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Dynamics of double membrane films is investigated in the long-wavelength limit gh < 1 (¢
is the wave vector and h is the thickness of the film) including the overdamped squeezing mode.
We demonstrate that thermal fluctuations essentially modify the character of the mode due to
its nonlinear coupling to the transversal shear hydrodynamic mode. The renormalization can be
analyzed under condition g < 1 (where g ~ T'/k, T is the temperature and « is the bending
module). The corresponding Green function acquires as a function of the frequency w a cut along
the imaginary semi-axis. At gh > /g the effective length of the cut is ~ Tq*/n (where 7 is the
shear viscosity of the liquid). At gh < /g fluctuations lead to an increase in the attenuation of
the squeezing mode: it is larger than the ‘bare’ value by the factor 1/,/g. We also present the
analysis of the elastic modes.

1. INTRODUCTION

The most distinctive property of amphiphilic molecules is their ability to spontaneously
self-assemble into aggregates of various shapes. Typically the molecules spontaneously self-as-
semble into membranes which are bilayers of a thickness of the order of a molecular length.
Different lyotropic structures constituted of the membranes have generated considerable current
interest (see the books [1-3] and the reviews [4-6]). Films composed of two bilayer membranes
sandwiching a thin layer of a liquid are widely spread in the lyotropic systems. They play also an
essential role for various biological processes (one can note the so-called flickering phenomena
in erythrocytes or red blood cells). In the paper we will examine dynamic properties of such
double membrane films.

The main peculiarity of a membrane is its negligible surface tension. Indeed, the membrane
is immersed into a liquid and consequently its area can vary. Zero surface tension is the
equilibrium condition with respect to the variations. In the situation shape fluctuations of the
membrane are determined by the bending elasticity, the corresponding energy is [7, 8]

K 1 1)?
= — —_—t —
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where the integral is taken over the membrane which is considered as a two-dimensional object,
Ry, R, are its local curvature radii, and x is the bending rigidity module. Corrugations of
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the membrane induced by the thermal noise lead to loosing the orientation correlation of the
membrane pieces at separations larger than the so-called persistent length &, [9] which can be
estimated as

& ~ aexpnk/T),

where T is the temperature and a is the thickness of the membrane. The shape fluctuations of
the membrane lead to the logarithmic renormalization of the bending module «, examined first
by Helfrich [10] and later by Forster [11], the correct renormalization-group (RG) equation
was derived by Peliti and Liebler [12], Kleinert [13] and Polyakov [14]. The explicit form of
the one-loop RG equation is

dxk T

de 4r’

Here £ = In(r/a) and r is the characteristic scale. As it follows from the equation the role of
the dimensionless coupling constant is played by the quantity

T

Pt )
Note that In(§, /a) ~ g~!. For real membranes g ~ 10~2-10~3 and consequently we can treat
g as a small parameter. The smallness of g means that there exists a wide range of scales r < &,
where thermal fluctuations can be treated in the framework of the perturbation theory.

Below we treat a double membrane film. We assume that at equilibrium the film is

parallel to the zy plane. Corrugations of the membranes in a double film can be decomposed
into undulation (or bending) deformations and the squeezing deformations. The bending
deformations are characterized by the displacement u of the film as a whole from its equilibrium
position along the z axis and the squeezing deformation is characterized by variations of the film
thickness h (which is the separation between the membares). In the harmonic approximation
one gets from (1) the energy

H = / dz dy [n(vlu)2+ g(VZh)Z] : 3)

where both u and h are treated as functions of z and y and V is the two-dimensional gradient.
In deriving (3) we disregarded the interaction between the membranes. First, one should
remember the steric interaction, which is associated with a certain restriction of accessible
configurations for one membrane in the presence of the second membrane [8]. The explicit
expression for the energy is [15]
37272
FH ster = / dz dy To8ri2 @)
Due to the interaction (4) two membranes can be treated as independent only on scales smaller
than g—'/2h. Therefore (3) is the main contribution to the energy if

gh > /g, &)

where ¢ is the characteristic wave vector. Second, we should take into account the
Van der Waals interaction. We assume that the same liquid is inside and outside the film.
We can then the Van der Waals energy is [16]
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H 2
.%’Udu,:/dxdyﬁ,, (6)

where H is the Hamaker constant. We can neglect the energy in comparison with (3) if

a2 (2)

Let us assume that the thickness of the film is large enough to satisfy the following inequality:

7> (5)

Then (5) is the only restriction that enables us to treat the energy (3) as the main contribution
to the film energy.

