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Radiation from а charged particle moving in а system of randomly spaced plates is 
considered. It is shown that the dominant radiation mechanism is difТusion. The total intensity 
of ["ddiation is investigated, and its quadratic dependence оп particle епещу is noted in the optical 
region. А comparison with Cherenkov radiation is carried out. 

1. INТRODUCTION 

More than 50 years ago, Ginzburg and Frank [1] showed that radiation is produced when 
а charged, uniformly moving particle passes through the interface between two media with 
different dielectric constants. Since then, much research have Ьееп done оп this problem (for 
а review, see for example Ginzburg and Tsytovich [2]). It tums out that the dependence of 
total intensity of radiation at ап isolated interface оп particle energy is logarithrnic in the optical 
region. То Ье аЫе to use transition radiation to detect relativistic charged particles, it is desirable 
to have а stronger energy dependence. In this context, the X-ray region tums out to Ье more 
promising, because in this region the energy dependence of the radiation intensity is Iinear [3]. 
However, the number of photons emitted at the interface is smaIl. То increase this number, 
systems ofmany plates are used. Earlier, when investigating radiation in а stack ofplates, mainly 
the X-rayregion was considered (see for example Garibian and Yang [4]). In this region the 
interaction of the electromagnetic field with each plate is weak, so multiple scattering effects 
сап Ье neglected. 

The objective of our paper is to take these effects into account when charged particles 
radiate while traversing а random stack of plates. Having considered three-dimensional random 
media [5], we know that mиltiple scattering effects in the electromagnetic field play а crucial 
role in the radiation of а charged particle. Below we show that in the опе-dimепsiопaI case j 

these effects play ап еуеп more important role, particularly in the optical region. 

2. FORМULATION OF ТНЕ PROBLEM 

The system wl1ich we want to study is а stack of plates randornly spaced in а homogeneous 
medium. Let us assume that the plates fill the regions Zi - а/2 < Z < Zi + а/2 (where а is the 
plate thickl1ess and Zi are random coordinates). The permitivity ofthe system сап Ье represel1ted 
in the form 
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where eo(c..J) and b(c..J) are the permitivity of the homogeneous medium and the plate, 
respectively, and О(х) is the Heaviside step function. It is convenient to represent the permitivity 
as а sum of average and varying parts: 

(2) 

where е = (e(z, "-'»), and averaging over random coordinates of plates is defined as follows: 

(3) 

where L z is the system size in the z-direction. 
In the Fourier representation, Maxwell's equations for the vector potential А of 

electromagnetic field has the form: 

where 

2 

v2A + ""'2 e(r, c..J)A(r, "-') = j(r,c..J), 
с 

• 47re v . / 
J(r,c..J) = -- -8(х)8(у)е''''Z '11 

с V 

(4) 

is the сипепt of а charged particle moving uniformly in the z-direction with velocity v. ТЬе 
electric field Е is related to the potentials Ьу 

(5) 

Finally we write the condition relating the vector and scalar potentials of the 
electromagnetic field: 

(6) 

Опе пееds the relations (4}-(6) to caIcuIate the intensity of rаdiаtiоп. It follows from 
the symmetry of the problem that the vector potential А points in the z-direction, so A i = 
= 8ziA(r,c..J). 

We separate the electric field into two parts, Е = Ео + Е." to determine the radiation 
intensity. Here Ео is the electric fieId of а charge moving in а homogeneous medium with the 
dielectric constant е, and Ет is the radiation field associated with f1uctuations of the dielectric 
constant. ТЬе radiation tensor is 

(7) 

where R is the radius vector of the observation point, which is far from the system (R » L). 
ТЬе vector potential сап ье split in а simiIar manner, А = Ао + Ат, where Ао and Ar satisfy 

the equations 
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(8) 

ТЬе first equation is easily solved, and for the background field Ас, one has 

А ( ) = _ 87r2e б(qz - w/v) 
о q k2 2 • 

С - q 
(9) 

It is convenient to express the radiation tensor (7) in terms of the radiation potential Ат • 

Using (5)-(7), we obtain 

(Iij(R») = w: бziбzj (Ar(R,w)A;(R,w») + бzi (Ar(R'W)BRa2a A;(R,w») + 
с е j Z 

+ б;j ( A;(R, w) a~2az Ar(R, w») + W~:2 ( a~~z Ar(R, w) a~2BZ A;(R, w») . (10) 

We express the radiation potential Ат in terms of the Green's function of the second equation 
in (8) for averaging in (10): 

where the Green's function satisfies 

and k = wVё/c. 

