МАГНИТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ И ТОРОИДАЛЬНОЕ УПОРЯДОЧЕНИЕ В КРИСТАЛЛАХ Ga_{2-x}Fe_xO₃

Ю. Ф. Попов*, А. К. Звездина, А. М. Кадомцева, М. М. Тегеранчиа,

Г. П. Воробьев, В. А. Тимофеева, Д. М. Устинин

Московский государственный университет им. М. В. Ломоносова, физический факультет 119899, Москва, Россия ^а Институт общей физики Российской академии наук 117942, Москва, Россия

Поступила в редакцию 5 июня 1997 г.

Изучены полевые зависимости магнитоэлектрического эффекта и продольной магнитострикции монокристаллов $Ga_{2-x} Fe_x O_3$ в магнитных полях до 200 кЭ в области температур от 4.2 до 300 К. Показано, что магнитоэлектрический эффект в этих материалах определяется, главным образом, тороидальным моментом **T**, а не связан с магнитострикцией, как это предполагалось раньше. Предложен метод определения тороидального момента через измерение электрической поляризации в сильном магнитном поле. Вычислено значение тороидального момента элементарной ячейки в Ga_{1.15}Fe_{0.85}O₃: **T** = (T_a , 0, 0), где $T_a = 24.155\mu_B \cdot \dot{A}$ на элементарную ячейку. Для анализа экспериментальных данных использовалось представление о тороидальной спиновой упорядоченности, давшее хорошее согласие с экспериментом.

1. ВВЕДЕНИЕ

Интерес к исследованию Fe-Ga-оксидов $Ga_{2-x}Fe_xO_3$, начиная с ранних работ [1-6], в значительной мере был связан с сочетанием в этих материалах ферромагнитных и пьезоэлектрических свойств. Кристаллическая симметрия этих веществ описывается пространственной группой C_{2v}^9 [5]. Следует отметить, что $Ga_{2-x}Fe_xO_3$ был первым ферромагнетиком, в котором был обнаружен линейный магнитоэлектрический эффект [7,8], при этом магнитоэлектрическая восприимчивость превышала наблюдаемую ранее в антиферромагнетиках. Недиагональный магнитоэлектрический эффект $P_b(H_c)$ наблюдался в [7]. Высказывалось предположение, что причиной магнитоэлектрического эффекта в $Ga_{2-x}Fe_xO_3$ может служить комбинированное действие пьезоэлектричества и магнитострикции, свойственных этим материалам. Для проверки этого предположения, однако, необходимо было бы располагать информацией о магнитоупругих свойствах $Ga_{2-x}Fe_xO_3$, которые до настоящего времени в литературе отсутствуют. Нет также данных по измерению магнитных свойств этих кристаллов в сильных магнитных полях. Целью нашей работы было изучение магнитных, магнитоупругих и магнитоэлектрических свойств $Ga_{2-x}Fe_xO_3$ в сильных магнитных полях (до 200 кЭ) и установление существования в $Ga_{2-x}Fe_xO_3$ тороидальной спиновой упорядоченности, которая допускается симметрией этих кристаллов.

^{*}E-mail: popov@plms.phys.msu.su

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Комплексное исследование магнитных, магнитоупругих и магнитоэлектрических свойств монокристаллов $Ga_{2-x}Fe_xO_3$ (x = 0.7, 0.85, 1.0) проводилось в сильных импульсных магнитных полях до 200 кЭ в интервале температур от 4.2 до 300 К. Монокристаллы были выращены в расплаве системы (Fe₂O₃-Ga₂O₃)-(Bi₂O₃-PbF₂) при медленном охлаждении от 1100 до 850°С [9]. Измерения магнитострикции проводились с помощью кварцевого пьезодатчика, наклеиваемого на монокристаллический образец. Для измерения магнитоэлектрического эффекта применялся метод, подробно описанный в [10]. Магнитные измерения в сильном импульсном магнитном поле проводились индукционным методом, а в статических магнитных полях до 12 кЭ — с помощью торсионного анизометра с автокомпенсацией. Как показано на рис. 1, величины магнитного момента и температуры Нееля увеличиваются с увеличением концентрации ионов Fe³⁺ в согласии с [3]. Измерения намагниченности и кривых крутящих моментов показывают, что в исследуемых соединениях легким направлением намагниченности является ось с кристалла с наибольшей магнитной анизотропией в плоскости bc кристалла. Относительно большое значение намагниченности, по-видимому, связано с нескомпенсированным ферримагнетизмом, что согласуется с экспериментальным результатом нейтронографических исследований.