2. DYNAMICS

We will examine the dynamics of the double membrane film in the long-wavelength limit
gh < 1 where ¢ is the wave vector of the eigenmodes of the film. Note that the inequality
gh < 1 is compatible with (5) since g < 1. In the limit gh < 1 one should take into account
the following variables describing the dynamics: the velocity of the film v, the displacement of
the film wu, the film thickness h and the densities of both membranes since they are conserved
quantities. We will be interested mainly in the squeezing mode associated with the relaxation
of the thickness h.

To find dynamical characteristics of the film one should solve the conventional
hydrodynamic equations in bulk supplemented by boundary conditions on both membranes.
In the linear approximation the problem was solved by Brochard and Lennon [17], they found
the dispersion law of the squeezing mode

_;rhid®
24n

)

where w is the frequency of the mode, hy is the equilibrium separation between the membranes,
and 7 is the viscosity of the liquid surrounding the membranes. In deriving (7) it was assumed
that at equilibrium the film is flat. The dispersion relation

w=—1— ®8)

of the bending mode also found in the linear approximation. Note that the dispersion law (7) is
correct only if one neglects the direct interaction of the membranes that is at the condition (5)
whereas the region of applicability of the dispersion law (8) does not depend on the interaction
of the membranes, since they move in-phase in the bending mode. The elastic modes associated
with variations of the membrane densities are harder than (7), and (8) [18]. Therefore the only
effect of the elastic degrees of freedom at examining the squeezing mode is the incompressibility
condition

Vavq =0. ©)
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Here and below we believe that all variables characterizing the film are functions of 2 and y
and assume that Greek subscripts run over x and .

We will consider the renormalization of the dispersion law (7) of the squeezing mode
due to fluctuational effects. Nonlinear dynamical equations of the film should be utilized
for the purpose. In the long-wavelength limit ghy <« 1 the equations can be derived
phenomenologically. The reactive (non-dissipative) part of the equations can be found by using
the Poisson brackets method (see Ref. [19] and also Ref. [18]) whereas the dissipative part of
the equations is expressed in terms of the kinetic coefficients. One should know the expression
for the energy 7 of the system for writing both contributions. Actually, we will need the
expression for one Poisson bracket:

{Fa(@1, 1), B2, 12)} = A1, Y1)V [6(z1 — 22)0(y1 — y2)] (10)

where j, is the two-dimensional momentum density of the film. The expression (10) (which
is characteristic of a two-dimensional density of any conserved scalar quantity on a film [18])
is motivated by the fact that the two-dimensional mass density of the film is ph, where p is
the three-dimensional density of the liquid. Note that j, ~ phv, since we believe that the
membrane thickness a can be ignored in comparison with the film thickness h.

The dynamic equation for the thickness 7 has the standard form following from (10)

205

+ a\Va =T ’
Oth + V(v h) =TV 5h

(11)
where 9, = 9/9t and T is the kinetic coefficient. The second power of the gradient appeared
in (11) since the equation should support the conservation law of the liquid inside the film
and therefore the right-hand side of the equation should be a full derivative at any #. Due
to (9) the second term in the left-hand side of (11) describes the sweeping of h by the velocity
V4. In the linear approximation we can ignore the sweeping term. Substituting the harmonic
expression (3) for the energy J into (11) and comparing the result with (7), we obtain

r=hy/12n. (12)

Note that I is inversely proportional to the shear viscosity coefficient. The point is that the
dissipation described by I' comes from viscous motion of the liquid surrounding the double
membrane film which is hardly excited at large 7.

