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Equilibrium states of the system of self-assembled monolayers (SAMs) of n-alkanethiol
molecules HS(CH3),,—1(X) with polar group X chemiabsorbed on the Au(111) crystal surface
are considered. The couplings between the atoms (C, H) of the n-alkanethiols are approximated
by the Lennard-Jones potential. The couplings between the n-alkanethiols and the crystal surface
are approximated by the 12-3 potential. The interactions of polar groups and the self-images with
the metal substrate are taken into consideration. The temperatures of the phase transitions, the
structural order and equilibrium tilt, twist and azimuthal angles of the macromolecules, which
depend on the dipole moments, are found.

1. INTRODUCTION

The self-assembled monolayers (SAMs) are a comparatively new type of organic
monolayers [1-3], which are formed by spontaneous chemisorption of long-chain molecules
from a solution to many different solid substrates (e.g., Au, Ag, Cu, Al, GaAs, Si). The self-as-
sembled monolayers are presently the focus of considerable attention for technological and
fundamental reasons. They have potential applications in such areas as corrosion prevention,
wear protection, sensing devices, and the formation of well-defined microstructures [1, 4, 5].
They also present an excellent opportunity for the study of two-dimensional, condensed, organic
solids at the microscopic level. Chemisorption of the thiol headgroup to the surface results in a
long-range translational and orientational lattice structures. The monolayers are stable and have
been studied extensively by transmission electron spectroscopy [6-9], optical ellipsometry [10-
12], infrared spectroscopy [13, 14], electrochemistry [15, 16], and helium diffraction [17,18].
These monolayers form at a fixed surface density, which remains nearly constant with changing
temperature. This fact simplifies the study of rotational and conformational states of SAMs.

The most thoroughly studied and robust SAM system is CH3(CH,),,_;SH adsorbed on the
Au(111) crystal surface. Theoretical investigations of its properties have given important insight
into the nature of the long-range orderings of SAMs. To the extent possible, phenomenological
approaches [19, 20], molecular dynamic (MD) simulations [21-26], and a model of the SAMs
as the two-dimensional Ising model [27,28] have explained the ground state structure and
thermal-equilibrium orientational states of the SAM. One of the nearest problems is to study
SAMs with more complex molecular chains, namely, self-assembled monolayers of alkanetiols
containing a polar group. Molecular dynamic simulations of Langmuir-Blodgett monolayer
with dipole group have already been considered [29,30]. However, these simulations based
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Fig. 1. 0 is the tilt angle of the molecule,

o x is the chain twist (rotation) angle, and ¢
characterizes the tilt direction along
Y o the surface plane
y

on the so-called united atom model, which treats CH, groups as single interaction sites, and
allowance for the packing patterns of alkyl chains with one or two molecules per unit cell give
rise to an incorrect monolayer structure, the tilt angle, and tilt direction for zero dipole moment.
In this paper we are considering the effect of incorporating the polar group into self-as-
sembled alkanethiol monolayers on the phase transitions and the molecular structure of the
phases. We use an all-atoms model for hydrocarbon chains interactions. In order to avoid
gauche or kink defect in alkyl chains we placed the polar group at the end of the chains.

2. MOLECULAR MODEL

The model describes the n-alkanethiol rigid chains terminating polar group. The SH
headgroups of the alkanethiols form a (v/3 x v/3)R30° triangular lattice to adjust with
(coordinate) Au(111) substrate. An all-atoms model includes hydrogen connected by rigid-bond
couplings. This model is mainly based on the molecular model accepted by Hautman and
Klein [22,23] and Mar and Klein [24] except interactions between the chains. The chain has a
zig-zag form and consists of hydrocarbon groups CH,, beginning with sulfur and terminated by
a polar group that a dipole moment d directs along the chain axis. We suppouse that arbitrary
dipole moment belong to the molecular group CH;. Hydrocarbon groups CH; and CHj are
represented by single interaction sites including hydrogens. We assume that the chain may freely
rotate about the chain axis as a whole with the twisting angle as the dihedral angle between
the plane consisting of the normal to the gold surface, and the chain axis and plane defined
by trans segments of the zig-zag molecular chain. Moreover, we assume that the chain may
rotate relative to the crystal surface in such a way that the sulfur does not take part in this
rotation. This rotation is determined by two angles: the tilting angle § and the tilt direction ¢
(the precession angle of the long molecular axis about the surface normal to the gold crystal
surface) (Fig. 1).

