ОСЛАБЛЕНИЕ РАССЕЯНИЯ ФОНОНОВ ПРОСТРАНСТВЕННО-КОРРЕЛИРОВАННОЙ СИСТЕМОЙ ИОНОВ ЖЕЛЕЗА И НИЗКОТЕМПЕРАТУРНАЯ «АНОМАЛИЯ» ТЕРМОЭЛЕКТРИЧЕСКИХ ЯВЛЕНИЙ В КРИСТАЛЛАХ HgSe:Fe

И. Г. Кулеев*, А. Т. Лончаков, И. Ю. Арапова, Г. И. Кулеев

Институт физики металлов

Уральского отделения Российской академии наук
620219. Екатеринбург, Россия

Поступила в редакцию 30 июля 1997 г.

Экспериментально обнаружен и теоретически рассчитан новый эффект ослабления рассеяния фононов пространственно-коррелированной системой ионов железа в кристаллах HgSe: Fe. Проведены экспериментальные исследования термоэдс на образцах HgSe: Fe с различным содержанием примесей железа в интервале температур 7.5–60 К. Обнаружено, что при T<10 К зависимость термоэдс от содержания примесей железа имеет необычный характер: с ростом содержания примесей железа величина $|\alpha(N_{\rm Fe})|$ сначала до $N_{\rm Fe}=5\cdot10^{18}$ см $^{-3}$ убывает, затем возрастает, достигая максимума при $N_{\rm Fe}\approx(1-2)\cdot10^{19}$ см $^{-3}$, дальнейшее увеличение концентрации $N_{\rm Fe}$ приводит к монотонному убыванию величины термоэдс. Показано, что наблюдаемый рост термоэдс обусловлен ослаблением рассеяния фононов на пространственно-коррелированной системе ионов ${\rm Fe}^{3+}$. Представлен теоретический анализ нового эффекта. Результаты расчета сопоставлены с экспериментальными ланными.

1. ВВЕДЕНИЕ

Интерес к исследованию явлений электронного переноса в кристаллах HgSe, легированных железом, обусловлен тем, что эти соединения обладают рядом необычных физических свойств [1–9]. Одной из наиболее впечатляющих «аномалий» является существенное увеличение подвижности электронов в области гелиевых температур при возрастании концентрации железа от $N_{\rm Fe}=N^*=4.5\cdot 10^{18}~{\rm cm^{-3}}$ до $N_{\rm Fe}=2\cdot 10^{19}~{\rm cm^{-3}}$ [1]. Было показано [5–9], что аномальный характер зависимостей подвижности электронов и термомагнитных эффектов от содержания железа и температуры обусловлен образованием состояния со смешанной валентностью ионов ${\rm Fe^{2^+}}$ и ${\rm Fe^{3^+}}$ на уровне Ферми и пространственным упорядочением положительных зарядов на ионах железа вследствие их кулоновского отталкивания. Поскольку при $N_{\rm Fe}>N^*$ концентрация электронов проводимости и трехвалентных ионов железа стабилизируется, $n_e=N_{\rm Fe}^{3^+}=N^*$, с увеличением содержания железа возрастает концентрация $N_0=N_{\rm Fe}-N_{\rm Fe}^{3^+}$ нейтральных в решетке ионов ${\rm Fe^{2^+}}$, которые являются свободными местами для перераспределения d-дырок. При этом степень пространственного упорядочения ионов ${\rm Fe^{3^+}}$ растет, рассеяние электронов проводимости ослабляется, а подвижность увеличивается. В работе [5] был предложен вариант модели короткодействующих корреляций, который позволил

^{*}E-mail: kuleev@imp.uran.ru

количественно описать зависимости термогальваномагнитных эффектов от содержания железа и температуры [5–9].

Однако пространственное упорядочение ионов Fe^{3+} приводит не только к ослаблению рассеяния электронов, но и к изменению характера зависимости времени релаксации электронов τ от энергии ε . Проведенный в работе [6] анализ зависимости $\tau(\varepsilon)$ на основе модели короткодействующих корреляций [5] показал, что при переходе от области слабых $(N_0/N_{1+} \ll 1, \text{ где } N_{1+} = N_{Fe}^{3+})$ к области сильных пространственных корреляций $(N_0/N_{1+} > 1)$ знак производной $d\tau/d\varepsilon$ меняется с положительного на отрицательный, что приводит к изменению знаков эффектов Нернста—Эттингсгаузена с увеличением концентрации железа. Экспериментальные исследования [6,7] подтвердили этот важный теоретический вывод.

До настоящего времени основное внимание уделялось исследованию свойств кристаллов HgSe: Fe, которые определяются, главным образом, процессами релаксации импульса электронов на коррелированной системе ионов Fe³⁺, сплавном потенциале и т. д. [1-9]. Гораздо менее изученными оставались эффекты, обусловленные влиянием фононной системы на явления электронного переноса в кристаллах HgSe, содержащих примеси железа со смешанной валентностью. Одним из таких эффектов является увлечение электронов фононами, которое играет существенную роль в поведении термоэлектрических и термомагнитных эффектов при низких температурах [6, 7, 10]. Здесь мы покажем, что рост степени упорядочения коррелированной системы ионов Fe³⁺ с увеличением содержания примесей железа в кристаллах HgSe: Fe приводит не только к ослаблению рассеяния электронов и изменению характера зависимости $\tau(\varepsilon)$ [6], но также и к эффекту ослабления рассеяния фононов на пространственно упорядоченной системе ионов Fe³⁺. Будет показано, что этот эффект при достаточно низких температурах приводит к заметному росту величины термоэдс с увеличением концентрации $N_{\rm Fe}$ в интервале $5 \cdot 10^{18}$ см⁻³ $< N_{\rm Fe} < 2 \cdot 10^{19}$ см⁻³. Следует отметить, что в этом же интервале концентраций железа наблюдается и аномальный рост подвижности электронов [1-3]. Как мы покажем ниже, это неслучайно, поскольку физической причиной обеих «аномалий» является пространственное упорядочение трехвалентных ионов Fe³⁺ в системе ионов железа со смешанной валентностью. Насколько нам известно, эффект ослабления фононного рассеяния на коррелированной системе заряженных центров ранее никем не рассматривался не только в бесщелевых полупроводниках HgSe, легированных переходными элементами, но и в других системах со смешанной валентностью.

Для экспериментального наблюдения этого эффекта необходимо, чтобы, во-первых, вклад эффекта увлечения электронов фононами в термоэдс $|\alpha_{ph}|$ преобладал над диффузионным вкладом $|\alpha_e|$, а, во-вторых, основным механизмом релаксации импульса фононов должен быть механизм рэлеевского рассеяния. Как показали исследования, проведенные в [7], эти условия выполняются в кристаллах HgSe:Fe в интервале температур 5 < T < 15 К. В работе [7] была измерена величина термоэдс на образцах HgSe:Fe с различным содержанием железа в интервале температур 10 < T < 45 К. Было показано, что температурные зависимости $|\alpha(T)|$ имеют характерные минимумы при $T_{min} = (20-30)$ К, и что при $T < T_{min}$ доминирует вклад фононного увлечения $|\alpha_{ph}|$, величина которого определяется фонон-электронным взаимодействием и механизмами релаксации импульса фононов. Было установлено, что механизм рэлеевского рассеяния фононов играет существенную роль в релаксации импульса фононов. Однако в [7] были исследованы только четыре образца с содержанием железа $N_{\rm Fe} = (0; 0.1; 1; 40) \cdot 10^{19}$ см $^{-3}$, что не позволило авторам провести детальное изучение и обнаружить немонотонное поведение

 $|\alpha(N_{\rm Fe})|$. Ниже приводятся результаты измерений и количественный анализ зависимости термоэдс от температуры и содержания железа на более широком, чем в [7], наборе образцов HgSe:Fe.

2. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Измерена зависимость термоэдс $\alpha(T)$ на восьми кристаллах HgSe:Fe с содержанием железа от нуля до $4\cdot 10^{20}$ см $^{-3}$ в интервале температур 7.5 < T < 60 К. Основные характеристики исследованных образцов (концентрация железа $N_{\rm Fe}$, электронов n_e , подвижность μ) приведены в табл. 1. Средние размеры образцов составляли $8\times 2.0\times 0.8$ мм 3 . Измеряемая разность температур не превышала 10% от средней температуры образца. Как видно из табл. 1, для образцов 2 и 3 с $N_{\rm Fe} < N^*$, у которых уровень Ферми расположен ниже донорного уровня железа, концентрация электронов превышает концентрацию железа. Это связано с наличием заряженных собственных дефектов, концентрация которых N_d в кристаллах HgSe:Fe обычно составляет $(1 \div 2) \cdot 10^{18}$ см $^{-3}$. В этом случае концентрация электронов n_e равна полной концентрации заряженных центров $n_e = N_d + N_{1+} = N_i$. При $N_{\rm Fe} > N^*$ уровень Ферми фиксирован на донорном уровне железа, и концентрация электронов не зависит от $N_{\rm Fe}$.

Таблица 1

Номер образца	$N_{ m Fe}, \ 10^{19}~{ m cm}^{-3}$	$n_e, 10^{18} \mathrm{cm}^{-3}$	μ , $10^4 \text{ cm}^2/\text{B} \cdot \text{c} (4.2 \text{ K})$	$N_i, 10^{18} \text{ cm}^{-3}$
1	0.0	2.4	2.25	2.4
2	0.1	3.0	2.8	3
3	0.3	4.0	2.9	4.0
4	0.5	4.8	5.1	5.0
5	1.0	4.7	8.3	10.0
6	2.0	4.9	6.4	20.0
7	5.0	4.81	5.95	50.0
8	40.0	6.2	2.5	400.0

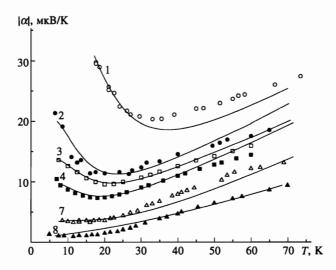


Рис. 1. Рассчитанные (линии) и экспериментальные (точки) зависимости абсолютной величины термоэдс от температуры в кристаллах HgSe:Fe с различным содержанием железа для образцов с номерами 1 (o), 2 (\bullet), 3 (\square), 4 (\blacksquare), 7 (\triangle), 8 (\blacktriangle). Значения концентраций $N_{\rm Fe}$ и параметров фононного рассеяния приведены в табл. 1, 2 соответственно

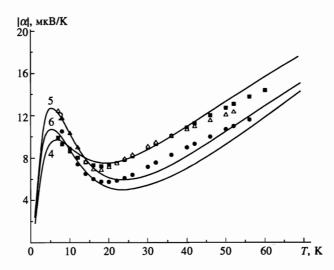


Рис. 2. Рассчитанные (линии) и экспериментальные (точки) зависимости абсолютной величины термоэдс от температуры для образцов с номерами 4 (\blacksquare), 5 (\triangle), 6 (\bullet). Значения концентраций $N_{\rm Fe}$ и параметров фононного рассеяния приведены в табл. 1, 2 соответственно

величина термоэдс при фиксированной температуре должна уменьшаться с ростом концентрации рассеивающих центров. Тем более, что для остальных кристаллов такая зависимость имеет место: из рис. 1 видно, что при $T=7.5~\rm K$ величина термоэдс при увеличении концентрации примесей железа от $1\cdot 10^{18}~\rm cm^{-3}$ до $4\cdot 10^{20}~\rm cm^{-3}$ уменьшается более чем в 20 раз, а при $T=20~\rm K$ при переходе от образца 1 к образцу 8 более чем в 25 раз. Из этого следует, что при $T<20~\rm K$ механизм рэлеевского рассеяния фононов

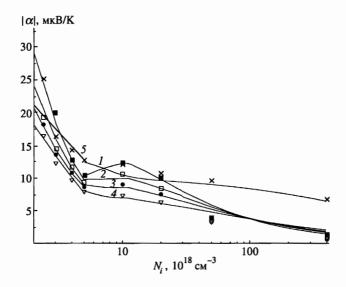


Рис. 3. Рассчитанные (линии) и экспериментальные (точки) зависимости абсолютной величины термоэдс от содержания железа при температурах T=7.5 K (■, кривая I), 10 K (□, 2), 12 K (•, 3), 15 K (∇ , 4), 50 K (\times , 5). Использованы средние значения параметров фононного рассеяния: $E_1=0.75,\ c_L=0.1,\ c_H=2,\ c_{R^+}=2,\ c_{R^0}=0.15$

играет существенную роль в релаксации импульса фононной системы и в значительной мере определяет величину вклада фононного увлечения в термоэдс.

Необычный характер поведения зависимости термоэдс $|\alpha|$ от содержания примесей железа при различных температурах виден на рис. 3. Концентрация N_i для образцов 1–3 равна концентрации заряженных центров, а для образцов 4-8 — концентрации железа $N_{\rm Fe}$. Как видно из рис. 3, зависимость $|\alpha(N_i)|$ при T < 12 К является немонотонной: термоэдс $|\alpha(N_i)|$ с ростом N_i сначала убывает до значений $|\alpha_{min}| \sim 10$ мкВ/К при $N_i = 5 \cdot 10^{18} \; \text{cm}^{-3}$, затем увеличивается, достигая максимума $|\alpha_{max}| \approx 12.5 \; \text{мкB/K} \; \text{при}$ $N_{\rm Fe} \approx (1 \div 2) \cdot 10^{19} \; {\rm cm}^{-3}$. Таким образом, рост термоэдс в этом интервале концентраций составляет ≈ 2 мкВ/К, что в четыре раза превышает погрешность эксперимента. Дальнейшее увеличение содержания железа приводит к монотонному уменьшению величины $|\alpha(N_i)|$, что, очевидно, обусловлено ростом рэлеевского рассеяния на нейтральных в решетке ионах ${
m Fe^{2+}}$. Дело в том, что при $N_{
m Fe}>N^*$ уровень Ферми фиксирован на донорном уровне железа и с увеличением содержания примесей железа концентрация ионов Fe^{3+} остается постоянной, а возрастает только концентрация ионов Fe^{2+} . С увеличением температуры максимум на зависимости $|\alpha(N_i)|$ исчезает, хотя характерные изломы на кривых $|\alpha(N_i)|$ сохраняются вплоть до 20 К. При T=50 К величина термоэдс определяется электронным вкладом и зависимость $|\alpha(N_i)|$ является монотонно убывающей.