Ранее [7,8,11,12] на базе симметрийного анализа в кристаллах $Ga_{2-x}Fe_xO_3$ был предсказан и экспериментально обнаружен линейный недиагональный магнитоэлектрический эффект ($P_b = \alpha_{bc}H_c$). Мы измеряли в импульсных магнитных полях до 200 кЭ помимо зависимости $P_b(H_c)$ также зависимость $P_c(H_b)$ с целью обнаружения их различия, так как разность недиагональных компонент тензора магнитоэлектрической восприимчивости критична к существованию тороидального момента. Исследования проводились для состава $Ga_{1.15}Fe_{0.85}O_3$, так как именно для этого состава имеются нейтронографические данные о магнитной структуре [13, 14]. Полученные нами экспериментальные результаты приведены на рис. 2. Как видно из рис. 2, значения $P_b(H_c)$ (рис. 2*a*) намного превышают значения $P_c(H_b)$ (рис. 2*b*), полученные при тех же магнитных полях. Отметим, однако, что сопоставление недиагональных восприимчивостей в данном эксперименте недостаточно корректно, так как магнитные состояния кристал-

Рис. 2. Полевые зависимости электрических поляризаций $P_b(H_c)$ (*a*) и $P_c(H_b)$ (*b*) (*b*) кристалла Ga_{1.15}Fe_{0.85}O₃ при температурах: *a*) $I = 35 \div 62$ K; 2 = 10 K; 3 = 102 K; 4 = 150 K; 6) I = 35 K; 2 = 10 K; 3 = 150 K

ла при **H** || **c** и **H** || **b** различаются. Чтобы проводить сравнение различных компонент недиагональных восприимчивостей при одинаковом магнитном состоянии кристалла, проводились измерения электрических поляризаций P_b и P_c при ориентации магнитного поля по диагонали в плоскости *bc*. Зависимости компонент вектора электрической поляризации от магнитного поля обрабатывались по методу наименьших квадратов, при этом предполагалась степенная зависимость поляризации от поля:

$$P_i = \sum_{n=0}^{\infty} d_n^i H^n.$$

Коэффициенты d_n^i при $n \ge 3$ оказались практически равны нулю. На рис. 3 приведены зависимости $P_b(H_{bc})$ и $P_c(H_{bc})$ для кристалла $Ga_{2-x}Fe_xO_3$ при x = 0.85 и T = 10 К. На том же рисунке выделены линейный и квадратичный по полю вклады в магнито-электрический эффект. Линейный вклад в магнитоэлектрический эффект наблюдался также при измерении зависимостей $P_a(H_{ab})$ и $P_b(H_{ab})$ при магнитных полях, достаточных для перемагничивания кристалла от оси c к оси a (рис. 4). Из рис. 3 и 4 видно, что $\alpha_{bc} \gg \alpha_{cb}$ и $\alpha_{ba} \gg \alpha_{ab}$. Температурные зависимости недиагональных компонент тензора линейного магнитоэлектрического эффекта с учетом того, что поле ориентировано по диагонали в плоскости bc, приведены на рис. 5. Наблюдаемое сильное различие в величинах α_{bc} и α_{cb} связано, как будет показано ниже, с существованием тороидального момента в этом соединении. Измерения диагонального магнитоэлектрического эффекта в $Ga_{1.15}Fe_{0.85}O_3$ вдоль осей b и c показали, в соответствии с теоретическими предсказаниями, квадратичную зависимость электрической поляризации от магнитного поля.