The dynamic equation for j, has the form [21]

atja_{‘%aja}=t]a7 (13) ‘

where J is the momentum flow from the bulk to the film. Since this term supplies the main
dissipation of the film momentum, we ignored the internal viscosity. The Poisson bracket
{#, jo} can be reduced to the divergence of the symmetric stress tensor for any energy 57 [18].
Actually, only the contribution associated with the Poisson bracket (10) and created by the
harmonic energy (3) is relevant for us. We can then write Eq. (13) in the form

Oyje + ghvav‘h +V, P, =J,, (14)

where P, is the two-dimensional pressure, which is related to the elastic degress of freedom
(see the Appendix). In the linear approximation relevant for us we can write [21]
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Jo = =20qVa (15)

where ¢ is the nonlocal operator, which is reduced to multiplying by the absolute value of
the wave vector ¢ in the Fourier representation. The expession (15) implies the inequality
w < ng*/p, which is really satisfied for the squeezing mode.

We will not present here dynamical equations for the variables 5, and u and for the densities
of the membranes. The reason is that the equations for j, and u, which describe the bending
mode, decouple in the approximation used from Eq. (11), and (14). Actually, the equations
describing the bending motion of the double film are the same as for a single membrane, the
corresponding nonlinear equations can be found in Ref. [18] and also in Refs. [20,21]. One
should remember only that the bending module of the double film is 2k as it follows from (3).
As to the equations for the densities of the membranes, they need a separate analysis, which is
presented in the Appendix. The only role of the degrees of freedom at analyzing the squeezing
mode is reduced to the incompressibility condition (9).

3. RENORMALIZATION OF SQUEEZING MODE

As can be seen from (7), in the long-wavelength limit the squeezing mode is very soft. This
is the reason why one anticipates that fluctuational effects related to the mode are relevant.
The effects are associated with nonlinear terms in dynamic equations and can be examined
in terms of the diagrammatic technique of the type first developed by Wyld [22] who studied
velocity fluctuations in a turbulent fluid. In Ref. [23] the Wyld technique was generalized for
a broad class of dynamical systems. A textbook description of the diagram technique can be
found in the book by Ma [24]. The diagram technique can be formulated in terms of path
integrals as was first suggested by de Dominicis [25] and Janssen [26]. In the framework of
this approach apart from conventional dynamic variables one should also introduce auxiliary
fields conjugated to the variables. Then dynamical correlation functions of the variables can
be presented as functional integrals over both type of fields: conventional and auxiliary. The
integrals are taken with the weight exp(:.7), where .7 is an effective action which is constructed
on the basis of nonlinear dynamic equations of the system.

Since we are interested in the renormalization of the squeezing mode of the double
membrane film, we will take into account only the variables & and v, and the corresponding
auxiliary conjugated fields p and p,. We should also remember about the incompressibility
condition (9) and impose the analogous constraint V,u, = 0 on the field u,. We can then
write the correlation function of the film thickness A in the form

(hiha) = / Ph v, Dp Dy, exp i.T) hihy, (16)

where the subscript «tr» implies that in the Fourier representation we should take only
components of the fields v and g which are transverse to the wave vector q. The explicit
expression for the effective action figuring in (16) can be found using the dynamical
equations (11), and (14). It can be written as the sum of the reactive and the dissipative parts
T = -7reac + 7diss where

Freae= [ dtdr {pOLh+ praVah + nadisa = JuaV*hVah} (17)
T diss = / dt d*r {—%rnpv“h +iTT(Vp)? + 2nug(v + iTp,)} . (18)
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The detailed derivation of the effective action for the problem can be found in Refs. [20,21].
We introduce the notations for the pair correlation functions. Taking into account only
the transverse components of the fields v and g, we can write

2
(h(t, Dp(0, 0)) = / %’% exp(—iwt + iqDC (W, @),

2

dwd . . daq
(valt, Vs (0,0) = / e exp(—it + ian) [60;;— qf] Gorl, ), (19)

2
(h(t, R0, 0) = / %% exp(—iwt + iqr) Dw, ),

dw d2q . . qaq
(ve(t, T)va(0,0)) = / @y exp(—iwt + iqr) [50,;3 - qzﬁ] Dip(w,q). (20)

The correlation functions (pp) and (pp) are equal to zero (what is the general property of the
technique, see e.g. Ref. [18]). The functions D and D;, determine the pair correlation functions
of the observable quantities and the functions G, G, are response functions. Therefore, the
function G(w) is analytic in the upper w half-plane.