Следует обратить внимание на тот факт, что зависимость величины термоэдс от концентрации железа при T<10 К качественно подобна зависимости подвижности электронов $\mu(N_{\rm Fe})$ [3]. Так же как $\mu(N_{\rm Fe})$ термоэдс $|\alpha(N_{\rm Fe})|$ с ростом $N_{\rm Fe}$ сначала убывает до концентрации $N_{\rm Fe}=5\cdot 10^{18}~{\rm cm}^{-3}$, а затем возрастает, достигая максимума при $N_{\rm Fe}=(1\div 2)\cdot 10^{19}~{\rm cm}^{-3}$. При дальнейшем увеличении содержания железа подвижность и термоэдс монотонно убывают. При $N_{\rm Fe}<5\cdot 10^{18}~{\rm cm}^{-3}$ с ростом $N_{\rm Fe}$ возрастает

концентрация трехвалентных ионов железа и электронов проводимости. В результате подвижность и термоэдс уменьшаются по двум причинам: во-первых, из-за увеличения вероятности рассеяния электронов и фононов на ионах Fe^{3+} , во-вторых, вследствие повышения уровня Ферми и непараболичности зонной структуры HgSe:Fe. При $N_{\rm Fe} > 2 \cdot 10^{19}~{\rm cm}^{-3}$ с увеличением содержания железа возрастает концентрация нейтральных в решетке ионов Fe^{2+} , что приводит к уменьшению и $\mu(N_{\rm Fe})$, и $|\alpha(N_{\rm Fe})|$ за счет увеличения рассеяния на них. Рост подвижности электронов в интервале концентраций $5 \cdot 10^{18} < N_{\rm Fe} < 2 \cdot 10^{19}~{\rm cm}^{-3}$ обусловлен уменьшением вероятности рассеяния электронов на заряженных центрах при увеличении степени пространственного упорядочения коррелированной системы ионов Fe^{3+} [5,6]. Поэтому можно предположить, что увеличение термоэдс в этом интервале концентраций обусловлено уменьшением вероятности рассеяния фононов на коррелированной системе ионов Fe^{3+} .

Ниже приведен количественный анализ зависимостей термоэдс от температуры и содержания примесей железа с учетом эффекта увлечения электронов фононами. В расчете учитывается рассеяние электронов на коррелированной системе ионов Fe^{3+} , сплавном потенциале и акустических фононах, а также основные механизмы рассеяния фононов. Отдельно рассмотрено рассеяние фононов на пространственно упорядоченной системе ионов Fe^{3+} .

3. ДИФФУЗИОННАЯ КОМПОНЕНТА ТЕРМОЭДС

Хорошо известно [10], что наблюдаемые на опыте зависимости термоэдс $\alpha(T)$ при низких температурах определяются суммой диффузионной $\alpha_e(T)$ и фононной $\alpha_{ph}(T)$ составляющих:

$$\alpha(T) = \alpha_e(T) + \alpha_{ph}(T). \tag{1}$$

При вычислении термоэдс учитывается непараболичность зоны проводимости кристаллов HgSe в рамках двузонной модели Кейна с энергией $\varepsilon_g=0.022$ эВ и эффективной массой электрона на дне зоны $m_n=0.02m_0$, где m_0 — масса свободного электрона. Для вырожденного электронного газа (в условиях эксперимента неравенство $\varepsilon_F\gg k_BT$ хорошо выполняется) электронная компонента термоэдс может быть представлена в виде¹⁾

$$\alpha_e(T) = -\frac{\pi^2 k_B^2 T}{3e\varepsilon_F} \left(\frac{3}{2} f_{gF} + D \right), \tag{2}$$

где

$$D = \varepsilon_F \left\{ \frac{\partial}{\partial \varepsilon} \ln \frac{\tau(\varepsilon)}{m(\varepsilon)} \right\}_{\varepsilon = \varepsilon_F}, \quad m(\varepsilon) = m_n \left(1 + \frac{2\varepsilon}{\varepsilon_g} \right), \quad f_{gF} = \frac{\varepsilon_g + 2\varepsilon_F}{\varepsilon_g + \varepsilon_F}.$$

Основными механизмами релаксации импульса электронов в кристаллах HgSe:Fe при низких температурах являются рассеяние на коррелированной системе ионов Fe³⁺, сплавном потенциале и акустических фононах [5], а также на собственных дефектах,

¹⁾ В работе [7] в формуле (4) для $\alpha_e(T)$ пропущен множитель f_{gF} , величина которого при $\varepsilon_F=210$ мэВ составляет примерно 1.5.

концентрация которых составляет $\sim 1 \cdot 10^{18}$ см⁻³. При учете этих механизмов релаксации выражение для D может быть представлено в виде [7, 8]

$$D = \frac{\varepsilon_{g} + 2\varepsilon_{F}}{2(\varepsilon_{g} + \varepsilon_{F})} \left[\frac{K_{+} + K_{a} - K_{ph}}{K_{b} + K_{ph}} \right] - \frac{4\varepsilon_{F}}{\varepsilon_{g} + \varepsilon_{F}},$$

$$K_{a} = \Lambda \left[2\frac{N_{1+}}{N_{+}} \left(\frac{N_{0}}{N_{+}} \right)^{1/2} \left(\Phi_{+0} - \frac{\partial \Phi_{+0}}{\partial y} \Big|_{y=1} \right) - \frac{N_{0}}{2N_{+}} \Lambda \right], \quad N_{+} = N_{d} + N_{1+},$$

$$K_{b} = \frac{N_{r}}{N_{+}} \Phi_{BH} + \frac{N_{c}}{N_{+}} \Phi_{c} + \Lambda \left[2\frac{N_{1+}}{N_{+}} \left(\frac{N_{0}}{N_{+}} \right)^{1/2} \Phi_{+0} + \frac{\Lambda}{2} \frac{N_{0}}{N_{+}} \right], \quad K_{ph} = \frac{3E_{1}^{2} m_{F} k_{F} k_{B} T}{4\hbar^{2} \varepsilon_{B} (\varepsilon_{F}) \rho s^{2}},$$

$$K_{+} = \frac{N_{c}}{N_{+}} \left(3\Phi_{c} - \frac{\partial \Phi_{c}}{\partial y} \Big|_{y=1} \right) + \frac{N_{r}}{N_{+}} \left(3\Phi_{BH} - \frac{\partial \Phi_{BH}}{\partial y} \Big|_{y=1} \right),$$

$$\Phi_{BH} = \ln(1 + b_{s}) - (1 + b_{s}^{-1})^{-1}.$$
(3)

Здесь $y=k/k_F$, E_1 — константа деформационного потенциала, ρ — плотность кристалла, s — скорость звука, N_{1+} , N_0 — концентрации заряженных Fe^{3+} и нейтральных в решетке ионов Fe^{2+} , $\Phi_{+0}=1-b_s^{-1}\ln(1+b_s)$, $b_s=(2k_Fr_sy)^2$, r_s — радиус экранирования Томаса-Ферми, $\hbar k_F$ — фермиевский импульс, $\varepsilon_B(\varepsilon_F)=m(\varepsilon_F)e^4/2\chi\hbar^2$ — боровская энергия, χ — диэлектрическая проницаемость, Λ — отношение констант взаимодействия электронов с нейтральными и заряженными центрами. Согласно оценкам [5], $\Lambda=0.1$, а

$$\Phi_c(k_F) = 2 \int_0^1 \frac{x^3 S(2k_F x)}{(x^2 + b_s^{-1})^2} dx, \tag{4}$$