3. GREEN'S FUNCfION 

The bare (ет = О) Green's function сап easily Ье obtained from (12): 

1 
Go(q) = k2 _ q2 + iб . 

In the coordinate representation one has from (13) 

1 'k Go(r) = --е' т. 
47rr 

(11) 

(12) 

(13) 

(14) 

То perform the averaging, we use the impurity-diagram method [6]. Summing the diagrams 
in the independent-scatterer approximation, we obtain the Dyson equation for the average 
Green's function: 
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---=~' ~) .. (15) 
q q q-p q 

The dashed line denotes the Fourier component В(р) = (27r)28(pp)B(lpzl), ofthe correlation 
function of the one-dimensional random field: 

(16) 

where Рр is the transverse component ofp. The solution ofEq. (15) сап Ье represented in the 
form 

1 
G(q) = k2 _ q2 + iInU:(q)' (17) 

in which the imaginary part of the self-energy is given Ьу Ward's identity: 

The dephasing length of а pseudophoton in the z-direction is determined Ьу the imaginary 
part of the self-energy: 

(19) 

As expected, the dephasing length depends оп the direction of the pseudophoton momentum. 
When the momentum is directed along z, one obtains from (18) and (19) 

4k2 

l(iJ = О) = В(О) + B(2k) (20) 

From this point оп, we sha1l ca1l this quantity the pseudophoton mean free path. 
Using (1)-(3) and (16), one сап find for correlation function 

В( ) = 4(Ь - с;)2n sin2(qz a/2) (.()4 
qz 2 4 . 

qz с 
(21) 

Here n = N / L z is the density of plates in the system. Using (21), it is ему to see that 
B(2k)/ В(О) '" 1/(ka)2 « 1 when ka » 1. Therefore, the photon mean free path is 

_ _ '" {4k2/B(0), ka» 1 
l = l(iJ - О) '" 2k2 / В(О), ka« 1 . (22) 

The foregoing only holds in the weak scattering regime, for which Im1:(q)/(k2 - q~) « 1. 
Substituting (18) into this condition, we obtain 
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В(О) + B(2kl cos'!9l) 1 
4k3lcos'!9j3 «:. (23) 

It follows from (23) that at '!9 ::::! 11'/2, the weak-scattering condition is not satisfied. This is 
natural, because in this сме the pseudophoton moves parallel to the plates. Taking'!9 = 11' /2 - о 
and using (22) and (23), опе has о » (1/ kl)I/3. 

4. RADIATION INТENSI1Y 

We now tum to а close examination of radiation intensity. First we consider the single-scat
tering approximation. In this approximation, the Green's function in (11) is simply replaced 
Ьу Ьасе опе. Substituting (11) into (1 О) and using the relations 

G (R r) '" __ I_ eik(R-пr) 
О , '" 411'R ' (24) 

and ( 14), after simple transformations we obtain the [оllоwing expression [ос the single-scattering 
contribution to radiation intensity 1(0) = (c/2)R21ii (R): 

1I'е2 B(lk - kn l)n2 , .• 2 
10(0) = _ 0(0) О z Р:::..... 

с [k2n~ _ kб] 2 с2 
(25) 

Иеrе о = R/ R is the unit vector in the direction of the observation point R and ko = IJ.) /v; the 
o-type singularity of (25) results from the infinite path of the charged particle in the medium. 
If опе takes into account the finite size of the system, 0(0) must Ье replaced Ьу L z /211'. То 
analyze the angular dependence of (25), it is convenient to represent it in the form 

(26) 

where, = (1- €V2/C2)-1/2 is the Lorentz factor ofthe particle in the medium, n z = cos'!9, 
and пр = sin '!9. 

Note the key features of the single-scattering contribution 1°. It follows from (26) and 
the form (21) of the correlation function В that at relativistic energies (, » 1, ko ~ k), the 
maximum ofradiation lies in the range ofangles '!9 '" ,-1 in the forward direction. Integrating 
(21) оуес the angles, it is ему to see that the dependence of total intensity оп particle energy 
is logarithmic, 1° ос ln ,. As В ос n, the dependence of radiation intensity оп the number of 
plates is linear. АН of these results are consistent with previous results [2,4]. 

