О ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ТЕМНЫХ МАГНИТООПТИЧЕСКИХ РЕШЕТОК ДЛЯ ДОСТИЖЕНИЯ БОЗЕ-КОНДЕНСАЦИИ АТОМОВ

А. В. Тайченачев*, А. М. Тумайкин, В. И. Юдин

Новосибирский государственный университет 630090, Новосибирск, Россия

Поступила в редакцию 5 января 1998 г.

Показано, что в темных магнитооптических решетках эффекты, связанные с бозе-статистикой атомов, могут наблюдаться даже при температурах лазерного охлаждения $(10^{-4}-10^{-6} \text{ K})$, что на порядки превышает температуры испарительного охлаждения в магнитных ловушках. При этом происходит квазиконденсация, когда волновая функция формируется на размерах локализации атомов вблизи дна отдельно взятой потенциальной ямы. Кроме того, адиабатическое отключение магнитного поля приводит к значительному понижению температуры, в результате может наблюдаться бозе-конденсация во всем объеме газа. Предложена конфигурация световых и магнитного полей, в которой форма трехмерного магнитооптического потенциала не зависит от фаз образующих световых волн.

1. ВВЕДЕНИЕ

В 1995 г. многолетние усилия по достижению конденсации Бозе–Эйнштейна в атомарных газах увенчались успехом [1-3]. Новое состояние материи было получено при захвате предварительно лазерно-охлажденных спин-поляризованных атомов в магнитной ловушке с последующим испарительным охлаждением до температур $T \sim 10^{-7}$ К.

В данной работе рассматривается возможность использования темных магнитооптических решеток для наблюдения эффектов, связанных с квантовой статистикой частиц. Такие решетки образуются при резонансном взаимодействии атомов с переходами $F_g = F \rightarrow F_e = F (F - целое число)$ либо $F_g = F \rightarrow F_e = F - 1 (F_g, F_e - угловые$ моменты основного и возбужденного состояний) с неоднородно поляризованным полемв условиях когерентного пленения населенностей в присутствии статического магнитного поля [4]. Холодные атомы, находящиеся в темном состоянии когерентного пленениянаселенностей, локализуются вблизи точек, где это состояние не разрушается магнитным полем и, следовательно, оптическое взаимодействие близко к нулю. Локализацияи охлаждение в таких решетках для одно- и двумерного случаев исследовались в [5-7].

Нами предложена конфигурация полей для устойчивого трехмерного захвата атомов с оптическим переходом $1 \rightarrow 1$ в темной магнитооптической решетке. В случае достаточно сильного лазерного поля глубина модуляции магнитооптического потенциала определяется величиной зеемановского расщепления основного состояния $\hbar\Omega$, а период — длиной волны света λ , как для одномерной решетки, рассмотренной в [7]. Если $\Omega \gg \omega_r$ ($\hbar\omega_r = (\hbar k)^2/2M$ — однофотонная энергия отдачи), то туннелированием

^{*}E-mail: llf@admin.nsu.ru

между ямами можно пренебречь, а расстояние между низколежащими колебательными уровнями в потенциальной яме имеет порядок $\hbar\sqrt{\Omega \omega_r}$. Тогда при температурах $k_BT < \hbar\sqrt{\Omega \omega_r}$ эффекты квантовой статистики будут заметно проявляться при концентрациях $n\lambda^3 \ge 1$, когда в среднем на одну яму приходится более одного атома. Так, бозе-атомы, независимо от числа, практически все окажутся в основном состоянии. При этом образуется квазиконденсат, когда фаза волновой функции задана на размерах локализации в одной яме ($\ll \lambda$) и случайным образом меняется при переходе от одной ямы к другой. Такая квазиконденсация проявляется в скачкообразном поведении пространственного распределения, теплоемкости и др. Эти скачки имеют достаточно плавный характер, как при переходе через критическую точку в системе нескольких частиц в одной потенциальной яме [8]. Поскольку кривизна магнитооптического потенциала вблизи точек минимума значительно превышает кривизну потенциала в магнитных ловушках, вырождение атомарного газа будет заметным при гораздо более высоких температурах ($T \sim 10^{-4}$ – 10^{-6} K), чем соответствующие температуры для магнитных ловушек [1–3].