Following Ref. [27], let us consider the Lennard-Jones interactions between the atoms H,

C, and S
U(R) = 4¢ [(%)12 - (%)6] . 1)
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The Lennard-Jones (LJ) parameters ¢ and o were chosen by fitting the potentials (1) to the
Van der Waals (VdW) potential exp(—r—%) in such away that the potentials would have the
same position, depth, and second derivatives at the point of minimum of the potentials. These
parameters are listed in Tables 1 and 2. We used the LJ potential since the VAW potential has
a negative divergence for small distances, which means that all chains will have a tendency to
collapse on each other.

Table 1
Parameters of the Van der Waals potential A exp(—Br) — C/r$

A, 10" K B, A-! C, K A
Aun | Auc | Acc | Bun | Buc | Bee | Cun | Cue | Cec

0.33 1.4 6.0 408 | 4.08 | 3.08 2.5 6.3 16 [31]
1.50 1.5 1.5 500 | 4.13 3.42 2.2 7.0 21 [32]
1.10 1.1 1.1 464 | 394 | 3.42 2.7 7.2 17 [33]
0.92 1.1 1.3 464 | 394 | 342 22 6.9 19 [34]
0.46 6.8 21 454 | 456 | 3.58 2.1 6.4 20 [35]

Refs.

Table 2
The Lennard-Jones coupling parameters

enn, K | enc, K | ecc, K | oonn, A 00,HC> A go,cC) A Refs.
18 29 52 2.653 2.903 3.118 [31]
36 38 36 2.338 2.814 3.418 [32]
30 30 30 2.498 2.939 3.387 [33]
24 29 34 2.500 2.939 3.387 [34]
33 30 920 2.316 2.941 1.842 [35]

Following Hautman and Klein [22], the interaction of the hydrocarbon groups CH; and
CH; with the Au substrate was modeled by the 12-3 potential

Cn Cs

— — 2
Ve (z =200 (2~ 20)* @
where Cp, = 2.8 x 107 K A2, C; = 17100 K A3, and z, = 0.86 A.

The dipole-dipole coupling of the dipoles d; and d; is

WR;) =Y Wilded, €)
o,
where

o pB

quﬁ = &Lﬁ_ _ 3Rini]' 4)

ij 3 5 ’
Ry R}

and R;; is the vector between the dipole moments; the magnitude of a dipole moment is
measured in units of 1D = 4.8 x 10~!* CGSE-cm.
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The coordinates of the kth carbons in the local coordinate system with 8 =0, ¢ = 0, and
x = 0 for the zig-zag chain in Fig. 2 are

[ 0 b+ k—-DI2), k=135 .,
Rer {(0, 0, lo+(k—11/2), k=2456,.. )

where the distances in the chain are shown in Fig. 2, and y is the twisting angle. The coordinates
of the hydrogen are

Rup. = (r+hcosa, hssina, I+ (k—-1)I/2), k=1,3,5,.. ©)
Hes = (=hcosa, hssina, I+ (k—1)I/2), =2,4,6,....

The coordinates of the dipole are the same as those C,,.

In order to find the coordinates defining the carbon and hydrogen atoms of the n-thiol
chain in the coordinate system of the substrate, it is necessary to use the transformations of
rotations determined by the Euler matrix

cosep —sinp 0 cos§ O sinf cosy —siny O
T(p,0,x) = (simp cos ¢ 0) ( 0 1 0 ) (sinx cos Y 0) .
0 0 1 —sind 0 cosd 0 0 1

This gives a transformation
R(p,8,x) = T(v, 0, X)R. (7

Experimental data [8, 9] show that the chain is tilted to the next nearest neighbour (NNN)
in a direction from the NNN direction (p ~ 10°). Below we consider the tilted phase (6 > 0)
only. A number and equilibrium angular positions of the chains of the paraphase depended on
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® Fig. 3. Symmetrical positions of an atom
of the n-thiol chains in the tilted phase

the symmetry of the system. One can see that the one-body potential of the chain-S (1) and the
chain-Au (2) is four fold degenerate with respect to the angular positions of a chain R(yp, 8, x),
R(—¢,0,—x), R(m + ¢,0,x), R(m — ¢, 8, —x). If one takes into account the contribution in
the potential of the chain from the straight chain of carbon atoms [in (5) r = 0], then the chain-
chain interactions (1) remove the mirror symmetry in the yz plane. Hence, the total one-body
potential of a chain is two fold degenerate with respect to the angular positions R(yp, 6, x) and
R(—¢, 0, —x). This degeneracy was shown quantitatively in Ref. [27]. The equilibrium state
of the chains R(yy, 6y, x0) and that of the mirror plane zz R(—yp, 8y, —Xo) is found from the
minimum thermodynamic potential for T > T, and defined below.