We now consider the diffusion contribution to the radiation intensity. Using (10), (11) 
and (22), опе сап represent the diffusion contribution to the radiation tensor in the form 

1fI(R) = 1611'~~2€ J drdr' B(r - r')Ao(r)A~(r') J dr1dr2drзdr4 х 
х ехр [-iko(r1 - r2)] P(r1, r2, rз, r4)G(rз, r)G*(r, r4) х 

х [OziOzj + ninjn; - Ozinjnz - Ozjninz] , 

where P(r1, r2, rз, r4) is the diffusion propagator: 
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(28) 

We fmd the diffusion propagator as in the three-dimensional case [5]. As follows from (28), 
Р сап ье represented in the form 

P(rl' r2, rз, r4) = B(rl - r2)В(rз - r4)P(R', rl - r2, rЗ - r4), 

where R' = (1j2)(rз + r4 - rl - r2) and Р satisfies the equation 

! (::)З [1-! (2d:)зf(q,К)в(р - q)] P(K,p,q') = f(q',K), 

where 

j(q, К) = G(q + Kj2)G*(q - Kj2). 

(29) 

(30) 

(31) 

As will ье seen, опе has to know Р when К-О. In this limit, the diffusion propagator 
has the form [5] 

Р(К _ О ) = ImG(p)ImG(q) А(К) 
,p,q Im1:(q) , (32) 

where 

А(К) = [! (qK)2ImG(q) ~]-I 
Im21:( q) (27Г)З 

(33) 

Substituting (17) and (18) into (33), choosing К 11 z, and calculating the integral, we obtain 

1 207Г 
А(К) = k КЧ2' (34) 

When we know the form of tlie diffusion propagator, we сап calculate the diffusion 
contribution to the radiation intensity. Transforming variables in (27) and going to the Fourier 
representation, we obtain 

D k 2c 2 ! dq1 dq2dqзdq4 2 
1 (о) = 327Г2е (l - n z ) (27Г)I2 IAo(ql)1 В(q2)В(qз)В(q4) х 

х Р(К - О, -qз - ko, Чl + Ч2 + q4)IG(ql + q2)I2 . (35) 

Substituting (9) into (35) and integrating using Ward's identity (18), we have 

е2 
ID(o) = -(1- n;)A(K)k2Im1:{ko)Lz х 

2се 

х! dчр 1 В (Iko + Jk2 - q~l) + В (Iko - Jk2 - q~l) (36) 

(27Г)2 (q~ + kб - k2)2 В(О) + В (2Jk2 _ q~ ) 

96 



ЖЭТФ, 1998, 114, выn. 1 (7) Radiation о/ а Charged Partic/e . .. 

The singularity of the radiation intensity results from the diffиsion роlе. When опе takes 
into account the finite size of the system, the diffиsion paths of the photon are cut off at 
the system size, and therefore 1/ К2 сап Ье replaced Ьу L; as К ---+ О (we assume that 
L z < L x , L y ). It fo11ows from (36) that for particle energies ko ---+ k" ~ 1, the main 
contribution to the integral over qp comes from qp ---+ О. The correlation function В in (36) 
varies slowly wl1en qp ---+ о provided that ,2 ~ ako (we discuss this condition in more detai1 in 
the next section); therefore, taking qp ~ о (under the condition , ~ ak) and substituting (34) 
and (16) into (36), we obtain 

]D(I.JJ '!9) = ~ е2,2 (Lz)3 sin2 '!9 
, 2 с:е 1(1.JJ) Icos'!9l' 

(37) 

Note the main features of the diffusion contribution (37). Comparing (37) with the sing
le-scattering contribution (26), we see that ]D /]0 "-' ЦЛ2 ~ 1. This means that in the 
wavelength range л « l(л) « L z , t11e dominant radiation mechanism is diffиsion. Note the 
strong dependence of spectral intensity оп the particle energy, which also holds for the total 
intensity (integrated over frequencies and angles). Reca11 that this dependence in conventional 
transition radiation is 10garithmic in the optical region. When L z "-' N, then from (37) the 
radiation intensity has а strong dependence оп the number of plates, ] ос N 3• 

We now discuss а reasons for the strong dependence of radiation intensity оп particle energy. 
It is convenient to represent the background field in the form 

Ao(q) ос б(qz - ko) 
q~ + k5,-2 (38) 

It fol1ows from (38), that at relativistic energies, ~ 1, most pseudophotons have momentum 
with transverse component qp ---+ О. It is easy to see from (38) that the total number of 
pseudophotons N ps ос J A5(q)dq is proportional to ,2. Each pseudophoton must ье scattered 
to Ье converted into а real photon. Тhe probability of large-angle scattering of pseudophotons 
is 10w in single scattering. Тherefore, опlу а sma11 contigent ofpseudophotons is converted into 
photons. 

