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Dynamics ofdouble membrane Шms is investigated in the !ong-wave!ength!imit qh ~ 1 (q 
is the wave vector and h is the thickness of the Шm) inc!uding the overdamped squeezing mode. 
We demonstrate that therma1 fluctuations essentially modifY the character of the mode due to 
its nonlinear coupling to the transversa! shear hydrodynamic mode. The renormalization сап ье 
апа!yzеd under condition 9 ~ ! (where 9 '" т I~, т is the temperature апd ~ is the bending 
modu!e). The corresponding Green function acquires as а function ofthe frequency UJ а cut a10ng 
the imaginary semi-axis. At qh > vg the effective !еngth ofthe cut is '" Tq3 /ТJ (where ТJ is the 
shear viscosity of the liquid). At qh < vg tluctuations !ead to ап increase in the attenuation of 
the squeezing mode: it is !arger than the 'bare' уа!ие Ьу the factor 1 I vg. We also present the 
ana!ysis of the e!astic modes. 

1. INTRODUCTION 

The most distinctive property of amphiphi1ic molecules is their abi1ity to spontaneously 
self-assemble into aggregates of various shapes. Typica1ly the molecules spontaneously self-as­
semble into membranes which are bilayers of а thickness of the order of а molecular length. 
Different lyotropic structures constituted ofthe membranes have generated considerable сuпепt 
interest (see the books [1-3] and the reviews [4-6]). Films composed oftwo bilayer membranes 
sandwiching а thin layer of а liquid are widely spread in the lyotropic systems. They play also an 
essential role for various biologica1 processes (one сап note the so-ca1led flickering phenomena 
in erythrocytes or red blood cells). In the paper we will examine dynamic properties of such 
double mеmЬranе Шms. 

The таin peculiarity of а mеmЬсапе is its negligible surface tension. Indeed, the membrane 
is immersed into а liquid and consequently its area сап vary. Zero surface tension is the 
equi1ibrium condition with respect to the variations. In the situation shape fluctuations of the 
membrane are determined Ьу the bending elasticity, the сопеsропding energy is [7,8] 

"'] (1 1)2 .wcurv = 2' dA R1 + R2 ' (1) 

where the integra1 is taken over the membrane which is considered as а two-dimensional object, 
R 1, R2 are its local curvature radii, and '" is the bending rigidity module. Corrugations of 
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the membrane induced Ьу the thermal noise lead to loosing the orientation correlation of the 
membrane pieces at separations larger than the so-called persistent length ~p [9] which сап Ье 
estimated as 

~p ....., аехр(21гк,IТ), 

where Т is the temperature and а is the thickness of the membrane. The shape fluctuations of 
the membrane lead to the logarithmic renormalization of the bending module к" exarnined first 
Ьу Helfrich [10] and later Ьу Forster [11], the correct renorrnalization-group (RG) equation 
was derived Ьу РеliН and Liebler [12], Юеiпеrt [13] and Polyakov [14]. Тhe explicit form of 
the опе-l00Р RG equation is 

d!';, 3Т 

d~--4Jr' 

Here ~ = ln(r I а) and r is the characteristic scale. As it follows from the equation the role of 
the dimensionless coupling constant is played Ьу the quantity 

3Т 
g=-. 

47Гк, 
(2) 

Note that lп(~рl а) ....., g-l. For real membranes 9 ....., 10-2-10-3 and consequently we сап treat 
9 as а small parameter. The smallness of 9 means that there exists а wide range of scales r < ~p 
where therma1 fluctuations сап Ье treated in the framework of the perturbation theory. 