Для установления возможной связи между линейным недиагональным магнитоэлектрическим эффектом и магнитоупругими взаимодействиями проводились также измерения магнитострикции. На рис. 6 приведены полевые зависимости продольной магнитострикции вдоль осей a, b и c. Как видно из рис. 6, компоненты U_{aa} и U_{cc} продольной магнитострикции линейно зависят от магнитного поля, тогда как компонента U_{bb}

Рис. 3. Зависимости электрических поляризаций $P_b(H_{bc})$ (*a*, кривая 1) и $P_c(H_{bc})$ (*б*, кривая 1), а также выделенных из них линейных (кривые 2) и квадратичных (кривые 3) вкладов в поляризации от магнитного поля H_{bc} для кристалла Ga_{1.15}Fe_{0.85}O₃ при температуре 10 К

Рис. 4. Зависимости от поля линейных вкладов в электрические поляризации $P_a(H_{ab})$ (*a*) и $P_b(H_{ab})$ (*б*) для кристалла Ga_{1.15}Fe_{0.85}O₃ при различных температурах: 1 — 10 K; 2—150 K; 3—194 K

нелинейна. Линейная зависимость от поля наблюдалась также для поперечных компонент U_{bc} и U_{cb} магнитострикции. Ниже будет дан теоретический анализ полученных экспериментальных результатов.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

1. Согласно [13, 14], кристалл $Ga_{2-x}Fe_xO_3$ имеет ферримагнитную структуру G_x с четырьмя неэквивалентными координатами для ионов Fe1, Fe2, Ga1, Ga2; при этом, как следует из нейтронографических данных [14], вероятности распределения атомов железа во всех четырех позициях отличны от нуля и равны

$$\zeta(1) = 0.73, \quad \zeta(2) = 0.87, \quad \zeta(3) = 0.62, \quad \zeta(4) = 0.08,$$
 (1)

а магнитный момент иона железа равен

$$\mu_{\rm Fe} = 4.8\mu_B. \tag{2}$$

Вследствие такой структуры возникают трудности при попытке рассмотрения свойств системы с помощью вектора антиферромагнетизма. В данной работе мы описываем магнитную структуру кристаллов, используя мультипольное разложение спиновой плотности. Однако в мультипольном разложении возникает необходимость учитывать вклады тороидальных моментов [15–20]. Известно, что в мультипольном разложении плотности тока или спиновой плотности после усреднения по физически малому объему возникает бесконечный ряд мультипольных характеристик: моментов и их степенных радиусов. Как правило, для макроскопического описания кристалла бывает важным знание лишь низших членов этого ряда, поэтому мы ограничимся описанием системы на основе мультипольных моментов до второй степени, используя магнитные и тороидальные моменты и соответствующие тензоры второго ранга (квадрупольные магнитные моменты). Магнитный и тороидальный мультипольные моменты определяются с помощью известных формул (см. [19, 20])

$$\mathbf{M} = \frac{1}{2c} \int [\mathbf{rj}(\mathbf{r})] dv, \tag{3}$$

$$\mathbf{T} = \frac{1}{10c} \int (\mathbf{r}(\mathbf{rj}) - 2r^2 \mathbf{j}) dv, \qquad (4)$$

где j(r) плотность тока,

$$\mathbf{j}(\mathbf{r}) = c[\nabla \mathbf{S}(\mathbf{r})],\tag{5}$$

S(r) — спиновая плотность, c — скорость света, а интегрирование ведется по элементарной ячейке.

Подставляя (5) в формулы (3), (4), получаем выражения для магнитного и тороидального моментов элементарной ячейки кристаллов [19]:

$$\mathbf{M} = 2\mu_B \sum_{\alpha} \mathbf{S}_{\alpha}, \tag{6}$$

$$\mathbf{T} = \frac{\mu_B}{2} \sum_{\alpha} [\mathbf{r}_{\alpha} \mathbf{S}_{\alpha}], \tag{7}$$

где S_{α} и r_{α} — спиновый момент и радиус-вектор иона α в элементарной ячейке кристалла, отсчитываемые от центра элементарной ячейки, и суммирование осуществляется по всем ионам элементарной ячейки.