This picture changes dramatica11y in multiple scattering, [ос which almost 
а11 pseudophotons are converted into photons via тиШрlе scattering Ьу the plates. As the 
total number of pseudophotons is proportional to ,2, the radiation intensity (total number of 
photons) is also proportiona1 to ,2. 

5. COHERENCE LENGTH 

It is known (see for example [1]) tl1at the coherence length (or radiation formation zone) is 
the distance at which the intrinsic field of charged particle separates from the radiation field. In 
otherwords, it is the lengtll at which the interference term becomes sma11. The interference term 
consists ofexpressions like]i "-' AO'(R,I.JJ) < Ar(R,I.JJ). Using (9) and going to the coordinate 
representation, опе obtains the following expression for the background field: 

(39) 

where Ко is the modified Bessel function (see [ос example [7]). 
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Using (11), we obtain the averaged radiation potential 

(40) 

Using the impurity diagrams (15), опе сап represent the average in (40) in the form 

(41) 

Using the approximations (24), for ап observation point R far from the system, R ~ Tl, 

we finally obtain 

i ехр (ikR - ikoz) (koP) J ] (R) "" Фл-R Ко -:у drdr1Ao(r)B(rl - r)G(rl - г)ехр(-iknГl). (42) 

For our purposes, it suffices to consider only the oscillating part of (42), 

]i(R) сх exp(ikR - ikoRcosi). (43) 

The interference term will Ье small when the oscillations are strong, R(k - ko cos(;l) ~ 271" [1]. 
In this case апу integration will make the interference contribution negligible. Consequently, 
the coherence length in our case has the form 

(44) 

Now consider some special cases. For relativistic energies ko --+ k and small angles i) ~ О, 
taking into account the definition of k and ko, опе finds from (44) 

471",2 
[с == [с(О) ~ То· 

For angles (;1 ~ 71", the coherel1ce length has the form 

(45) 

(46) 

As expected, the coherence length in the direction of particle motion (i) ~ О) is much 
greater than in the backward direction (i) ~ 71"), where it is of the order of the wavelength. 

Now the meaning of the condition ,2 ~ ako, which we used in the previous section, 
becomes clearer. It means that тапу plates must Ье placed at the coherence length, lc ~ а, 
in order for multiple scattering effects of the pseudophoton to play ап important role. 

6. CONCLUSIONS 

We have considered the diffusion contribution to the radiation intensity of а relativistic 
particle traversing а stack of randomly spaced plates. It was shown that for а large number 
of plates (N ~ 1), in tlle wavelength ral1ge л ~ l, for al1g1es I cosi)1 ~ (1/kl)ljЗ, al1d 
coherel1ce lel1gth much greater thal1 the plate thickпеss (lc ~ а), the diffиsiol1 cOl1tributiol1 
is domil1al1t. Note that the backward al1d forward intensities of relativistic charged particle 
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radiation intensity are equal, whereas in а regular stack, а relativistic particle radiates mainly 
in the forward direction. 

Note that we did not take photon absorption into account. This is correct provided that 
1« lin, where lin is the photon inelastic теап free path in the medium. In the theory of 
diffusive propagation ofwaves, weak absorption (1 « lin) is taken into account in the following 
way [8]. If the absorption is so weak that Lz < ...;п::;:, then the expression (37) remains 
unchanged. When L z > ...;п::;:, опе must replace L; with llin in (37): 

1D (w '19) = ~ е2"'(2 Lzlin(w) sin2 '19 . 
, 2 ее [2(w) I cos'l9l 

(47) 

It follows from (47) that in this case the dependence of radiation intensity оп the number of 
plates is weaker, 1 <х N. 

Note that absorption changes the frequency dependence of the spectraI intensity. 
Now compare the radiation considered аЬоуе with Cherenkov radiation for the 

corresponding values of particle energy, which, however, are оп opposite sides of the critical 
value е/ Vё. The intensity of Cherenkov radiation has the [оrrп [8] 

1Ch(w) = e2wd (1 _ ~) , 
е2 v2e 

(48) 

where d is the path of the charged particle, which traverses а medium with dielectric constant 
е. Comparing (48) with (37), we have 

1D (w) "'(2 (Lz )2 
1Ch(w) '" kl -1 (49) 

Note that the Cherenkov intensity is greater than the single-scattering contribution, 10/ 1Ch '" 
'" 1 / kl « 1 [9]. From (49), the diffusion radiation, in contrast, сап Ье stronger than the 
Cherenkov radiation. 

1 thank У. Arakelyan for useful comments. The research described in this paper was made 
possible in part Ьу Grant RY2000 from the IntemationaI Science Foundation. 
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