Below we treat а double membrane Шт. We assume that at equilibrium the film is 
parallel to the ху plane. Corrugations of the membranes in а double Шт сап Ье decomposed 
into undulation (or bending) deformations and the squeezing deformations. The bending 
deformations are characterized Ьу the displacement и of the Шт as а whole from its equilibrium 
position along the z axis and the squeezing deformation is characterized Ьу variations ofthe Шт 
thickness h (which is the separation between the membares). In the harmonic approxirnation 
опе gets from (1) the energy 

.7(= J dxdy [к,(V2u)2+ ~(V2h)2] , (3) 

where both и and h are treated as functions of х and у and V is the two-dimensional gradient. 
In deriving (3) we disregarded the interaction between the membranes. First, опе should 

remember the steric interaction, which is associated with а certain restriction of accessible 
conftgurations for опе membrane in the presence of the second membrane [8]. Тhe explicit 
expression for the energy is [15] 

J 37Г2Т2 
.7( ster = dx dy 128к,h2 • (4) 

Due to the interaction (4) two membranes сап Ье treated as independent only оп sca1es smaller 
than g-I/2h. Therefore (3) is the rnain contribution to the energy if 

qh> Vg, (5) 

where q is the characteristic wave vector. Second, we should take into account the 
Уап der Waals interaction. We assume that the same liquid is inside and outside the Шт. 
We сап then the Уап der Waals energy is [16] 
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J На2 
.7tvdw = dхdУЪгh4' (6) 

where Н is the Hamaker constant. We can neglect the energy in comparison with (3) if 

4 Н (а)2 
(qh) > --;;: h 

Let us assume that the thickness of the film is large enough to satisfy the following inequality: 

2 Н (а)2 
9 > --;;: h . 

Then (5) is the only restriction that enables us to treat the energy (3) as the main contribution 
to the film energy. 

2. DYNAМICS 

We will examine the dynamics of the double membrane film in the long-wavelength limit 
qh « 1 where q is the wave vector of the eigenmodes of the film. Note that the inequality 
qh « 1 is compatible with (5) since 9 « 1. In the limit qh « 1 one should take into account 
the following variables describing the dynamics: the velocity ofthe film v, the displacement of 
the film и, the film thickness h and the densities of both membranes since theyare conserved 
quantities. We will Ье interested mainly in the squeezing mode associated with the relaxation 
of the thickness h. 

То fmd dynamical characteristics of the film one should solve the conventional 
hydrodynarnic equations in bulk supplemented Ьу boundary conditions оп both membranes. 
In the linear approximation the problem was solved Ьу Brochard and Lennon [17], they found 
the dispersion law of the squeezing mode 

(7) 

where VJ is the frequency ofthe mode, ho is the equilibrium separation between the membranes, 
and 'ГJ is the viscosity of the liquid surrounding the membranes. In deriving (7) it was assumed 
that at equilibrium the film is flat. The dispersion relation 

(8) 

ofthe bending mode also found in the linear approximation. Note that the dispersion law (7) is 
correct only if one neglects the direct interaction of the membranes that is at the condition (5) 
whereas the region of applicability of the dispersion law (8) does not depend оп the interaction 
ofthe membranes, since they mоуе in-phase in the bending mode. The elastic modes associated 
with variations ofthe membrane densities are harder than (7), and (8) [18]. Therefore the only 
effect ofthe elastic degrees offreedom at examining the squeezing mode is the incompressibility 
condition 

(9) 
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Here and below we Ьеliеуе that аН variables characterizing the filт are functions of х and у 
and assume that Greek subscripts run over х and у. 

We will consider the renormalization of the dispersion law (7) of the squeezing mode 
due to fluctuational effects. Non1inear dynamical equations of the filт should Ье utilized 
for the purpose. In the long-wavelength limit qho « 1 the equations сап Ье derived 
phenomenologicaHy. The reactive (non-dissipative) part ofthe equations сап Ье found Ьу using 
the Poisson brackets method (see Ref. [19] and also Ref. [18]) whereas the dissipative part of 
the equations is expressed in terms of the kinetic coefficients. Опе should know the expression 
for the energy .7( of the system for writing both contributions. ActuaHy, we wШ need the 
expression for опе Poisson bracket: 

(10) 

where ja is the two-dimensional momentum density of the filт. The expression (10) (which 
is characteristic of а two-dimensional density of апу conserved scalar quantity оп а filт [18]) 
is motivated Ьу the fact that the two-dimensional mass density of the filт is ph, where р is 
the three-dimensional density of the liquid. Note that ja ~ phva since we Ьеliеуе that the 
membrane thickness а сап Ье ignored in comparison with the filт thickness h. 