где S(q) — структурный фактор, характеризующий степень упорядочения системы доноров, определен на основе модели короткодействующих корреляций, предложенной в [5]. Этот вариант модели короткодействующих корреляций является справедливым для случая произвольных по величине кулоновских корреляций ионов Fe^{3+} – Fe^{3+} и основывается на следующих физических предположениях. При $N_{\rm Fe}>N^*$ на уровне Ферми образуется состояние со смешанной валентностью и положительные заряды на ионах железа (d-дырки) получают возможность перераспределяться по узлам кристаллической решетки, занятым ионами Fe²⁺. Как показано в [11], максимальный выигрыш свободной энергии при упорядочении ионов Fe³⁺ обеспечивается тогда, когда наиболее близко расположенные d-дырки удаляются друг от друга. Поэтому вокруг каждого иона $\mathrm{Fe^{3+}}$ образуется корреляционная сфера радиуса r_c , в которой нет других ионов $\mathrm{Fe^{3+}}$. С ростом содержания примеси железа $N_{\rm Fe}$ увеличивается число свободных мест для перераспределения d-дырок, поэтому радиус корреляционной сферы и степень пространственного упорядочения коррелированной системы ионов Fe³⁺ возрастают. Это позволяет аппроксимировать систему ионов Fe³⁺ системой твердых сфер с диаметром $d = r_c$ [11]. Степень упорядочения в такой системе характеризуется параметром упаковки $\eta = \pi d^3 N_{1+}/6 = V_c N_{1+}/8$, который равен отношению объема, занятого твердыми сферами, к полному объему системы. Интегральное уравнение для парной корреляционной функции системы твердых сфер может быть решено точно [12], и структурный фактор, входящий в выражение (4), определяется без использования теории возмущений по малому параметру. Наличие в кристалле неупорядоченно расположенных ионов — собственных дефектов с концентрацией N_d — приводит к уменьшению радиуса корреляционной сферы [13]. Для определения зависимости $\eta(N_{\rm Fe})$ в [13] было получено уравнение

$$\eta = \eta_L \exp\left(-p\frac{\eta}{\eta_L} \frac{N_d}{N_{1+}}\right) \left[1 - \exp\left(-\frac{\eta}{\eta_L} \frac{N_{\text{Fe}}}{N_{1+}}\right)\right]. \tag{5}$$

Значение параметра $p\approx 0.2$ было определено из анализа экспериментальных зависимостей $\mu(N_{\rm Fe},N_d)$ для кристаллов HgSe:Fe,Ga в работе [13]. При концентрациях $N_{\rm Fe}>2\cdot 10^{19}~{\rm cm^{-3}}$ и $N_d\to 0$ зависимость $\eta(N_{\rm Fe})$ насыщается, достигая значения $\eta_L=0.45$, что соответствует состоянию сильно коррелированной кулоновской жидкости [5].

При вычислении времени релаксации электронов в кристаллах HgSe:Fe, содержащих собственные дефекты, необходимо учитывать эффекты взаимного влияния механизмов рассеяния электронов на двух типах заряженных центров [14], а также кулоновские корреляции d-дырок и собственных дефектов [13]. Поскольку собственные дефекты неподвижны, а d-дырки могут перераспределяться по узлам кристаллической решетки, занятым ионами $\mathrm{Fe^{2+}}$, вокруг части собственных дефектов δN_d , расположенных на расстояниях больших радиуса r_c , также образуются корреляционные сферы. Эта часть собственных дефектов рассеивает электроны так же, как коррелированная система ионов $\mathrm{Fe^{3+}}$. Другая часть собственных дефектов $N_r = (1-\delta)N_d$, находящихся на расстояниях меньших r_c , рассеивает электроны как неупорядоченная совокупность заряженных центров. В [13] показано, что параметр δ может быть выражен через параметр упаковки:

$$\delta = \exp\left(-p\frac{\eta}{n_L} \frac{N_d}{N_{1+}}\right). \tag{6}$$

Такой подход позволил успешно объяснить зависимости подвижности электронов от содержания примесей железа и галлия в кристаллах HgSe:Fe,Ga [13]. Здесь он используется при расчете диффузионной компоненты термоэдс в кристаллах HgSe:Fe, содержащих собственные дефекты.

С увеличением температуры усиливается миграция d-дырок между ионами $\mathrm{Fe^{2+}}$ и $\mathrm{Fe^{3+}}$, система ионов $\mathrm{Fe^{3+}}$ все более хаотизируется, степень пространственного упорядочения и радиус корреляционной сферы уменьшаются. Влияние температуры на степень пространственного упорядочения коррелированной системы ионов $\mathrm{Fe^{3+}}$ можно учесть в приближении «мягких сфер» [9]. Согласно [9], изменение диаметра «мягкой сферы» d(T) определяется выражением

$$d(T) = d_0 \left[1 - \frac{\Delta r(T)}{d_0} \right], \quad \frac{\Delta r}{d_0} = \beta_1 \left[\sqrt{1 + \beta_2 T} - 1 \right]. \tag{7}$$

Здесь d_0 — диаметр твердой сферы при T=0, β_1 , β_2 — параметры, зависящие в общем случае от концентраций N_+ и N_0 , параметра упаковки и радиуса экранирования. Для различных концентраций $N_{\rm Fe}$ они получены в [9] из сопоставления теоретически рассчитанных и экспериментально определенных зависимостей подвижности электронов $\mu(T)$.

Итак, выражения (1)–(7) позволяют проанализировать зависимость диффузионной термоэдс как от концентрации примесей железа, так и от температуры.

4. ФОНОННАЯ КОМПОНЕНТА ТЕРМОЭДС

Вклад эффекта увлечения электронов фононами в термоэдс может быть представлен в виде [7, 15]

$$\alpha_{ph}(T) = -\left(\frac{k_B}{T}\right) A_{ph}(T). \tag{8}$$

В кристаллах HgSe электроны взаимодействуют не только с продольными, но и с поперечными фононами. Аналогично тому как сделано в [16], для упрощения дальнейших расчетов мы введем среднюю скорость звука акустических фононов $s = (1/3) \times$ $\times (1/s_l + 2/s_t)^{-1}$, где s_l и s_t — скорости продольных и поперечных фононов соответственно. Тогда сила фононного увлечения A_{ph} может быть представлена в виде [7]

$$A_{ph} = \frac{6m(\varepsilon)s^2}{k_B} \sum_{\mathbf{k}',\mathbf{q}} \frac{W(q)}{\nu_{ph}} \frac{dN_q^0}{dT} \left(1 - \frac{\mathbf{k}\mathbf{k}'}{k^2}\right) \delta(\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}'}) \delta_{\mathbf{k}' - \mathbf{k},\mathbf{q}},\tag{9}$$

где $W(q)=\pi E_1^2 q/\rho s,~E_1$ — константа деформационного потенциала, ρ — плотность кристалла, ν_{ph} — частота релаксации длинноволновых фононов, $N_q^0=[\exp(\hbar\omega_q/k_BT)-1]^{-1}$ — функция распределения Планка.