It is possible to formulate the diagram technique for calculating correlation functions (19)
and (20). The harmonic part of the effective action .7 = F ,.¢qc T 7 4is, determines the bare
values of the response functions

1

= G =, 21
GO(wa q) w+ anqG/Z ) tr,O(w’ q) phw ¥ 221711 ( )
The values of the ‘bare’ pair correlation functions satisfy the relations
kgt 1
ImG=—D y Im Gtr = —Dgr y (22)

4T 2T

which are consequences of the fluctuation-dissipation theorem. In addition to the harmonic
part, the effective action .7 contains terms of the third order, which determine the third-or-
der vertices which figure on diagrams representing the perturbation series for the correlation
functions (19), and (20). One can check the relations (22) order by order and, consequently,
they are valid for the «dressed» correlation functions (19), and (20). Note that the relation

dw 2T
/ D@, = =, 23)
T Kq

which can be proved by using (22), the analyticity of G(w) in the upper half-plane, and
the asymptotic law G(w) =~ —w™!, which is correct for large w. Actually, (23) is a direct
consequence of (3), since the integral over frequencies is just the simultaneous correlation
function.
Analysis of the diagrams shows that they contain infrared logarithms which are related to
the lines representing the correlation function D Eq. (20). The lines produce the factors
(Vah(t,r)Vh(t,0)) = ;FL

'ﬁ‘gaﬁ ) ' (24)

where L = In[hg='/2/r] and r~! is determined by the characteristic external wave vector
of the diagram. The expression (24) can be found from (23) if one recalls condition (5). The
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presence of the logarithmic contributions implies that the main renormalization of a correlation
function like G(w, q) is produced by the degrees of freedom with the wave vectors much smaller
than g. Therefore, we should extract from the diagrammatic expressions for G(w, q) only the
contributions corresponding to the interaction with the degrees of freedom.

The program can be realized directly in using the language of the functional integral. Let
us separate the variables A, p, v, p into fast parts (with wave vectors larger than q), basic parts
(with the wave vectors of the order of ¢) and slow parts (with wave vectors smaller than gq).
At calculating G(w, q) we can forget about the fast parts and keep the interaction of the basic
part with the slow part. We then obtain the following expression from (17), and (18):

I = / dt dr {p@th + PUaMa + fadija — gﬂav%ma - ngVGh + 2mujv} +..., (25
where h, p, v, u denote the basic parts of the fields, m,, is the gradient of the slow part of i
and dots designate irrelevant terms. The action (25) is of the second order over h, p, v, g and,
consequently, the integrals over the fields can be taken explicitly. Since m varies only weakly
along the length ¢—!, we obtain

G(w,q) = — ((phw + 2ing)a™") (26)
Gir(w,q) = — ((w +ikg* /DA™Y, 27)
A = (phw + 2ing)(w + ikTq®/2) — kg*m}, /2, (28)

where

daq
m%’r = (601{3 - Zzﬁ) Mmamg,

and the notation (. ..),, means averaging over statistics of m. In calculating (26), and (27) we
substituted j = phv. Actually, the terms with ph can be neglected and we omit them below.