The dynamic equation for the thickness h has the standard form foHowing from (10) 

(11) 

where 8t == 8/ 8t and Г is the kinetic coefficient. The second power of the gradient appeared 
in (11) since the equation should support the conservation law of the liquid inside the filт 
and therefore the right-hand side of the equation should Ье а fuH derivative at апу .7(. Due 
to (9) the second term in the left-hand side of (11) describes the sweeping of h Ьу the velocity 
V a . In the linear approximation we сап ignore the sweeping term. Substituting the harmonic 
expression (3) for the energy .7( into (11) and comparing the result with (7), we obtain 

г = h~/121J. (12) 

Note that г is inversely proportional to the shear viscosity coefficient. The point is that the 
dissipation described Ьу Г comes from viscous motion of the liquid suпоuпdiпg the double 
membrane filт which is hardly excited at large 1J. 

The dynamic equation for ja has the form [21] 

(13) 

where J is the momentum flow from the bulk to the filт. Since this term supplies the main 
dissipation of the Шm momentum, we ignored the internal viscosity. The Poisson bracket 
{ .7( , j а} сап Ье reduced to the divergence of the symmetric stress tensor for апу energy .7( [18]. 
Actual1y, only the contribution associated with the Poisson bracket (10) and created Ьу the 
harmonic energy (3) is relevant for us. We сап then write Eq. (13) in the form 

8t ja + ~hV а V 4h + VaPs = Ja , (14) 

where Рв is the two-dimensional pressure, which is related to the elastic degress of freedom 
(see the Appendix). In the linear approximation relevant for us we сап write [21] 
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(15) 

where q is the nonlocal operator, which is reduced to multiplying Ьу the absolute value of 
the wave vector q in the Fourier representation. Тhe expession (15) impIies the inequaIity 
(;J «: 'fJq2 / р, which is reaIIy satisfied for the squeezing mode. 

We wiII not present here dynamicaI equations for the variabIes j z, and и and for the densities 
of the membranes. The reason is that the equations for j z and и, which describe the bending 
mode, decouple in the approximation used from Eq. (11), and (14). ActuaIIy, the equations 
describing the bending motion of the doubIe fiIт are the same as for а single membrane, the 
corresponding nonlinear equations сап Ье [оипд in Ref. [18] and also in Refs. [20,21]. Опе 
should remember only that the bending module of the doubIe fiIт is 2к, as it foIIows from (3). 
As to the equations for the densities of the membranes, they need а separate analysis, which is 
presented in the Appendix. The only role of the degrees of freedom at analyzing the squeezing 
mode is reduced to the incompressibility condition (9). 

З. RENORМALIZATION OF SQUEEZING MODE 

As сап Ье seen from (7), in the Iong-wavelength Iimit the squeezing mode is very soft. Тhis 
is the reason why опе anticipates that f1uctuational effects related to the mode are relevant. 
Тhe effects are associated with nonIinear terms in dynamic equations anд сап Ье examined 
in terms of the diagrammatic technique of the type first developed Ьу Wyld [22] who studied 
velocity f1uctuations in а turbulent f1uid. In Ref. [23] the Wyld technique was generalized for 
а broad class of dynamical systems. А textbook description of the diagram technique сап Ье 
found in the book Ьу Ма [24]. The diagram technique сап ье formulated in terms of path 
integrals as was first suggested Ьу de Dominicis [25] and Janssen [26]. In the framework of 
this approach apart from conventionaI dynamic variabIes опе should also introduce aиxiIiary 
fields conjugated to the variabIes. Тhеп dynamicaI correlation functions of the variabIes сап 
Ье presented as functionaI integrals over both type of fields: conventional and aиxiIiary. Тhe 
integrals are taken with the weight exp(i.9''), where.9" is ап effective action which is constructed 
оп the basis of nonlinear dynamic equations of the system. 