In order to consider the phase transition with spontaneous breakdown of the symmetry we
follow Vaks [36] and write the following expressions for the rotated coordinates of the atoms:

R, = Risp,6,5) = 5 [T(p, 6, )R + (=, 0, )R] +
+ s% [T(¢,6, )R — T(—p,0, —X)RI = R, + sR;, s==%I. (8)
Obviously, since Rj| = (R4 + R_1)/2, Ry = (Rs; —R_;)/2 and |R4y| = |R_4],
RyR, =0,

and R, is directed along the y axis, as shown in Fig. 3. As the basis vectors of the two-di-
mensional triangular lattice of sulfur atoms we chose the vectors

a, = a(v3/2,1/2,0), a,=a(0,1,0), 9)

where the lattice constant a = 4.97 A. Now let us specify the coordinates of the atoms of the
jth chain on the surface:

Rjgr = Rj + Rj| g + 8;R1 gk, (10)

where j runs over all sites of the triangular lattice, k runs over the atomic groups CH; and CHj;
along the chain, and g runs over the specific atomic groups (¢ = C, H,, and H;). Accordingly,
the dipole moment of the jth chain is

d; =d|| +de_|_, (11)
212
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where dJ_||y, and d“d_L =0.
Substituting expressions (8) and (10) into the potential interactions (1) and (2), we obtain
the following expression for the LJ coupling chain-chain energy:

1
2 E E E Ugg'(Rij + Ry gk — Ry grpr + 8;Ry g — 5;R grk1), (12)
%,J !7’9, k&'

where R;; = R; —R;, and for the total chain-surface energy, which includes a coupling of the
n-thiol atoms (C, H) with the sulfur atoms,

DD D V@SR D D UpsRij +Roge +siRige).  (13)
i g k nJj 9 kK

In accordance with Eq. (1), we introduce the notation

Uy = 40,0 [("j;' )" - (%Tg)s] : (14)

and the notation Uys means the interaction of the chain’s atoms with the sulfur.

A single dipole spaced apart from a metal feels an interaction with its self-image, so a
dipole-dipole part of the chain-chain energy consists of dipole-dipole, dipole-image and ima-
ge-image interactions. Substituting expressions (9) and (10) into (3), we obtain the energy of
the dipole-dipole coupling

1
Z [W(Rij +(si—sj))Ric)+ EW(R'ij +Z;+(s;i —8;)Ric.)|, (15)
iij
where Z,, is the vector between the real dipole and its self-image.
In order to simplify expressions (12), (13), and (15) we introduce the projection operators
s = (1£)/2. Then for any function f of the two operators s; and s, there is an identity [36]

fxsi +ysy) = (s] +s7)(s; +87)f(zs1 +ysy) =
=515, f(@+y)+sis; fl@—y)+s7s;f(—z+y)+s7s; f(—z—y). (16)

Using this identity, we can write the following expression for the total energy of the SAM:

1
E=Ey~ 5 Jij6,0,x)s:5;. (17)
ij

In accordance with Eq. (16), we obtain the expressions

Eo= 3 Y S W + Wi+ 3 SV, sy

ij s,s’
1 - 1 .
Jii = 7 D ssUZ, + i > W, (19)
s,8' s,s’
where
g 1
Us?S’ -3 Z Z Ugg' (Rij + Ryj g — Ry grir + sR1 gk — s'Ri,g'kr),
gg9’ kk’
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ij 1
W2, =Wy +(s—s)Ryc,)+ EW(Rij +Zy+(s—-s")Roc,), (20)
Vi=2_ D V(Biu +sRL+D YD UpsRi + Ry g + sRL ).
g k i 9 k

The linear term ) . B;s; is absent in Eq. (17) due to the symmetry.