Вид функции $A_{ph}(\varepsilon_F,T,N_{\rm Fe},N_+)$ зависит от механизма электрон-фононного взаимодействия и частоты релаксации фононов ν_{ph} . Как показали расчеты [7, 16], основной вклад в релаксацию импульса длинноволновых фононов в кристаллах HgSe:Fe при низких температурах вносят механизмы Херринга, Рэлея, рассеяние фононов на электронах и границах образца:

$$\nu_{ph} = \nu_{phH} + \nu_{phR} + \nu_{phe} + \nu_{phL}, \tag{10}$$

где $\nu_{phH}=\Lambda_H x^2,~x=q/q_T,~\Lambda_H=B_2T^3s^2q_T^2,~q_T=k_BT/\hbar s$ — тепловой импульс фононов $B_2=(3\pm0.8)\cdot 10^{-22}~{\rm c/K^3},~\nu_{phe}=\nu_{phe}^0x,$

$$\nu_{phe}^{0} = \frac{1}{2\pi} \frac{E_{1}^{2}m(\varepsilon)}{\rho\hbar^{3}} q_{T}, \quad \nu_{phL} = \frac{c_{L}s}{(L_{1}L_{2})^{1/2}} = \nu_{phL}^{0}c_{L}, \quad c_{L} = \frac{f}{2-f},$$

где f — доля фононов, рассеянных диффузно границами образца, L_1L_2 — поперечное сечение образца. Для рассеяния фононов на заряженных ${\rm Fe}^{3+}$ и нейтральных ионах ${\rm Fe}^{2+}$ (механизм Рэлея) имеем

$$\nu_{phR} = \nu_{phR+} + \nu_{phR0}. \tag{11}$$

Анализ экспериментальных данных показал (см. разд. 2), что этот механизм играет существенную роль в определении величины фононной компоненты термоэдс в кристаллах HgSe. Как и в работе [16], при рассмотрении рассеяния фононов на хаотически распределенных нейтральных и заряженных центрах мы воспользуемся приближением точечных дефектов. Тогда

$$\nu_{phR0} = \Lambda_{R0} N_0 x^4, \quad \Lambda_{R0} = A_0 s^4 q_T^4, \tag{12}$$

$$\nu_{phR+} = \Lambda_{R+} N_{+} x^{4}, \quad \Lambda_{R+} = A_{+} s^{4} q_{T}^{4}. \tag{13}$$

Под точечными дефектами обычно понимают примеси замещения, изотопы, вакансии, межузельные атомы, возмущающий эффект которых локализован в пределах элементарной ячейки. Для длинноволновых акустических фононов точечный дефект ведет себя как малая область кристалла (по сравнению с длиной волны фононов) с отличающейся плотностью и упругими свойствами. Очевидно, что приближение точечных дефектов для примесей замещения ${\rm Fe}^{2+}$ является хорошим. Поскольку изменение силовых постоянных при такой замене нам неизвестно, параметр A_0 является подгоночным параметром теории. Из сравнения рассчитанной зависимости теплопроводности кристаллов HgSe с различной концентрацией донорных примесей с экспериментальными данными для константы A_+ получена оценка $A_+=12.1\cdot 10^{-40}~{\rm cm}^4/{\rm c}$. Согласно [16] величина A_+ может различаться более чем на порядок для различного типа примесей из-за различия в сечении рассеяния фононов.

Выполнив несложные преобразования, из выражений (8) и (9) получим

$$\alpha_{ph} = -\frac{k_B}{2\pi^2 T} \frac{q_T^3}{n_e} \nu_{phe}^0 \int_0^{x_{2k_F}} \frac{x^5 \exp(x) dx}{\left[\exp(x) - 1\right]^2 \nu_{ph}(x)},\tag{14}$$

где $x_{phF} = 2k_F/q_T$, а

$$\nu_{ph}(x) = c_L \nu_{phL}^0 + \nu_{phe}^0 x + c_H \Lambda_H x^2 + c_{R+} (N_+ + c_{R0} N_0) \Lambda_{R+} x^4.$$
 (14a)

В выражении (14а) мы в явном виде выделили подгоночные параметры c_H , c_{R^+} , c_{R0} , которые, как увидим ниже, характеризуют отличие свойств кристаллов HgSe: Fe от свойств HgSe с собственными дефектами [16]. Для значений параметров фононного рассеяния, полученных в работе [16], имеем $c_H = c_{R^+} = 1$, а константа c_{R0} показывает, во сколько раз вероятность рассеяния фононов на нейтральных ионах Fe^{2^+} меньше, чем на заряженных Fe^{3^+} .

Итак, выражения (8)–(14) позволяют проанализировать зависимость фононной компоненты термоэдс для хаотически распределенных рассеивающих центров.

5. РАССЕЯНИЕ ФОНОНОВ НА КОРРЕЛИРОВАННОЙ СИСТЕМЕ ИОНОВ Fe³⁺

Рассеяние фононов на коррелированной системе ионов Fe^{3+} в кристаллах HgSe: Fe мы рассмотрим в модели точечных дефектов аналогично тому, как это сделано в работе [16]. Предполагается, что все возмущение, создаваемое ионом Fe^{3+} , замещающим ион Hg^{2+} в узле решетки, сосредоточено в пределах элементарной ячейки и сводится, как и для ионов Fe^{2+} , к изменению упругих констант и массы. Хотя изменение величины $\Delta M/M$ будет одинаковым для ионов Fe^{3+} и Fe^{2+} , константа A_+ , характеризующая взаимодействие фонона с ионом Fe^{3+} , должна отличаться от константы A_0 для взаимодействия фонона с нейтральным центром. Дело в том, что потенциал ионов Fe^{3+} в HgSe: Fe экранируется на расстояниях $r_s \approx 5 \cdot 10^{-7}$ см, а среднее расстояние между заряженными центрами $R_+ \sim (N^*)^{-1/3} \approx 6 \cdot 10^{-7}$ см. Поэтому в действительности возмущающий эффект иона Fe^{3+} (изменение силовых постоянных и локальной плотности) захватывает не одну, а значительно большее число элементарных ячеек, так как $r_s \sim 10a_0$ (a_0 — постоянная решетки). Поскольку сечение рэлеевского рассеяния пропорционально квадрату объема области возмущения [17], вероятность рассеяния фоно-

на на ионе Fe^{3+} может быть значительно больше, чем на нейтральных в решетке ионах Fe^{2+} .

При вычислении частоты релаксации фононов на коррелированной системе ионов ${\rm Fe^{3+}}$ пространственное упорядочение ионов ${\rm Fe^{3+}}$ учтем через структурный фактор аналогично тому, как это сделано в [6] при вычислении времени релаксации электронов. Тогда для ν_{phRc} получим

$$\nu_{phRc} = 2\pi N_{+} s \int_{0}^{\pi} (1 - \cos\theta) \sigma(q, \theta) S\left(q(1 - \cos\theta)\right) \sin\theta \, d\theta. \tag{15}$$

Здесь S(q) — структурный фактор, $\sigma(q,\theta)$ — сечение рассеяния фонона с волновым вектором q на ионе Fe^{3+} , зависящее в общем случае от угла θ между направлениями падающего и рассеянного фонона. После усреднения по векторам поляризаций фононов для сечения рассеяния $\sigma(q,\theta)$, вычисленного в борновском приближении, зависимость от угла θ пропадает [18, 19]. При этом $\sigma(q,\theta) = \sigma(q)$, что фактически соответствует учету только S-рассеяния. В этом случае, согласно [18–20], для $\sigma(q)$ имеем

$$\sigma(q) = \frac{V_0^2 \omega_q^4}{4\pi s^4} S^2, \quad S^2 = S_1^2 + (S_2 + S_3)^2, \tag{16}$$

где V_0 — объем области кристалла, возмущенной дефектом, а величины S_1 , S_2 и S_3 характеризуют вклады в сечение рассеяния фонона от изменения массы элементарной ячейки, силовых постоянных, а также деформации решетки (см. подробнее [18–20]). Поскольку для кристаллов HgSe:Fe из величин S_j известной является только

$$S_1 = rac{\Delta M}{M} = rac{M_{ extsf{Fe}} - M_{ extsf{Hg}}}{M_{ extsf{Hg}} + M_{ extsf{Se}}},$$

выражение для $\sigma(q)$ мы представим в виде

$$\sigma(q) = c_{R+} A_+ (\omega_q / s)^4, \tag{17}$$

где A_+ — значение параметра для кристаллов HgSe с собственными дефектами, найденное в [16], а c_{R+} — параметр теории, значение которого должно быть определено из данных эксперимента. Как следует из выражений (15)–(17), он показывает, во сколько раз рассеяние фононов на ионах Fe^{3+} отличается от рассеяния на собственных дефектах в кристаллах HgSe [16].