Since we are interested in the renormalization of the squeezing mode of the doubIe 
membrane fiIт, we wiIl take into account only the variabIes h and Va and the corresponding 
auxiIiary conjugated fields Р and Ма. We should aIso remember about the incompressibility 
condition (9) and impose the analogous constraint 'VaMa = О оп the field Ма. We сап then 
write the correlation function of the fiIт thickness h in the form 

(h1h2) = J @h@Vtr@P@Mtr exp(i.9")h1h2 , (16) 

where the subscript «tr» impIies that in the Fourier representation we shoиId take only 
components of the fields V and J1. which are transverse to the wave vector q. Тhe expIicit 
expression for the effective action figuring in (16) сап Ье found using the dynamical 
equations (11), and (14). It сап Ье written as the sum of the reactive and the dissipative parts 
.9" = .9" теас + .9" diss where 

.9"теас = J dtd2r {path + PVa 'Vah + Maatja - ~Ma 'V4h'V ah } , 

.9"diss = J dtd2r {_~r/'i,P'V6h + iTr('Vp)2 + 2'fJJLQ(v+ iTJL)} . 

2100 
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The detailed derivation of the effective action for the problem сап Ье found in Refs. [20,21]. 
We introduce the notations for the pair correlation functions. Taking into account only 

the transverse components of the fields v and 1", we сап write 

(h(t, r)p(O, О») = f ~:;зq ехр( -ivJt + iqr)G(U}, q), 

(vo,{t, r)щ(О, О») = f ~:;зq ехр( -iU}t + iqr) [8",{З - q~;{З ] Gtr(U}, q), 

(h(t, r)h(O, О») = f ~:;зq ехр( -iwt + iqr)D(U}, q), 

( ) -f dw d2q (' ') [f: q",q{З] D ( v",(t, r)v{З(О, О) - (2'Л-)3 ехр -zwt + zqr u",{з - 7 tr "-', q) . 

(19) 

(20) 

The correlation functions (рр) and (1"1") are equal to zero (what is the general property of the 
technique, see e.g. Ref. [18]). The functions D and Dtr determine the pair correlation functions 
of the observable quantities and the functions G, Gtr are response functions. Therefore, the 
function G(U}) is analytic in the upper U} half-plane. 

It is possible to formulate the diagram technique for calculating correlation functions (19) 
and (20). The harmonic part of the effective action :f = :f теас + :f diss deterrnines the bare 
values of the response functions 

1 
Go(w, q) = - U} + iГк,q6/2 ' (21) 

The values of the 'bare' pair correlation functions satisfy the relations 

1 
1т Gtr = 2TDtr, (22) 

which are consequences of the fluctuation-dissipation theorem. In addition to the harmonic 
part, the effective action :f contains terrns of the third order, which deterrnine the third-or­
der vertices which figure оп diagrams representing the perturbation series for the correlation 
functions (19), and (20). One сап check the relations (22) order Ьу order and, consequently, 
they are valid for the «dressed» corre]ation functions (19), and (20). Note that the relation 

f dW 2Т 
-2 D(w,q) = -4' 

1г ""q 
(23) 

which сап Ье proved Ьу using (22), the analyticity of G(U}) in the upper half-plane, and 
the asymptotic law G(w) ~ _U}-I, which is correct for large "-'. Actua1ly, (23) is а direct 
consequence of (3), since the integral over frequencies is just the simultaneous correlation 
function. 

Analysis of the diagrarns shows that they contain infrared 10garithms which are related to 
the 1ines representing the correlation function D Eq. (20). The 1ines produce the factors 

TL 
(У' ",h(t, r)V' (Зh(t, О») = -2 -8",{З , 

1Гк, 
(24) 

where L = ln[hg- I / 2/r] and т- I is deterrnined Ьу the characteristic extemal wave vector 
of the diagram. The expression (24) сап Ье found from (23) if one reca1ls condition (5). The 
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presence ofthe logarithmic contributions implies that the main renormaIization of а correlation 
function Шее G(I.V, q) is produced Ьу the degrees offreedom with the wave vectors muсЬ smaller 
than q. Therefore, we should extract from the diagrammatic expressions for G(I.V, q) only the 
contributions corresponding to the interaction with the degrees of freedom. 