2. Известно, что нецентросимметричная кристаллическая структура m2m кристалла $Ga_{2-x}Fe_xO_3$ может быть трансформирована в центросимметричную структуру mmm посредством довольно малого сдвига ионов в элементарной ячейке. В этом случае можно написать

$$\mathbf{r}_{\alpha} = \mathbf{r}_{\alpha}^{0} + \mathbf{r}_{\alpha}^{1}, \qquad (8)$$

где \mathbf{r}_{α}^{0} — радиус-вектор иона α в центросимметричной структуре mmm и \mathbf{r}_{α}^{1} — смещение иона железа от центра симметрии в идеальной структуре mmm к реальной структуре m2m. При этом наиболее важные для последующего анализа *b*-компоненты \mathbf{r}_{α}^{1} равны

$$r_{\text{Ga}}^1 = -0.0658 \pm 0.029 \text{ Å}, \quad r_{\text{Fe}}^1 = +0.23 \pm 0.058 \text{ Å}$$

а уравнение (7) может быть представлено в следующем виде:

$$\mathbf{T} = \frac{\mu_B}{2} \left(\sum_{\alpha} [\mathbf{r}_{\alpha}^0 \mathbf{S}_{\alpha}] + \left[\mathbf{r}_{Ga}^1 \sum_{\alpha(Ga)} \mathbf{S}_{\alpha(Ga)} \right] + \left[\mathbf{r}_{Fe}^1 \sum_{\alpha(Fe)} \mathbf{S}_{\alpha(Fe)} \right] \right).$$
(9)

Подставляя (6) и (7) в (9), получаем

$$\mathbf{T} = \mathbf{T}^{0} + \frac{1}{4} \left([\mathbf{r}^{1} \mathbf{M}]_{Ga} + [\mathbf{r}^{1} \mathbf{M}]_{Fe} \right), \tag{10}$$

где

$$\mathbf{T}^{0} = \frac{\mu_{B}}{2} \sum_{\alpha} [\mathbf{r}_{\alpha}^{0} \mathbf{S}_{\alpha}].$$
(11)

Оценка отношения второго слагаемого к первому в уравнении (10), проведенная с учетом экспериментальных данных [13, 14], приводит к малой величине

$$\epsilon = |r^1| M/T^0,\tag{12}$$

и это дает основание рассматривать ее как соответствующий параметр разложения в теории возмущений. Используя экспериментальные результаты [13, 14], определяющие S_{α} и r_{α} , и учитывая, что $\mathbf{M} = (0, 0, M_c)$, где $M_c = 3.84 \mu_B$ на элементарную ячейку, можно получить¹ $\mathbf{T}^0 = (T_a, 0, 0)$, где $T_a = 24.155 \mu_B$ Å на элементарную ячейку, откуда $\epsilon \simeq 0.03$.

3. Вектор электрической поляризации можно представить в следующем виде:

$$P_i = P_i^s + \alpha_{ij}H_j + \frac{1}{2}\beta_{ijk}H_jH_k, \qquad (13)$$

где P_i^s — вектор спонтанной поляризации, α_{ij} и β_{ijk} — магнитоэлектрические тензоры. Второе слагаемое в (13) описывает линейный магнитоэлектрический эффект. Тензор α_{ij} можно разделить на симметричную и антисимметричную части: $\alpha_{ij} = \alpha_{ij}^a + \alpha_{ij}^s$. Антисимметричная часть α_{ij}^a может быть представлена в линейной по **M** и **T** аппроксимации как

$$\alpha_{ij}^a = \alpha_{ijk}^{a1} T_k + \alpha_{ijk}^{a2} M_k, \tag{14}$$

где α_{ijk}^{a1} и α_{ijk}^{a2} — соответственно аксиальный и полярный тензоры третьего ранга. Антисимметричный тензор α_{ijk}^{a2} исчезает для центросимметричной структуры mmm, тогда как α_{ijk}^{a1} сохраняется [21]. Следовательно, в низшем приближении по введенному выше малому параметру ϵ тензор α_{ij}^{a} может быть представлен в виде