При низких температурах ($T\sim 10~{\rm K}$) основной вклад в α_{ph} вносят длинноволновые фононы ($q\sim q_T\approx 6.71\cdot 10^6~{\rm cm}^{-1}$). Поэтому для упрощения дальнейших расчетов разложим структурный фактор S_q в ряд по q до членов q^4 . Тогда величина $\nu_{phRc}(q)$ может быть вычислена аналитически:

$$\nu_{phRc} \approx \Lambda_{R+} N_{+} x^{4} \left\{ S(0) + 2S_{(1)} (u_{T}x)^{2} + \frac{16}{3} S_{(2)} (u_{T}x)^{4} \right\} \equiv \Lambda_{R+} N_{+} x^{4} \tilde{S}(x), \quad (18)$$

где

$$u_T = dq_T$$
, $S(0) = \frac{(1-\eta)^4}{(1+2\eta)^2}$, $S_{(1)} = S^2(0)4\eta \left(\frac{\beta}{5} + \frac{\gamma}{6} + \frac{\delta}{8}\right)$,

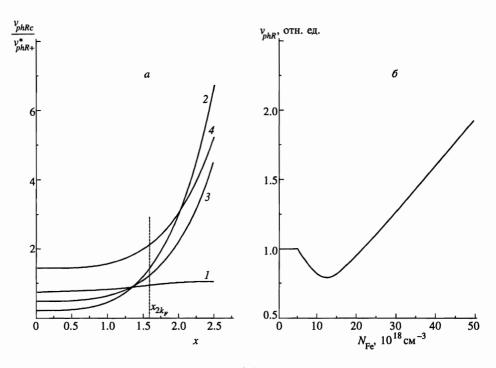
$$S_{(2)} = S^{2}(0) \left\{ S(0) \left[4\eta \left(\frac{\beta}{5} + \frac{\gamma}{6} + \frac{\delta}{8} \right) \right]^{2} - \frac{\eta}{5} \left(\frac{\beta}{7} + \frac{\gamma}{8} + \frac{\delta}{10} \right) \right\},$$

$$\beta = \frac{(1+2\eta)^{2}}{(1-\eta)^{4}}, \quad \gamma = -\frac{6\eta(1+0.5\eta)^{2}}{(1-\eta)^{4}}, \quad \delta = 0.5\eta\beta.$$

На рис. 4a приведены зависимости отношения ν_{phRc}/ν_{phR+}^* ($\nu_{phR+}^*=\Lambda_{R+}N^*x^4$) от приведенного волнового вектора x для различных концентраций примесей железа. Как видно из рисунка, это отношение достаточно слабо зависит от волнового вектора при $x \leq x_{2k_F}$, и для значений $N_{\rm Fe} = (1 \div 2) \cdot 10^{19}$ см $^{-3}$ величины ν_{phRc} меньше, чем для $N_{\rm Fe} = 5 \cdot 10^{18}$ см $^{-3}$. Отметим, что область больших волновых векторов (x > 1) экспоненциально обрезается за счет функции распределения фононов (см. (14)). Поэтому, когда рэлеевское рассеяние фононов вносит основной вклад в релаксацию импульса фононов, величина α_{ph} будет возрастать с ростом степени пространственного упорядочения коррелированной системы ионов ${\rm Fe}^{3+}$, пока рассеяние на нейтральных центрах будет достаточно слабым. На рис. 46 приведена зависимость $\tilde{\nu}_{phR} = \langle \nu_{phR} \rangle / \langle \nu_{phR+}^* \rangle$ от концентрации примесей железа при T = 10 K, а символ $\langle \ldots \rangle$ обозначает усреднение:

$$\langle \nu_{phR} \rangle = \frac{1}{x_{2k_F}} \int_{0}^{x_{2k_F}} \nu_{phR}(x) dx. \tag{19}$$

Как видно из рис. 4*б*, следует ожидать роста термоэдс при увеличении $N_{\rm Fe}$ от N^* до $N_{\rm Fe} \simeq 1 \cdot 10^{19}~{\rm cm}^{-3}$ и убывания термоэдс при $N_{\rm Fe} > 1 \cdot 10^{19}~{\rm cm}^{-3}$, хотя при $N_{\rm Fe} \approx 2 \cdot 10^{19}~{\rm cm}^{-3}$ величина $|\alpha_{ph}|$ должна быть больше, чем при $N_{\rm Fe} \approx 5 \cdot 10^{18}~{\rm cm}^{-3}$.


Таким образом, выражение для частоты релаксации при рассеянии фононов в кристаллах HgSe: Fe с учетом пространственного упорядочения коррелированной системы ионов Fe^{3+} может быть представлено в виде

$$\nu_{ph}(x) = c_L \nu_{phL}^0 + \nu_{phe}^0 x + c_H \Lambda_H x^2 + c_{R+} \left(N_+ \tilde{S}(x) + c_{R0} N_0 \right) \Lambda_{R+} x^4. \tag{20}$$

Формулы (14), (19) и (20) позволяют рассчитать зависимости фононной компоненты термоэдс от температуры и концентрации железа для кристаллов HgSe:Fe, содержащих примеси со смешанной валентностью Fe^{2+} – Fe^{3+} .

6. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

При расчете термоэдс были использованы следующие значения параметров: $m(\varepsilon_F)=0.07m_0$ (m_0 — масса свободного электрона) $s_l=3\cdot 10^5$ см/с, $s_t=1.65\cdot 10^5$ см/с, $s=1.95\cdot 10^5$ см/с, $\chi=25$. Результаты расчета зависимости $|\alpha(T)|$ изображены сплошными линиями на рис. 1 (образцы 1–4, 7, 8) и 2 (образцы 4–6). Как видно из рисунков, рассчитанные зависимости $|\alpha(T)|$ находятся в количественном согласии с экспериментальными данными. При $T< T_{min}$, когда фононная компонента термоэдс играет главную роль ($|\alpha(T)| \approx |\alpha_{ph}(T)|$), согласие результатов расчета с экспериментом заметно лучше. Это свидетельствует о том, что нами правильно учтены влияние пространственного упорядочения коррелированной системы ионов Fe^{3+} и основные механизмы рассеяния

Рис. 4. a — Зависимости отношения ν_{phRc}/ν_{phR+}^* от приведенного волнового вектора x при T=10 К для различных концентраций примесей железа $N_{\rm Fe}$, 10^{18} см $^{-3}$: I — 5, 2 — 10, 3 — 20, 4 — 50. 6 — Зависимость отношения $\tilde{\nu}_{phR}$ от концентрации примесей железа при T=10 К. Значения параметров: $c_{R+}=2$, $c_{R0}=0.15$

фононов (см. рис. 2). На рис. 2 приведены рассчитанные зависимости $|\alpha(T)|$ вплоть до температуры 1 К. Наибольшая величина эффекта ослабления рассеяния фононов на коррелированной системе ионов $\mathrm{Fe^{3+}}$ должна наблюдаться в области фононного максимума термоэдс при $T_{max}\approx 5$ –6 К. При более низких температурах доминирует рассеяние фононов на границах образца и величина эффекта заметно уменьшается. С повышением температуры, при $T>T_{max}$, вклад фонон-фононного механизма релаксации быстро возрастает, что также приводит к уменьшению величины эффекта ослабления фононов на коррелированной системе ионов $\mathrm{Fe^{3+}}$. Заметим, что при $N_{\mathrm{Fe}}>1\cdot 10^{19}~\mathrm{cm^{-3}}$ рост вероятности рэлеевского рассеяния фононов с увеличением содержания примесей железа приводит к уменьшению величины $|\alpha(T_{max})|$ и при $N_{\mathrm{Fe}}\geq 5\cdot 10^{19}~\mathrm{cm^{-3}}$ фононные максимумы термоэдс не проявляются.