3. MEAN-FIELD APPROXIMATION
According to (17), the thermodynamic potential of the SAM is

8q

- 1 i85
F = Ey(6,¢,x) ~ TInSp,,y exp | > Z Ji(0, 0,0 (1)
g
A mean-field approximation of Eq. (21) is given by the expression [36]
1
F = Eo(6,0,00+ 5 D Jij(0,0,x)(s:)(s;) =
ij
(s5)
_T;m 2¢ch zj:Jij(ﬂ,go,X)TJ : (22)

One can see from Eq. (22) that in the paraphase ({(s;) = 0) the minimum Ey(yp, 8, x) with
respect to the angles gives equilibrium ¢y, 6y, xo SAM’s chains. The order parameter (s;) # 0
is defined as a solution of the state equations of state [37]

() =th |3 T 0,008 | @3)
J

A substitution of solutions of this equation into (22) and self-consistent minimization of the
thermodynamic potential over three angles give the complete equilibrium state of the SAM.
Next, according to Eq.(23), the structure ordered phase is determined by the wave vector qq,
for which

Jq = Z Jij exp(iqRij) (24)
J
takes on the maximum value and T, = Jy, [37].

The first item transform of (19) under near neighboring chain-chain coupling is given by
the expression [27]

U(q) = 2J; cos(2m&;) + 2Jy cos [2n(§1 — &)] + 2J, cos(278), (25)
where the wave vector q = &by + &b, is written about the basis reciprocal to (9)
bi=4ma”" (1/v3,0,0), by=2ma~' (-1/v3,1,0), (26)
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)

2x1 FP

T

Fig. 4. Phase diagram of the Ising model
on the triangular lattice

J) is the coupling constant along the vectors +a,, +(a; — a;), and J, is the coupling constant
along the vectors *a,.

One points to fact that as d = 0 expression (24) is reduced to (25), maximums which give
the following structure ordered phase and the transition temperature [27]:

1) £&=0, &=0, T.=4J,+2J, (ferro);

2) £=05 &=0, T.=-4J;+2J, (2x1); (27)
2
3) =056 T.= —% —21, Zij‘z <1 (IC).

The phase diagram, which corresponds to Eq. (27), is shown in Fig. 4.
The dipole-dipole interaction transform of (19) is computed by Ewald’s method [38], fitting
to the 2D lattice. Formally, the Fourier transform (4) can be found as follows:
b — 82 eiql
q,x _ )
0z40z5 <~ 1 — x|

(28)

where 1 = [ja; + l,a5,11, 1, is an integer, and a; and a, defined by expressions (9). After the
fashion of Ewald the series of (28) for a plane lattice is presented by the sum of two series:

eiql

_ erfc(R|l — x|)
Zu-xle: -

T eiX(q+g) Iq gl - Iq f gl
+ — R z|q+g| el LAl + z|q+gl L
SO . |g ql [e c C( 7R ZR) e erfc R zR y (29)

where

erfe(z) = \/i_ / e~Vdy,
™

g = g1b; + g;by, g1, 9> is an integer, b; and b, are defined by expressions (26), Sy is the unit cell
area, z is the component along the 2 axis of the vector x, and R is the adjustable parameter of
the velocity convergence of the series. Note that Eq. (29) was obtained in Ref. [29] for q = 0.

The results of self-consistent numerical minimization procedure of (22) are given in
Figs. 5-8 and Table 3. The first feature of the temperature transition is high sensitivity to
the choice of the coupling constants listed in Table 2. For the choice of the coupling constants
defined in Refs. [32, 35] there is ordered phase sequence from the ferro or 2 x 1 to the IC (Figs. 6
and 8). However, for the choice of coupling constants defined in Refs. [31, 33, 34] there is IC
phase (Table 3), where the transition temperature 7. increase with increasing dipole moment.
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Fig. 5. Curves of the temperature transition 7, and the equilibrium angles of the n-thiols, plotted
as functions of the dipole moment, are described by the solid (n = 8), dashed (n = 10), dot-dashed
(n = 12), and dotted (n = 17) lines for the coupling parameters from Ref. [32]

4. DISCUSSION AND CONCLUSIONS

An advantage of using the Ising variable is that a rich variety of the couplings between
atoms of the n-thiols and the couplings with the crystal surface is reduced to a few competing
exchange parameters. For d = 0 it allow one to establishing a simple phase diagram of the
system shown in Fig. 4. The SAMs are described by the Ising model on the triangular lattice
with exact solution [39]. Ferro, 2 x 1 and incommensurate phases are the only possible ordered
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Fig. 6. The components of the wave vector of the ordered structure £; (solid) and £, (dashed)
for the coupling parameters from Ref. [32]

states of the system of the n-thiols which are self-assembled on the crystal surface Au(111).
For d # 0 competition a LJ interaction and a dipole-dipole coupling can give rise to various
combinations of the structures.