ТЬе program сап Ье reaIized directly in using the language of the functional integral. Let 
us separate the variables h, р, У, Jl. into fast parts (with wave vectors larger than q), basic parts 
(with the wave vectors of the order of q) and slow parts (with wave vectors smaIIer than q). 
At caIculating G(I.V, q) we сап forget about the fast parts and keep the interaction of the basic 
part with the slow part. We then obtain the following expression from (17), and (18): 

:7'= J dtd2r {раth+PV"Щ:,+J.L"аtjQ-~J.L"V'4hтQ-г~рV'6h+2"7JLqv}+ ... , (25) 

where h, р, У, Jl. denote the basic parts of the fields, т" is the gradient of the slow part of h 
and dots designate irrelevant terrns. ТЬе action (25) is ofthe second order over h, р, У, Jl. and, 
consequently, the integrals over the fields сап Ье taken explicitly. Since m varies only weakly 
along the length q-l, we obtain 

where 

G(I.V,q) = - (phl.V + 2i"7q)Ll- 1)m ' 
Gtr (I.V , q) = - (I.V + iк,гq6 /2)Ll- 1) m ' 

Ll = (phl.V + 2i"7q)(1.V + iк,гq6/2) - ",q4m~r/2, 

(26) 

(27) 

(28) 

and the notation ( ... ) m means averaging over statistics of m. In caIculating (26), and (27) we 
substituted j = phv. Actually; the terms with ph сап Ье neglected and we omit them below. 

In averaging in (26), and (27) we сап assume the statistics ofm to Ье Gaussian. ТЬе point 
is that only simultaneous correlation functions of m enter the expressions and the functions 
are described Ьу the harmonic energy (3). The pair correlation function of m is equal to (24). 
Therefore, 

and we find from (26) 

(29) 

We see that G as а function of the frequency I.V have the cut aIong the imaginary semiaxis, 
which starts from I.V = -iгк,q6/2 and goes to -ioo. The effective length of the cut сап Ье 
estimated as Т q3 /"7, which is the new characteristic frequency associated with the fluctuations. 
Let us compare the frequency with the position of the pole in the bare expression: 

T q3/"7 g 
гк,q6 '" (qho)3 . 

(30) 
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We conclude that the f1uctuation effects dominate in the region gl/2 < qho < gl/3. We сап 
now justify the disrеgШ'd of phw in comparison with 1/q in the аЬоуе expressions. When qh ...., 1 

and at qho ...., y'g 

Performing Fourier transform of (29) over frequencies, we obtain 

(31) 

The expression (31) is correct for а positive time t. For negative times G(t) = О due to the 
causality principle since G is the responce function. We see from (31) that in the f1uctuation 
region gl/2 < qh < gl/3 there appears ап intermediate power asymptotics t-1/2, which at large 
times t is changed Ьу the exponential decay. This means that the squeezing mode is described 
Ьу а dynamic equation, which is nonlocal in time. 

The аЬоуе assertion is correct for the wave vectors q ~ y'g / ho. In the limit q ho «: y'g we 
retum to the local equation (11) but with the renormalized kinetic coefficient г. The quantity 
сап ье found Ьу integrating the weight exp(i3') over the degrees offreedom with the wave vectors 
q ~ y'g /ho. The main effect is attribl1ted to the sweeping term in the effective action (17). 
Because of the integration over the degrees of freedom with the wave vectors q ~ y'g / h, the 
term iTr(\1p)2 in (18) for the long-wavelength degrees of freedom is renormalized. We find 
for the renormalized уаluе 

г - г = 4~ J dt d2r (v(t, r)h(t, r)v(O, O)h(O, О») , (32) 

where averaging is performed over the degrees of freedom with the wave vectors q ~ y'g / ho. 
Using the renormalized expressions for the correlation functions, we obtain the estimate г ...., 
....., g-I/2r :» г. 