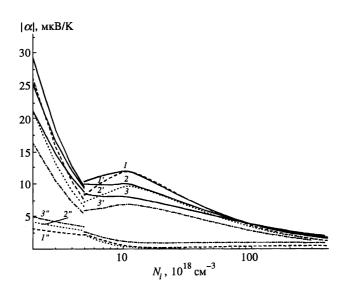

При $T>T_{min}$, когда основной вклад в термоэдс вносит диффузионная компонента, расхождение рассчитанных зависимостей $|\alpha(T)|$ с экспериментальными данными заметно больше. Это связано, по нашему мнению, с влиянием собственных дефектов, концентрация которых меняется от образца к образцу, а также с приближенным учетом непараболичности зонной структуры кристаллов HgSe: Fe в рамках двузонной модели Кейна. В действительности эффект непараболичности необходимо учитывать не только через зависимость эффективной массы электронов $m(\varepsilon)$ от энергии ε , но и через блоховские амплитуды волновых функций, характерные для зоны Γ_8 [21, 22]. Однако этот расчет выходит за рамки данной работы и требует отдельного рассмотрения.

Таблица 2

Номер образца		$n_e, 10^{18} \text{ cm}^{-3}$	N_d , 10^{18} cm^{-3}	<i>E</i> ₁ , э В	c_L	c_H	c_R	c_{R0}
1	0.0	2.4	2.4	0.8	0.5	0.5	1	_
2	0.1	3.0	2.0	0.73	0.2	2	2	
3	0.3	4.0	1.0	0.73	0.2	2	2	_
4	0.5	4.8	0.7	0.68	0.15	2.5	2	0.15
5	1.0	4.7	0.7	0.75	0.1	2	2	0.15
6	2.0	4.9	0.7	0.76	0.1	2	2	0.15
7	5.0	4.81	1	0.62	0.9	2	2	0.15
8	40	6.2	1	0.62	0.9	2	2	0.15

В табл. 2 приведены значения параметров, характеризующих релаксацию импульса фононов. Из таблицы видно, что для образца 1 с $N_{\rm Fe}=0$ параметр рэлеевского рассеяния фононов A_+ совпадает с полученным в работе [16] ($c_{R+}=1$). Для кристаллов HgSe:Fe значения $c_{R+}=2$, т.е. сечение рассеяния фононов на ионах Fe³⁺ в $\sqrt{2}$ раз больше, чем на собственных дефектах в кристаллах HgSe [16]. Из сравнения величин параметров c_{R+} и c_{R0} следует, что рассеяние фононов на нейтральных в решетке ионах Fe^{2+} почти на порядок слабее, чем на ионах Fe^{3+} . Это связано с тем, что вероятность рэлеевского рассеяния фононов пропорциональна квадрату объема области возмущения кристаллической решетки, которая для заряженной примеси значительно больше, чем для нейтральной. Возмущающий эффект нейтральной примеси, как правило, локализован в пределах элементарной ячейки, тогда как область возмущения, обусловленного заряженной примесью в полупроводниках, может захватывать гораздо большее число элементарных ячеек. Авторы работы [23] также обнаружили, что нейтральные примеси в полупроводниках с большой диэлектрической проницаемостью значительно слабее рассеивают фононы, чем электрически заряженные. Отметим, что значения параметров c_{R+} и c_{R0} , полученные из подгонки зависимости $|\alpha(T)|$, остаются постоянными для всех кристаллов HgSe:Fe независимо от содержания примесей железа. Значения константы деформационного потенциала E_1 , полученные нами для образцов с различной концентрацией железа, отличаются на $\pm 10\%$ от значения $E_1 \approx 0.7$ эВ, использованного в работе [16]. Следует отметить тенденцию к убыванию величины E_1 с ростом содержания примесей железа. Это неудивительно, так как примеси железа, обладающие меньшим ионным радиусом, чем ионы Hg^{2+} , стабилизируют решетку кристаллов HgSe [3], что приводит, по-видимому, к некоторому изменению упругих свойств кристаллов HgSe: Fe и, соответственно, спектра фононов. С этим же связано, на наш взгляд, изменение константы c_H при переходе от кристаллов HgSe к кристаллам HgSe: Fe с малой ($N_{\rm Fe} \leq 5 \cdot 10^{18} \; {\rm cm}^{-3}$) и большой ($N_{\rm Fe} \geq 1 \cdot 10^{19} \; {\rm cm}^{-3}$) концентрациями примесей железа. Разброс значений параметра c_L может быть связан с различной степенью диффузности отражения фононов границами исследованных образцов. Для более точного определения этого параметра необходимы измерения термоэдс при температурах ниже T_{max} (см. рис. 2), а также расчет термоэдс с разделением вкладов поперечных и продольных фононов.

На рис. 3 сплошными линиями изображены зависимости термоэдс $|\alpha(N_{\rm Fe})|$ от ве-

Рис. 5. Зависимости абсолютных величин фононной (кривые 1'-3'), диффузионной (кривые 1''-3'') и полной термоэдс (кривые 1-3) от содержания железа при температурах 7.5 K (1), 10 K (2), 12 K (3). Значения параметров фононного рассеяния те же самые, что и для рис. 3

личины $N_{\rm Fe}$ для фиксированных значений температур. Из рисунка видно, что результаты расчета $|\alpha(N_{\rm Fe})|$ при $T\leq 10$ К находятся в хорошем согласии с экспериментальными данными. Однако с повышением температуры увеличивается роль диффузионной компоненты термоэдс, и отклонение теоретических зависимостей от экспериментальных данных возрастает. Отметим, что резкое уменьшение термоэдс для образцов с $N_{\rm Fe} < 5 \cdot 10^{18}$ см $^{-3}$ обусловлено ростом рэлеевского рассеяния на хаотически распределенных заряженных центрах $N_i = N_{1+} + N_d$. Рост термоэдс в интервале концентраций $5 \cdot 10^{18} < N_{\rm Fe} < 1 \cdot 10^{19}$ см $^{-3}$ при T = 7.5 К составляет примерно 20% от величины $|\alpha|$. Согласно нашим теоретическим оценкам, максимальная величина роста термоэдс должна наблюдаться при температурах, соответствующих температуре фононного максимума $T_{max} \approx 5$ –6 K, и может достигать 40% от величины $|\alpha|$ при $N_{\rm Fe} = 5 \cdot 10^{18}$ см $^{-3}$. Плавное уменьшение величины термоэдс с возрастанием содержания железа в области $N_{\rm Fe} = 2 \cdot 10^{19}$ см $^{-3}$ обусловлено увеличением вероятности рэлеевского рассеяния фононов на нейтральных в решетке ионах ${\rm Fe}^{2+}$.