¹⁾ При расчете использовались, так же как и в работах [13, 14], средние значения магнитных моментов ионов Fe³⁺ в четырех неэквивалентных позициях, вычисленные в соответствии с распределением вероятностей (1).

$$\alpha_{ij}^a = \alpha_{ijk}^{a1} T_k^0, \tag{15}$$

где T⁰ определено в (11).

Симметричный тензор α_{ij}^s может быть представлен в линейном по M и T приближении в форме

$$\alpha_{ij}^s = \alpha_{ijk}^{s1} M_k + \alpha_{ijk}^{s2} T_k, \tag{16}$$

где α_{ij}^{s1} и α_{ij}^{s2} — полярный и аксиальный тензоры третьего ранга, симметричные по индексам ij. С учетом (13)–(16) формулы для магнитоэлектрического эффекта могут быть записаны в виде (см. также таблицу)²⁾

$$P_{b} = \{\alpha_{bcc}M_{c} + (\alpha_{1}^{s} + \alpha_{1}^{a})T_{a}\}H_{c} + \{\alpha_{baa}M_{a} + (\alpha_{2}^{s} - \alpha_{2}^{a})T_{c}\}H_{a} + \eta_{bbb}P_{b}^{s}H_{b} + \beta_{bcc}H_{c}^{2} + \beta_{baa}H_{a}^{2} + \beta_{bbb}H_{b}^{2},$$
(17)

$$P_c = \{\alpha_{cbc}M_c + (\alpha_1^s - \alpha_1^a)T_a\}H_b + \beta_{ccb}H_cH_b,$$
(18)

$$P_a = \{\alpha_{aba}M_a + (\alpha_2^s + \alpha_2^a)T_c\}H_b + \beta_{aab}H_aH_b,$$
(19)

где, по определению,

$$\alpha_1^s = \frac{\alpha_{bca} + \alpha_{cba}}{2}, \quad \alpha_1^a = \frac{\alpha_{bca} - \alpha_{cba}}{2}, \quad \alpha_2^s = \frac{\alpha_{abc} + \alpha_{bac}}{2}, \quad \alpha_2^a = \frac{\alpha_{abc} - \alpha_{bac}}{2},$$

а β_{ijk} — полярный тензор, симметричный по индексам *ij*.

4. В последующем принимаем, что в согласии с описанными выше условиями эксперимента (рис. 3), вектор магнитного поля ориентирован в плоскости *bc* кристалла:

Неприводимые представления группы $C_{2\nu}^9$

	$2_z \sigma_x \sigma_y$	М, Н	Т	P	U_{mn}	[TH]		M_iH_j		H_iH_j
Γı	+1+1+1		Ть	Рь	U_{aa}, U_{bb}, U_{cc}	$T_cH_a - T_aH_c$	$M_a H_a$,	$M_b H_b$,	$M_c H_c$	H_a^2, H_b^2, H_c^2
Γ2	+1-1-1		,		U_{ac}	0	$M_c H_a$,	0,	$M_a H_c$	$H_a H_c$
Гз	-1-1+1		T_{c}	P_{c}	Uab	$T_aH_b-T_bH_a$	$M_b H_a$,	$M_a H_b$,	0	$H_a H_b$
Г4	-1+1-1		T_{a}	P_a	U_{bc}	$T_bH_c - T_cH_b$	0,	$M_{c}H_{b},$	$M_b H_c$	$H_b H_c$
Г'1	+1+1+1									
Γ'_2	+1-1-1	M_b, H_b								
Г'3	-1-1+1	M_a, H_a					.*			
Γ4	-1+1-1	M_c, H_c								

²⁾ Здесь для общности полагаем, что вектор **T** может при произвольной ориентации магнитного поля иметь ненулевую компоненту T_c .

