, and there is по reason to ca1culate 
anything more precisely than the unavoidable statistical епоr, especially if the сопеsропdiпg 
ca1culation becomes the bottleneck for the whole scheme. Evaluating time integrals in CТWL 
or reproducing exponents Ьу expanding in power series in И '" t are just two cases that illustrate 
this point. 

Suppose that аН particles in the system interact with опе another, so that formally то = L, 
but f drp(r)U(r) = F(L) =J 00. We divide the interaction Hamiltonian into two parts, 
H~~t(T < Tt) + H1~t(T > Tt), Ьу introducing the truncation radius 

J dr pU(r) = t. (25) 

Irl>r. 
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We then write Но = H~~t and сотЫпе H~~t with V (see Sec. 2), i.e., the 10ng-range part 
of the interaction Hami1tonian is now considered to consist of diagona1 Юnks. Because of the 
definition (25), the total number of kinks within the time interval rv 1ft remains finite and 
independent of system size. 

The case of а divergent integra1 J drp(r)U(r) = F(L) --+ 00 is more subtle, since the 
number of diagonal Юnks within the time interval rv 1ft, given Ьу F(L), is now large (if F(L) 
is а logarithmic function of L, we do not regard this problem as serious). Оп the other hand, 
for long-range interactions the so саПеd «mean-field approximation» becomes more accurate. 
Since the mean-field potentia1 is easy to account for апаlytiсаПу (and пumеriсаПу), опе now 
has to deal with fluctuations, and these quite often satisfy the condition 

1I dr(p(r) - р) U(r) 1 = БF(L) т 00 . (26) 

In Appendix А we explain how to organize the Monte Carlo process using the mean-field 
approximation for the configuration weight. The net result is that even for long-range potentials, 
the calculation time сап remain independent of system size. 

In this paper we have concentrated оп the Green's function ca1culation Ьу restricting the 
number of world1ine discontinuities to О or 2. Of course the scheme сап Ье trivially extended 
to include the сме with а larger number of discontinuities, if опе is interested in the two- or 
n-particle Green's function or n-point vertex. More generally, our scheme makes it possible 
to work with Hami1tonians that do not conserve the number of particles, i.e., when there are 
soиrces with finite strength in the bare Harniltonian. 

Although in this paper we consider а system with discrete Hilbert space in detail, the 
principles ofupdate in continuous time developed here are much more general. Mathematically, 
we construct ап exact method (in the statisticallimit) ofaveraging over а distribution represented 
as а series of integrals with ап ever-increasing number of variables, but with essential sirnilarity 
among the terms of the series, аПоwiпg their 10ca1 comparison (weighting). We тау саП 
such structиres integra1s with а variable number of variables - VNV integrals. Physically, 
we sum а pertиrbative expansion in the interaction pictиre for some observable of а large but 
essentially finite-size system. (For а system with discrete Hilbert space, the оnlу continuous 
variables in this expansion are the times of virtual transitions.) But perturbative expansions 
for continuous systerns also have the structиre of VNV integrals, with additional integrations 
over some continuous variables. Thus (apart from the fact that for sраtiаПу continuous systerns 
опе cannot expand the kinetic part of the Hami1tonian and must use the potential energy as а 
perturbation), there is по qua1itative difference between pertиrbative expansions for continuous 
and discrete systerns. The general method of evaluating VNV integrals is given Ьу Eqs. (6) 
and (8)-(10), where the vector l' now stands for апу set of continuous variables, and the fиnction 
R( 1') is defined straightforwardly, given the particular form of the series. 

We would like to thank V. Kashurnikov, А. Sandvik, М. Troyer, Н. Evertz, В. Beard, and 
N. Kawashima for inspiring discussions of existing Monte Carlo schemes and valuable comments 
оп the final version of the paper. This work was supported Ьу Grant NQ INTAS-93-2834-ext 
(of the Еиrореап Community) and partially Ьу the Russian Foundation for Basic Research 
(Grant N2 95-02-06191а). 
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APPENDIX 

Long-range potentials 

Suppose that we are deaIing with the case F(L) --+ 00, but fmite БF(L). The idea is 
to organize the Monte Carl0 process in such а way, that in most updates we simply ignore 
f1uctuations, and account for distant particles Ьу replacing them with а homogeneous density 
distribution. Obviously, for the scheme to remain accurate, in some updates we have to consider 
deviations from the mean-field distribution. The goal is to address the procedure dealing with 
distant f1uctuations with the small probability which is at least inversely proportional to the 
number of operations in this procedure. 

Consider again the Ьаlапсе equation for the given pair of subprocesses, but now including 
the possibiIity of completing the same update procedure in а number of ways: 

~ ~ 

Ао Ре W(r) 2:::,Ы P~~~(T) dr - dAn(r)Pa 2::: ,Ш p~~>.n (Т) = о. (А 1) 
j=O j=O 

Here ,Ш is the probability of using the j-th version of the update procedure. We require 

j. 

2::: ,Ш = 1, апд ,0»,1 ... » 'j .. 
j=O 

We also assume that the procedure j. сопеsропds to the exact treatment of all f1uctuations. 
Other quantities Ьауе exactly the same meaning as in (6). The self-balaпce condition now reads 
(compare Eq. (8» 

j. j. 

W(r) 2::: ,Ы P~~~(T) = R(r) 2::: ,Ы P~~>'n(r) . (А2) 

j=O j=O 

То satisfy (А2) we suggest the following scheme. Let R!J)(r) ье the distribution 
сопеsропdiпg to the exact treatment of f1uctuations uр to the distance тЫ with Т(О) ~ T(l) ~ 
~ ... ~ T(j·) = L, and the mean-field treatment of more distaпt (Т > T(j) particles. We сап 
write then 

R(j) = R(O) + БR(l) + ... БRШ , R(j·) == R. (АЗ) 

If БF is finite and Т(О) is sufficiently large, then all БR(j) are small. We then choose ,(О) ~ 1 
and 

р(О) (Т) 
{ R'")(7)!W(7) , if R(O)(r) < W(r) 

асс 

1 , otherwise 
(А4) 

{ W(7)! R'O)(7) , if R(O)(r) > W(r) 
р(О) (Т) = 
тет 

1 , otherwise 
(А5) 

and solve the self-balance condition deductively Ьу requiring 
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k k 

W(T) L ,(Л P~{~(T) = R(k)(T) L ,(j) P;~>.п(T) , (А.6) 
j=O j=O 

or equivalently 

k-l 

",(k) [W p(k) _ R(k) p(k) ] = 8R(k) " ",И) рШ 
1 асс тет ~'Teт • (А.7) 

j=O 

The final answer сап Ье written 

(А.8) 
otherwise 

p(k) 
тет 

{ 
- [8R(k) E~:ol ,Ш Р;{Ц / [,(k) R(k) (Т)] , 

о, 

if 8R(k) < О 
(А.9) 

otherwise 

Since all 8R(k) are assumed to Ье small, it is possible to keep ,(k) «: 1 (for k = 1,2, .. . j*), 
bllt large enough to avoid situations with P~~~ > 1 or P;~~ > 1. 
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