4. CONCLUSION 

We demonstrated that f1uctuations essentially modify the character of the squeezing mode 
due to its nonlinear coupling with transversal shear hydrodynamic mode. The f1uctuation effects 
lead to nonlocality of the equation for the mode; the corresponding Green's function is (31). 
The new characteristic frequency of the mode related to the f1uctuations is w ....., T q3/1/ (q is 
the wave vector); remarkably it does not depend оп the bending elasticity. It is important 
to distinguish the characteristic frequency from the attenuation of the membrane bending 
mode (8) which has the same q3 dependence оп the wave vector. We stress that the strong 
f1uctuation effects are observed only for dynamics. The static characteristics are not inf1uenced 
Ьу f1uctuations because of the smallness of the coupling constant (2). This is the reason why 
we need only the harmonic part of the energy (3). 

Strong dynamic f1uctuations of h occur for the wave vectors q ~ y'g / h. For srnaller 
wave vectors the f1uctuations of h are weak. Nevertheless, even for the wave vectors there is 
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а тетосу of the region of strong fluctuations, which is the renormalized value of the kinetic 
coefficient Г in the Eq. (11): the bare уаlие (12) is substituted Ьу ['", g-l/2r ~ Г. Note also 
that to analyze the dispersion relation of the squeezing mode in the limit q « v9 / h starting 
from (11) we should take into account in addition to the energy (5), the steric (4) and the Уап 
der Waals (6) contributions to the energy. As а result, we find 

Let us discuss the possibility of checking our predictions experimentally. The membranes 
сап Ье studied Ьу а variety of experimental techniques. Lately, laser «tweezers» муе Ьесоте 
а useful tool for probing dyпamical properties of membranes. This technique enables us to 
obtain direct information about amplitudes and characteristic times of dynamical fluctuations 
of different objects consisting of membranes. For details see the monography [27] and recent 
experiments [29-31]. We сап also mention force apparatus measurements [28], which make it 
possible to investigate dynamical response for two уесу thin lamellar systerns confmed between 
the walls, and the classicallight-scattering experiments. Because ofrelaxation ofthe membrane 
fluctuations, the scattered light has а broadened spectral distribution compared to the incident 
light. Despite the small broadening, the modern technique of light beating (intensity fluctuation 
spectroscopy) allows to obtain information about eigenmodes of the system. 

The conclusions concerning the renormalization of the squeezing mode, in оur opinion, 
are interesting, both in their own right and as а new test of the membrane fluctuations. 

The research described in this publication was made possible in part Ьу Russian Foundation 
for Basic Research grants. Опе ofthe authors (Е. к.) thanks Мах Planck Institute for Physics 
of Сотрlех Systems (Dresden) for supporting his stay at this institute. 

APPENDIX 

Elastic Modes 

Here we consider the elastic modes associated with the relaxation of the surface density of 
molecules that comprise the two membranes of а double Юm. То find the dispersion relation 
for the modes we should start from the elastic energy associated with the variations of the 
surface density of molecules nв ' In the harmonic approximation the elastic energy of а single 
membrane is [21] 

- 1 J 2 .7tel - 2 dAB<;. (А.1) 

Here 

<; = (n• - nо)/nо, 

where n• - по is the deviation of the surface density of molecules n• from its equilibrium value 
По, and the coefficient В has the meaning ofthe inverse compressibility ofthe membrane. The 
elastic energy is the sum of terms (А.1) for both membranes that constitute the double Юm. 