In averaging in (26), and (27) we can assume the statistics of m to be Gaussian. The point
is that only simultaneous correlation functions of m enter the expressions and the functions
are described by the harmonic energy (3). The pair correlation function of m is equal to (24).
Therefore,

TL
2 = —_——
(mt'r‘) 27”0 H

and we find from (26)
T de ) KT ¢ . TL 3\
=_ [ 2 exp(— 4 b+ ,
G(w,q) / mexp( s*/2) (w X ZSwnq S 29)

We see that G as a function of the frequency w have the cut along the imaginary semiaxis,
which starts from w = —il'kq®/2 and goes to —ico. The effective length of the cut can be
estimated as T'¢° /7, which is the new characteristic frequency associated with the fluctuations.
Let us compare the frequency with the position of the pole in the bare expression:

Té/n | _g
Tkg®  (gho)®”
2102
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We conclude that the fluctuation effects dominate in the region g'/? < ghy < g'/>. We can
now justify the disregard of phw in comparison with 7q in the above expressions. When gh ~ 1

phow/ng ~ pr/n*he ~ afho < 1,
and at gho ~ /g
phow/ng ~ pkg®/n’he < 1.
Performing Fourier transform of (29) over frequencies, we obtain

. TL , )\~ /? K g
=i(1+:= _k . 31
G(t,q) 1(1 p t) exp{ 2th} 31)

The expression (31) is correct for a positive time ¢. For negative times G(¢) = 0 due to the
causality principle since G is the responce function. We see from (31) that in the fluctuation
region g'/2 < gh < g'/? there appears an intermediate power asymptotics t~'/2, which at large
times t is changed by the exponential decay. This means that the squeezing mode is described
by a dynamic equation, which is nonlocal in time.

The above assertion is correct for the wave vectors q 2 /9 /ho. In the limit ghy < /g we
return to the local equation (11) but with the renormalized kinetic coefficient I". The quantity
can be found by integrating the weight exp(:.7) over the degrees of freedom with the wave vectors
q2 /9 /ho. The main effect is attributed to the sweeping term in the effective action (17).
Because of the integration over the degrees of freedom with the wave vectors g 2 V9 /h, the
term iTT(Vp)? in (18) for the long-wavelength degrees of freedom is renormalized. We find
for the renormalized value

r-r= 2‘1? / dt d*r (v(t,r)h(t,r)v(0, 0)h(0, 0)) (32)

where averaging is performed over the degrees of freedom with the wave vectors g 2 N/ /ho.

Using the renormalized expressions for the correlation functions, we obtain the estimate T ~
—-1/2

~g r'>T.

4. CONCLUSION

We demonstrated that fluctuations essentially modify the character of the squeezing mode
due to its nonlinear coupling with transversal shear hydrodynamic mode. The fluctuation effects
lead to nonlocality of the equation for the mode; the corresponding Green’s function is (31).
The new characteristic frequency of the mode related to the fluctuations is w ~ T'¢*/n (q is
the wave vector); remarkably it does not depend on the bending elasticity. It is important
to distinguish the characteristic frequency from the attenuation of the membrane bending
mode (8) which has the same ¢> dependence on the wave vector. We stress that the strong
fluctuation effects are observed only for dynamics. The static characteristics are not influenced
by fluctuations because of the smallness of the coupling constant (2). This is the reason why
we need only the harmonic part of the energy (3).

Strong dynamic fluctuations of h occur for the wave vectors ¢ 2> /9 /h. For smaller
wave vectors the fluctuations of h are weak. Nevertheless, even for the wave vectors there is
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a memory of the region of strong fluctuations, which is the renormalized value of the kinetic
coefficient T in the Eq. (11): the bare value (12) is substituted by I' ~ ¢g~!/2I" > I". Note also
that to analyze the dispersion relation of the squeezing mode in the limit ¢ < /9 /h starting
from (11) we should take into account in addition to the energy (5), the steric (4) and the Van
der Waals (6) contributions to the energy. As a result, we find
— _i:, 2 (97T2T2 + IOH(IZ)
@7 TN\ Garht T RS

Let us discuss the possibility of checking our predictions experimentally. The membranes
can be studied by a variety of experimental techniques. Lately, laser «tweezers» have become
a useful tool for probing dynamical properties of membranes. This technique enables us to
obtain direct information about amplitudes and characteristic times of dynamical fluctuations
of different objects consisting of membranes. For details see the monography [27] and recent
experiments [29-31]. We can also mention force apparatus measurements [28], which make it
possible to investigate dynamical response for two very thin lamellar systems confined between
the walls, and the classical light-scattering experiments. Because of relaxation of the membrane
fluctuations, the scattered light has a broadened spectral distribution compared to the incident
light. Despite the small broadening, the modern technique of light beating (intensity fluctuation
spectroscopy) allows to obtain information about eigenmodes of the system.