На рис. 5 приведены рассчитанные зависимости диффузионной и фононной компонент термоэдс от величины $N_{\rm Fe}$ для различных значений температуры. Из рисунка видно, что при $N_{\rm Fe} > N^*$ с ростом концентрации примесей железа и, соответственно, степени пространственного упорядочения коррелированной системы ионов ${\rm Fe}^{3+}$ величина $|\alpha_e(N_i)|$ убывает, а $|\alpha_{ph}(N_i)|$ изменяется немонотонно, причем при $T=12~{\rm K}$ на зависимости $|\alpha_{ph}(N_i)|$ заметно проявляется эффект ослабления фононного рассеяния на коррелированной системе ионов ${\rm Fe}^{3+}$. Однако величина $|\alpha_{ph}(N_i)|$ растет медленнее, чем убывает диффузионная компонента $|\alpha_e(N_i)|$, поэтому суммарная термоэдс при $T\geq 12~{\rm K}$ является убывающей функцией содержания примесей железа.

В заключение этого раздела обсудим приближения, которые были сделаны при вычислении вклада фононного увлечения. Во-первых, мы воспользовались приближением средней скорости звука для акустических фононов. Во-вторых, при рассмотрении

рэлеевского рассеяния фононов на ионах ${\rm Fe}^{3+}$ мы использовали приближение точечных примесей, хотя строгое неравенство $r_s/\lambda_T\ll 1$ (где λ_T — длина волны теплового фонона) не выполняется. Следовало бы рассмотреть рассеяние фононов на деформациях решетки, обусловленных хаотическим распределением заряженных центров и изменением степени деформации решетки при пространственном упорядочении ионов ${\rm Fe}^{3+}$. Как показано в [20], при выполнении неравенства $|(r_i-r_0)/r_0|\geq 0.1$ (где r_i и r_0 — ионные радиусы атомов примеси и матрицы соответственно) рассеяние фононов на деформациях решетки превосходит рассеяние на локальных изменениях массы и силовых постоянных. Отметим, что это отношение для ионов ${\rm Fe}^{2+}$ и ${\rm Hg}^{2+}$ составляет примерно 0.3. К сожалению, для полупроводников этот вопрос теоретически слабо разработан (см. [19, 20]). Поэтому этот механизм рассеяния фононов для полупроводников требует отдельного рассмотрения.

Следует заметить, что ослабление фононного рассеяния на коррелированной системе ионов Fe³⁺ при увеличении степени пространственного упорядочения трехвалентных ионов железа может привести не только к «аномальному» росту термоэдс $|\alpha(N_{\rm Fe})|$, но и к заметному увеличению решеточной теплопроводности кристаллов HgSe:Fe при низких температурах в интервале концентраций $5\cdot 10^{18} < N_{\rm Fe} < 1\cdot 10^{19}~{\rm cm}^{-3}$. Исследования теплопроводности кристаллов HgSe:Fe могли бы дать дополнительную информацию о механизмах рассеяния фононов, а также о влиянии пространственного упорядочения заряженных центров на механизм рэлеевского рассеяния фононов в системах со смешанной валентностью.

7. ЗАКЛЮЧЕНИЕ

Интерпретированы обнаруженные на опыте необычные зависимости термоэдс от содержания примесей железа и температуры в кристаллах HgSe: Fe при достаточно низких температурах. Показано, что немонотонный характер зависимости термоэдс от концентрации примесей железа, а именно, рост термоэдс в интервале концентраций $5 \cdot 10^{18} < N_{\rm Fe} < (1 \div 2) \cdot 10^{19} ~\rm cm^{-3}$ обусловлен новым эффектом — ослаблением рэлеевского рассеяния фононов на пространственно-коррелированной системе ионов Fe³⁺. Хорошее согласие рассчитанных зависимостей термоэдс от содержания примесей железа и температуры с данными эксперимента позволяет надеяться на то, что нами корректно учтены влияние пространственного упорядочения трехвалентных ионов железа на рассеяние как электронов, так и фононов, а также основные механизмы релаксации импульса электрон-фононной системы.

Работа выполнена при поддержке программы INTAS (грант 93-3657 EXT).

Литература

- 1. F. S. Pool, J. Kossut, U. Debska, and R. Reifenberger, Phys. Rev. B 35, 3900 (1987).
- Z. Wilamowski, K. Swiatek, T. Dietl, and J. Kossut, Sol. St. Comm. 74, 833 (1990); Z. Wilamowski, Acta Phys. Polon. A 77, 133 (1990).
- 3. И. М. Цидильковский, УФН 162, В. 2, 63 (1992).
- 4. I. M. Tsidilkovskii and I. G. Kuleyev, Semicond. Sci. Technol. 11, 625 (1996).

- 5. И. Г. Кулеев, И. И. Ляпилин, И. М. Цидильковский, ЖЭТФ 102, 1652 (1992).
- И. Г. Кулеев, И. И. Ляпилин, А. Т. Лончаков, И. М. Цидильковский, ЖЭТФ 103, 1447 (1993).
- 7. И. Г. Кулеев, И. И. Ляпилин, А. Т. Лончаков, И. М. Цидильковский, ФТП 28, 937 (1994).
- 8. И. Г. Кулеев, И. И. Ляпилин, А. Т. Лончаков, И. М. Цидильковский, ЖЭТФ 106, 1205 (1994).
- 9. И. Г. Кулеев, И. И. Ляпилин, И. М. Цидильковский, ФТТ 37, 163 (1995).
- 10. И. М. Цидильковский, Термомагнитные явления в полупроводниках, Наука, Москва (1960).
- 11. И. Г. Кулеев, ФТТ 39, 250 (1997).

ЖЭТФ, 1998, 114, вып. 1(7)

- 12. Дж. Займан, Модели беспорядка, Мир, Москва (1982).
- 13. И. М. Цидильковский, И. Г. Кулеев, А. Т. Лончаков, Н. К. Леринман, Л. Д. Сабирзянова, ФТП **30**, 2113 (1996).
- 14. И. М. Цидильковский, И. Г. Кулеев, Г. Л. Штрапенин, ДАН 347, 4472 (1996).
- 15. Б. М. Аскеров, Электронные явления переноса в полупроводниках, Наука, Москва (1985).
- 16. C. R. Whitset, D. A. Nelson, J. G. Broerman, and R. Paxhia, Phys. Rev. B 7, 4625 (1973).
- 17. Дж. Рэлей, Теория звука, Т. 2, Гостехиздат, Москва (1955).
- 18. P. G. Klemens, Proc. Phys. Soc. 68, 1113 (1955).
- 19. A. Griffin and J. Carruthers, Phys. Rev. 131, 1976 (1963).
- 20. Б. М. Могилевский, А. Ф. Чудновский, Теплопроводность полупроводников, Наука, Москва (1972).
- 21. T. Dietl and W. Szymanska, J. Phys. Chem. Sol. 39, 1041 (1978).
- 22. W. Szymanska, P. Boguslawki, and W. Zavadzki, Phys. St. Sol. B 65, 641 (1974).
- 23. В. С. Оскотский, И. А. Смирнов, *Дефекты в кристаллах и теплопроводность*, Наука, Ленинград (1972).