Let us consider the elastic modes in the Iinear approximation. We assume that at 
equilibrium the membranes Iie in the planes z = ±ho/2. The deviations ofthe membranes from 
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the positions сап then Ье characterized Ьу tlleir displacements иl,2 along the z axis. То find the 
dispersion relations for tlle modes one should solve conventional hydrodynamic bulk equations 
supplemented Ьу boundary conditions at the membranes. As we wil1 see, the frequencies of the 
elastic modes are small compared to sound frequency. Consequently, we сап use the convential 
linearized equations of an incompressible liquid [З2]. 

'\'kVk = О, (~,\,2 - дt) Vk = '\';Р, (А,2) 

where k = х, у, z. Since the membranes are immersed into the liquid they move with the 
velocity of the liquid which is continuous near the membranes. ТЬе boundary conditions for 
Eqs. (А2) for а membrane сап Ье found in Refs. [20,21]. In the linear approximation they 
are 

pSBtVz 1,2 + J);'\'~Ul,2 = -LPJ1,2, 

Bt U 1,2 = V z 1,2, 

р" Btvcx 1,2 + В'\' 01<;1,2 = 'Г} L'\' zvcxJ 1,2, 

Bt<;I,2 + '\' cxVcx 1,2 = О, 

(АЗ) 

(А4) 

(А5) 

(А,б) 

where the «f1oors» designate а jump at the membranes, pS is the two-dimensional mass density 
of amphiphilic molecules, subscripts 1 and 2 numerate the membranes. Really, the terms with 
р" in Eqs. (АЗ) and (А5) are negligible. 

Now, we wi1l solve Eqs. (А2) with the boundary conditions (АЗ)-(Аб) under the 
assumption that аll variables are proportional to ехр( -iwt + iqx), where U) is the frequency, 
and q is the wave vector. 

ТЬе velocity of the liquid is divided into two parts: potential and solenoidal. ТЬе potential 
component is related to the pressure which obeys the equation 

ТЬе solenoidal component is described Ьу the equation 

-ipwv = 'Г}('\'; - q2)V. 

ТЬш we сап explicitly write the solutions of the eqautions inside and outside the Шm in terms of 
the velocity ofthe membranes. ТЬе expressions are slightly ditТerent for the symmetric (<;1 = <;2) 

and the antisymmetric (<;1 = -<;2) cases. Using the solutions in bulk we сап express the jumps 
in Eqs. (АЗ) and (А5) in terms of V x and V z оп tlle membranes. As а result we find а linear 
system fot V x and V z . We сап then write the condition for the existence ofnontrivial solutions 
of the system, which for the symmetric case in the simplified form is 

V 2 (cth V ~ho _ cth q~o) 2 _ [V2 + (V +;3) (v cth V ~ho _ cth q~o)] х 

х [v cth qho cth Vqho + (v cth Vqho _ cth qho)] = о 
2 2 2 2 . 

Иеrе we introduce the notations 

V = J-i wР 
rJq2 ' 

2105 

;3=i Bq , 
rJw 

(А7) 



Е. 1. Kats, V. V. Lebedev, S. V. Malinin ЖЭТФ, 1998, 113, выn. 6 

and suggest that at treating elastic modes опе deals with the frequency I.J) ~ ТJq2 / р. For the 
antisymmetric сме the condition сап Ье obtained from (А 7) Ьу substituting cth -+ th. 

It is difficult to find the dispersion relations from (А 7) and the analogous equation for the 
antisymmetric сме in а general situation. Below we consider two different limiting cases and 
assume that 

"12 
Bpho « 1, (А8) 

what is natural sinse ho is тисЬ larger than the molecular length for real f1lms. First, we 
consider the short-wavelength limit 

( 2) 1/2 
qho ~ B:ho 

(А9) 

We then obtain the same dispersion relation as for the elastic mode of а single membrane [33,21] 

±у'3 _ i (В2 ) 1/3 
VJ = _ q4/З. 