$$\mathbf{H} = (0, H_b, H_c). \tag{20}$$

Этот выбор направления магнитного поля позволяет измерять обе поляризации, P_b и P_c , при той же магнитной структуре. Кроме того, полагаем, что в слабом поле

$$\mathbf{M} = (0, 0, M_c) \quad \mathbf{M} \quad \mathbf{T} = (T_a, 0, 0), \tag{21}$$

что согласуется с экспериментальными данными [11] и приведенными выше в п. 2 вычислениями. Для того чтобы определить P_b и P_c (см. (17) и (18)), необходимы только компоненты α_{bca} и α_{cba} ($\alpha_{bcc} = \alpha_{cbc}$ по определению).

Рассмотрим линейный по магнитному полю вклад в электрическую поляризацию P(H). Из (17), (21) следует³⁾, что линейный по магнитному полю вклад в электрическую поляризацию имеет вид

$$P_b^l - P_c^l = 2\alpha_1^a T_a H,$$
 или $\alpha_1^a T_a = \frac{\alpha_{bc} - \alpha_{cb}}{2}.$ (22)

Здесь полагается, что $H_b = H_c = H$. Из (22) следует, что наблюдаемые на рис. З и 5 различия между $P_b(H)$ и $P_c(H)$ (см. рис. 3 и 5), а также между α_{bc} и α_{cb} непосредственно связаны с существованием тороидального момента T_a . На рис. 5 показана также температурная зависимость величины $\alpha_1^a T_a$, пропорциональной тороидальному моменту.

5. При достаточном большом магнитном поле, ориентированном в плоскости ba кристалла,

$$\mathbf{H} = (H_a, H_b, 0), \tag{23}$$

происходит переориентация намагниченности кристалла от оси c к оси a. В этом случае линейный по магнитному полю вклад в электрическую поляризацию, согласно (17)–(19), может быть представлен в виде

$$P_b^l - P_a^l = 2\alpha_2^a T_c H,$$
 или $\alpha_2^a T_c = \frac{\alpha_{ba} - \alpha_{ab}}{2}.$ (24)

Здесь полагается, что $H_a = H_b = H$. Из рис. 4 с учетом (24) может быть сделан вывод об индуцированной полем переориентации тороидального момента от оси a к оси c при перемагничивании кристалла от оси c к оси a.

6. Точно таким же образом, как для электрической поляризации, могут быть записаны формулы для продольной магнитострикции (см. таблицу):

$$U_{cc} = (\lambda^a_{ccac}T_a + \lambda^p_{cccc}M_c)H_c + q^p_{cccc}H^2_c,$$
(25)

$$U_{aa} = (\lambda^a_{aaac}T_c + \lambda^p_{aaaa}M_a)H_a + q^p_{aaaa}H_a^2,$$
(26)

$$U_{bb} = \nu_{bbbb}^p P_b^s H_b + \lambda_{bbbb}^p M_b H_b + q_{bbbb}^p H_b^2.$$
⁽²⁷⁾

³⁾ Предполагается, и это реализуется в эксперименте, что величина проекции магнитного поля на ось b недостаточна для того, чтобы вызвать значительное отклонение спинов от оси a кристалла.

Рис. 5. Температурные зависимости магнитоэлектрических восприимчивостей кристалла $Ga_{1.15}Fe_{0.85}O_3$: $1 - \alpha_{bc}$; $2 - \alpha_{cb}$; $3 - \alpha_1^a T_a = (\alpha_{bc} - \alpha_{cb})/2$

Рис. 6. Зависимости продольных магнитострикций вдоль осей b (1), c (2) и a (3) для кристалла Ga_{1.15}Fe_{0.85}O₃ при температуре 78 K

Линейная полевая зависимость магнитострикции $U_{aa}(H_a)$ (см. рис. 6) означает, что компоненты M_a и (или) T_c магнитного и тороидального моментов не могут быть равны нулю при H, параллельном оси a. Интересно, что если $\mathbf{r}^1 \to 0$, α_{bcc} и α_{cbc} в (17), (18) и λ^a_{ccca} и λ^a_{aaac} в (25), (26) стремятся к нулю, то при этом линейный магнитоэлектрический эффект определяется только тороидальным моментом, а продольная магнитострикция — только магнитным моментом. Отсюда следует, что основной вклад в линейный магнитоэлектрический эффект дает тороидальный момент T, а в продольную магнитострикцию — магнитный момент. Это значит, что нет строгой взаимосвязи между линейным магнитоэлектрическим эффектом и продольной магнитострикцией в $Ga_{2-x}Fe_xO_3$.