The most interesting behavior of the critical temperature and a sequence of ordered
structures upon change in the dipole moment has been found for the LJ’s parameters from
Refs. [32,35]. The transition temperature dependence is that 7, with d # 0 can be smaller
one with d = 0. In particular, the lowest temperature of the phase transition is realized for the
parameters taken from Refs. [32,34]. T, is quite sensitive to the coupling parameters which
change many times. Moreover, it is necessary to take into consideration that all coupling
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Fig. 7. The same as in Fig. 5 for Ref. [35]

parameters listed in Table 1 are given for the case of three-dimensional crystals in which the
distances between the atomic groups CH, may differ in comparison with the case of the SAM.
Therefore, the coupling constants listed in Tables 1 and 2 should be considered carefully. As
far as the structure of the ordered phase for any set coupling parameters is concerned, with
increasing dipole moment the incommensurate phase is described by the modulation vector
either near £ = (0.25,0.5) or near £ = (0.3,0.6).

The phase transition leads to a freezing of the jumps of the chains between two fold
degenerated states with equilibrium azimutal and twist angles ¢y, Xo is given in Figs. 5 and 7
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Fig. 8. The same as in Fig. 6 for Ref. [35]

and Table 3 for various references. The values of these angles agree with the experimental
observations and theoretical considerations except for the azimutal angle which was found
experimentally to be ¢ ~ 10° for d =0 and 10 < n < 20 (Ref. [9]).

The final feature of the phase transition to the twisted ordered phase is that it is a first-or-
der transition. The reason is analogous to the effect of elastic media on the order of the phase
transition [36, 40], where the spontaneous ordering gives rise to a distortion of the crystal which
in turn leads to a slight increase in the exchange integrals. Hence, the Curie temperature
from the paraphase turns out to be lower than the Curie temperature from the ordered phase.
Similarly, in the system of the n-thiol’s chains a spontaneous twist ordering of the chains give
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Table 3
The critical temperatures, the wave vector, and the equilibrium angles
n T, K & & ) Xo o Refs.
d=05D
8 1249.6 0.259 0.517 -3.88 35.55 143.75 [31]
12 1701.6 0.259 0.525 —2.68 35.11 142.95 ?
16 2156.9 0.259 0.529 —2.05 34.90 142.50 ?
8 688.5 0.259 0.520 -3.82 36.21 143.75 [33]
12 855.6 0.273 0.538 —2.64 35.80 143.00 ?
16 1028.7 0.273 0.549 -2.02 35.61 142.58 ”
8 619.7 0.259 0.525 -3.81 36.68 143.37 [34]
12 745.3 0.273 0.546 —2.63 36.23 142.69 ?
16 878.0 0.273 0.561 -2.01 36.01 142.30 ?
d=10D

8 2857.1 0.253 0.510 -3.79 38.34 141.53 [31]
12 32242 0.259 0.519 —2.63 37.04 141.61 ”
16 3642.2 0.259 0.524 -2.02 36.39 141.55 ?
8 2227.0 0.253 0.512 -3.77 39.05 141.19 [33]
12 2311.7 0.267 0.524 —2.60 37.72 141.44 ”
16 2442.9 0.267 0.532 -1.99 37.08 141.46 ?

8 2154.5 0.267 0.516 -3.77 39.71 140.52 [34]
12 2200.6 0.267 0.528 -2.60 38.29 140.91 ”
16 2290.4 0.267 0.537 -1.99 37.59 141.01 ?

rise to a change in the tilt. This in turn leads to a change of the exchange integrals defined by
Eq. (19).

I wish to thank A. F. Sadreev for valuable discussions and for stimulating interest. I also
thank E. N. Bulgakov for his assistence in setting up the calculations. This work was supported
by the Krasnoyarsk Regional Science Foundation Grant 6F0031.
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