2 4ТJp 
(АI0) 

This means that the thickness of layers near the membranes where the hydrodynamic motion 
occurs is тисЬ less than ho and consequent1y the membranes сan Ье treated as being nearly 
independent in this сме. Note that due to (А8) the condition (А9) is compatible with qho « 1, 
where the membranes cannot Ье regarded as independent in considering, say, the squeezing 
mode. Therefore, опе should Ье careful: under the condition (А9) the membranes сап ье 
treated as practically independent on1y in examining the elastic modes. In the opposite long­
wavelength limit, 

( 2) 1/2 
qho « B:ho ' 

(Аll) 

we deal with two different dispersion relations. In the symmetric сме the dispersion relation 
is 

_ ±у'3 - i (В2 ) 1/3 4/3 
VJ- - q. 

2 ТJp 
(АI2) 

Тhis is the same dispersion relation as (АI0) but with the doubled membrane elasticity, which 
is natural for the doubIe f1lт. In the antisymmetric case the dispersion relation is 

. Bq2ho 
VJ=-z~. 

Thus we encounter the simple diffusion. 

(А 13) 

ТЬе dispersion laws (АI0), (А12), and (А13) show that the frequencies of the elastic 
modes are sma11 in comparison with the sound frequency cq (where с is the sound velocity), 
which justifies our using the incompressible hydrodynamic equations (А2). Note also that 'for 
the mode (А13) the condition (А8) ensures the inequality VJ ~ ТJq2 / р, which was suggested 
in the derivation ofthe relation (А7) (the inequality enables us to disregard the potentia1 part 
of the velocity). Thus, the condition (А8) makes our scheme self-consistent. 
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In the long-wavelength limit the double membrane Шm сап ье treated as an effective 
single membrane. This effective membrane should Ье framed Ьу hydrodynamic variables which 
give the information about the «microscopic» construction of the double membrane Шm. In 
other words one should incorporate into the set of «macroscopic» variables the surface densities 
(described Ьу "1 and "2) of molecules, which comprise the two membranes, and the two-di­
mensional mass density ph of the liquid between the membranes. ТЬе dynamic equation for 
the variable has been derived in the main text of this paper, see Eq. (11). ТЬе phenomenologic 
dynamic equations for "1 and "2 can Ье derived in the same manner, the Poisson brackets for the 
density of any conserved scalar quantity the same structure of the Poisson bracket as (10) [18]. 
In terms of the variables ,,+ = ("1 + "2)/2 and ,,_ = "1 - "2 the equations are 

at ,,+ = - \7 '" [(1 + "+)v,,,] + D+ \72,,+, 

at ,,- = -\7""(,, - v"") + D_ \72,,_. 

(А.14) 

(А.15) 

Here we discarded the bending motion. ТЬе system of equations (А.14), and (А.15) should ье 
supplemented Ьу Eq. (14) in the main text of the paper, where 

Р, = 2В,,+. (А.16) 

In analyzing the elastic degrees of freedom we should use the following expression for the 
momentum flow from the bulk: 

J"" = -2Ji1JрС;vо,, (А.17) 

where the velocity v'" is implied to Ье longitudinal, since just the longitudinal component ofthe 
velocity is involved into the elastic motion. Let us stress that the expression (А.17) is correct 
if w » 1Jq2 / р, which is opposite to the applicability condition of (15). 

Linearizing the system of equations (14), (А.14), and (А 15) (and ignoring the squeezing 
degrees of freedom), we find the dispersion relations (А.12) and w = -iD_ q2. ТЬе term 
with D + in (А.14) appears to Ье irrelevant. Comparing the dispersion relation w = -iD _ q2 
with (А 13), we obtain 

D_ = Bho/21J. (А18) 

It сап then Ье verified that the linear coupling between the elastic and the squeezing degrees 
of freedom described Ьу the term with к in (14) is negligible. Nonlinear terms in Eqs. (14), 
(А 14), and (А 15) lead to the interaction of different modes. ТЬе explicit analysis shows that 
the fluctuation effects do not affect appreciably the linear dispersion relations (А.I0), (А.12), 
and (А.13) due to 9 «: 1. ТЬе same holds for а nonlinear interaction with the bending degree 
offreedom, which (because ofthe same inequality 9 «: 1) does not change the results obtained 
in the linear approximation. 
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