4. ЗАКЛЮЧЕНИЕ

Полевые зависимости магнитоэлектрического эффекта и продольной магнитострикции монокристаллов $Ga_{2-x}Fe_xO_3$ были исследованы в магнитном поле до 200 кЭ в интервале температур от 4.2 до 300 К. Показано, что магнитный порядок в кристаллах $Ga_{2-x}Fe_xO_3$ допускает его интерпретацию как тороидальное спиновое упорядочение. Вывод о существовании тороидального упорядочения сделан на основе экспериментального факта — значительной асимметрии недиагональных компонент тензора линейной магнитоэлектрической восприимчивости. Показано, что линейный магнитоэлектрический эффект в $Ga_{2-x}Fe_xO_3$ обусловлен тороидальным моментом, а не магнитострикцией, как это предполагалось ранее.

Авторы благодарны Ю. В. Копаеву за полезное обсуждение. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты № 96-15-96429 и № 98-02-16848) и INTAS (грант № 94-0935).

Литература

- 1. J. P. Remeika, J. Appl. Phys. Suppl. 31, 26 (1960).
- 2. D. L. White, Bull. Amer. Phys. Soc. 5, 189 (1980).
- 3. C. H. Nowlin and R. V. Jones, J. Appl. Phys. 34, 1962 (1963).
- 4. A. Pinto, J. Appl. Phys. 37, 4372 (1966).
- 5. E. A. Wood, Acta. Cryst. 13, 62 P (1960).
- 6. S. C. Abraham, J. M. Reddy, and J. L. Bernstein, J. Chem. Phys. 42, 3957 (1965).
- 7. G. T. Rado, in *Proc. Intern. Conf. on Magnetism, Nottingham* 1964, Institute of Physics and Physical Society, London (1965), p. 361.
- 8. G. T. Rado, J. Appl. Phys. 37,1403 (1966).
- 9. Т. М. Перекалина, Е. М. Смирновская, И. С. Желудев, В. А. Тимофеева, А. Б. Быков, Кристаллография, **32**, № 3, 795 (1987).
- 10. Ю. Ф. Попов, А. К. Звездин, Г. П. Воробьев, А. М. Кадомцева, Письма в ЖЭТФ 57, 69 (1993).
- 11. G. T. Rado, Int. J. Magn. 6, 121 (1974).
- 12. G. T. Rado, Phys. Rev. Lett. 13, 335 (1964).
- 13. M. F. Bertaut, G. Buisson, J. Chappert, and G. Bassi, C. R. Acad. Sci. Paris 260, 3355 (1965).
- 14. A. Delapalme, J. Phys. Chem. Sol. 28, 1451 (1967).
- 15. Я. Б. Зельдович, ЖЭТФ 33, 1531 (1957).
- 16. В. М. Дубовик, А. А. Чешков, ЭЧАЯ 5, 791 (1974).
- 17. H. Schmid, Int. J. Magn. 4, 337 (1973).
- 18. А. А. Горбацевич, Ю. Ф. Тугушев, ЖЭТФ 85, 1107 (1983).
- 19. A. A. Gorbatsevich and Yu. V. Kopaev, Ferroelectrics 161, 321 (1994).
- 20. В. М. Дубовик, Л. А. Тусунян, ЭЧАЯ 14, 1193 (1983).
- 21. R. R. Birss, Symmetry and Magnetism, North-Holland, Amsterdam (1964), p. 245.