The conclusions concerning the renormalization of the squeezing mode, in our opinion,
are interesting, both in their own right and as a new test of the membrane fluctuations.

The research described in this publication was made possible in part by Russian Foundation
for Basic Research grants. One of the authors (E. K.) thanks Max Planck Institute for Physics
of Complex Systems (Dresden) for supporting his stay at this institute.

APPENDIX

Elastic Modes

Here we consider the elastic modes associated with the relaxation of the surface density of
molecules that comprise the two membranes of a double film. To find the dispersion relation
for the modes we should start from the elastic energy associated with the variations of the
surface density of molecules ;. In the harmonic approximation the elastic energy of a single
membrane is [21]

Ho = % / dA B¢ (A.1)
Here

¢ = (ns — ng)/no,

where n, — ng is the deviation of the surface density of molecules n, from its equilibrium value
ng, and the coefficient B has the meaning of the inverse compressibility of the membrane. The
elastic energy is the sum of terms (A.1) for both membranes that constitute the double film.
Let us consider the elastic modes in the linear approximation. We assume that at
equilibrium the membranes lie in the planes z = +h(/2. The deviations of the membranes from
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the positions can then be characterized by their displacements u; ; along the z axis. To find the
dispersion relations for the modes one should solve conventional hydrodynamic bulk equations
supplemented by boundary conditions at the membranes. As we will see, the frequencies of the
elastic modes are small compared to sound frequency. Consequently, we can use the convential
linearized equations of an incompressible liquid [32].

_ WP
Vv =0, (” 6t) ; , (A.2)

where k = z,y,z. Since the membranes are immersed into the liquid they move with the
velocity of the liquid which is continuous near the membranes. The boundary conditions for
Egs. (A.2) for a membrane can be found in Refs. [20,21]. In the linear approximation they
are

p°0 10+ kYU, = —| P12, (A.3)
Oy = V21,2, (A.4)
p°0:a12 T BV 12 =0 V,val12 (A5)
9612+ Vava1,2=0, (A.6)

where the «floors» designate a jump at the membranes, p® is the two-dimensional mass density
of amphiphilic molecules, subscripts 1 and 2 numerate the membranes. Really, the terms with
p*® in Egs. (A.3) and (A.5) are negligible.

Now, we will solve Egs. (A.2) with the boundary conditions (A.3)-(A.6) under the
assumption that all variables are proportional to exp(—iwt + iqz), where w is the frequency,
and q is the wave vector.

The velocity of the liquid is divided into two parts: potential and solenoidal. The potential
component is related to the pressure which obeys the equation

(V2 - )P =0.
The solenoidal component is described by the equation
—ipwy = n(Vi — .

Thus we can explicitly write the solutions of the eqautions inside and outside the film in terms of
the velocity of the membranes. The expressions are slightly different for the symmetric (¢; = ¢,)
and the antisymmetric (¢; = —¢) cases. Using the solutions in bulk we can express the jumps
in Egs. (A.3) and (A.5) in terms of v, and v, on the membranes. As a result we find a linear
system fot v, and v,. We can then write the condition for the existence of nontrivial solutions
of the system, which for the symmetric case in the simplified form is

v? (cth Vaho _ un th> [VZ +(V +8) (V cth Vgh" —cth qh")] x

2 2
Veth 20 con Yo 4 (o Yaho _ o 20| 2 (A7)
2 2 2 2
Here we introduce the notations
V= z-‘i)—% , B= z—-
nq 77w
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and suggest that at treating elastic modes one deals with the frequency w > nq?/p. For the
antisymmetric case the condition can be obtained from (A.7) by substituting cth — th.

It is difficult to find the dispersion relations from (A.7) and the analogous equation for the
antisymmetric case in a general situation. Below we consider two different limiting cases and
assume that

7’2

T« .
Bpho<< ) (A.8)

what is natural sinse h is much larger than the molecular length for real films. First, we
consider the short-wavelength limit

n? 1/2
. A.
qho > (Bpho) (A.9)
We then obtain the same dispersion relation as for the elastic mode of a single membrane [33, 21]
+/3-i B\,
=——| — 13, A.10
v 2 <4np) ! (410

This means that the thickness of layers near the membranes where the hydrodynamic motion
occurs is much less than hy and consequently the membranes can be treated as being nearly
independent in this case. Note that due to (A.8) the condition (A.9) is compatible with ghy < 1,
where the membranes cannot be regarded as independent in considering, say, the squeezing
mode. Therefore, one should be careful: under the condition (A.9) the membranes can be
treated as practically independent only in examining the elastic modes. In the opposite long-
wavelength limit,

2\ 1/2
gho < <B1;7)h0) : (A.11)

we deal with two different dispersion relations. In the symmetric case the dispersion relation
is

. 2\ 1/3
w= i@ (B ) g3 (A.12)

2 P

This is the same dispersion relation as (A.10) but with the doubled membrane elasticity, which
is natural for the double film. In the antisymmetric case the dispersion relation is

B q2 ho
2n

w=—1 . (A.13)
Thus we encounter the simple diffusion.

The dispersion laws (A.10), (A.12), and (A.13) show that the frequencies of the elastic
modes are small in comparison with the sound frequency cq (where ¢ is the sound velocity),
which justifies our using the incompressible hydrodynamic equations (A.2). Note also that for
the mode (A.13) the condition (A.8) ensures the inequality w > nq?/p, which was suggested
in the derivation of the relation (A.7) (the inequality enables us to disregard the potential part
of the velocity). Thus, the condition (A.8) makes our scheme self-consistent.
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In the long-wavelength limit the double membrane film can be treated as an effective
single membrane. This effective membrane should be framed by hydrodynamic variables which
give the information about the «microscopic» construction of the double membrane film. In
other words one should incorporate into the set of «macroscopic» variables the surface densities
(described by ¢; and ¢) of molecules, which comprise the two membranes, and the two-di-
mensional mass density ph of the liquid between the membranes. The dynamic equation for
the variable has been derived in the main text of this paper, see Eq. (11). The phenomenologic
dynamic equations for ¢; and ¢, can be derived in the same manner, the Poisson brackets for the
density of any conserved scalar quantity the same structure of the Poisson bracket as (10) [18].
In terms of the variables ¢. = (¢; +;)/2 and ¢_ = ¢; — ¢, the equations are

Bes+ = =V [(1 + 64 )va] + D+ Vi, (A.14)
85— = —Vals — va) + D_V3_. (A.15)

Here we discarded the bending motion. The system of equations (A.14), and (A.15) should be
supplemented by Eq. (14) in the main text of the paper, where

P, =2Bg,. (A.16)

In analyzing the elastic degrees of freedom we should use the following expression for the
momentum flow from the bulk:

Jo = =24/inp vy, (A.17)

where the velocity v, is implied to be longitudinal, since just the longitudinal component of the
velocity is involved into the elastic motion. Let us stress that the expression (A.17) is correct
if w > ng?*/p, which is opposite to the applicability condition of (15).

Linearizing the system of equations (14), (A.14), and (A.15) (and ignoring the squeezing
degrees of freedom), we find the dispersion relations (A.12) and w = —iD_g¢?. The term
with D, in (A.14) appears to be irrelevant. Comparing the dispersion relation w = —iD_g?
with (A.13), we obtain

D_ = Bhy/21. (A.18)

It can then be verified that the linear coupling between the elastic and the squeezing degrees
of freedom described by the term with « in (14) is negligible. Nonlinear terms in Egs. (14),
(A.14), and (A.15) lead to the interaction of different modes. The explicit analysis shows that
the fluctuation effects do not affect appreciably the linear dispersion relations (A.10), (A.12),
and (A.13) due to ¢ < 1. The same holds for a nonlinear interaction with the bending degree
of freedom, which (because of the same inequality ¢ < 1) does not change the results obtained
in the linear approximation.
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