Кроме того, на основе термодинамического анализа показано, что в случае $n\lambda^3 > 1$ при адиабатическом отключении магнитного поля происходит значительное (на несколько порядков) понижение температуры. При этом возможно достижение конденсации Бозе–Эйнштейна во всем объеме газа. В отличие от обычной бозе-конденсации свободных частиц здесь формируется макроскопическая волновая функция $|\Psi_{NC}\rangle$, которая является пространственно-неоднородной когерентной суперпозицией зеемановских волновых функций основного состояния и обращает в нуль оператор взаимодействия с лазерным полем: $\hat{\mathbf{dE}}|\Psi_{NC}\rangle = 0$. С практической точки зрения предложенный метод адиабатического отключения магнитного поля можно рассматривать как новый высокоэффективный метод сверхглубокого охлаждения атомарных газов с использованием темных магнитооптических решеток.

2. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим газ бозе-атомов, резонансно взаимодействующий с пространственно-неоднородным монохроматическим лазерным полем

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}(\mathbf{r}) e^{-i\omega t} + \mathrm{c.c.}$$

на переходе $F_g = 1 \rightarrow F_e = 1$ в присутствии постоянного магнитного поля **В**. Как известно [9], для всех переходов $F \rightarrow F$ (F — целое число) существуют состояния когерентного пленения населенностей, обращающие в нуль взаимодействие с полем:

$$\left(\widehat{\mathbf{d}}\mathbf{E}(\mathbf{r})\right) |\psi_{nc}(\mathbf{r})\rangle = 0 ,$$

где $\hat{\mathbf{d}}$ — оператор дипольного момента атома. В рассматриваемом случае F = 1 это состояние имеет вид [10]

$$|\psi_{nc}(\mathbf{r})\rangle = \frac{1}{|\mathbf{E}(\mathbf{r})|} \sum_{q=0,\pm 1} E^{q}(\mathbf{r}) |g,\mu = q\rangle, \qquad (1)$$

где $E^q(\mathbf{r})$ — компоненты поля $\mathbf{E}(\mathbf{r})$ в циклическом базисе $\{\mathbf{e}_0 = \mathbf{e}_z, \mathbf{e}_{\pm 1} = \mp (\mathbf{e}_x \pm \pm i\mathbf{e}_y)/\sqrt{2}\}$. Состояние (1) является суперпозицией зеемановских волновых функций

 $|g,\mu\rangle$ основного состояния с неоднородными коэффициентами и в общем случае не является собственным как для оператора взаимодействия с магнитным полем $\hat{H}_B = -(\hat{\mu}\mathbf{B})$, так и для оператора кинетической энергии $\hat{H}_K = \hat{p}^2/2M$. Однако поправки, обусловленные поступательным движением и магнитным полем, можно рассматривать как малые возмущения по отношению к взаимодействию с лазерным полем при выполнении условий

$$V(\mathbf{r})\sqrt{G} \gg k\bar{v}, \Omega, \tag{2}$$

где $V(\mathbf{r}) = |\langle \hat{d} \rangle \mathbf{E}(\mathbf{r})|/\hbar$ — локальная частота Раби, $G = V^2(\mathbf{r})/[\gamma^2/4+\delta^2+V^2(\mathbf{r})]$ — параметр насыщения с учетом полевого уширения уровней (δ — отстройка частоты светового поля от резонанса, γ — скорость радиационной релаксации возбужденного состояния), \bar{v} — средняя скорость атомов. В этом случае практически все атомы оказываются в темном состоянии $|\psi_{nc}(\mathbf{r})\rangle$, так как при выполнении (2) относительные населенности атомов в состоянии когерентного пленения населенностей n_{nc} и в возбужденном состоянии n_e удовлетворяют соотношению

$$(1-n_{nc}) \sim n_e \sim \left(\frac{\max\{k\bar{v},\Omega\}}{V(\mathbf{r})\sqrt{G}}\right)^2 \ll 1$$
.

С такой же точностью эволюцию отдельного атома можно описать эффективным одночастичным гамильтонианом

$$\widehat{H}_{eff}^{(1)} = \langle \psi_{nc}(\mathbf{r}) | (\widehat{H}_K + \widehat{H}_B) | \psi_{nc}(\mathbf{r}) \rangle .$$
(3)

Согласно стандартным правилам квантовой теории многих частиц, ансамбль атомов будем описывать следующим гамильтонианом в представлении вторичного квантования:

$$\widehat{H} = \int \widehat{b}^{\dagger}(\mathbf{r}) \,\widehat{H}_{eff}^{(1)}(\mathbf{r}) \,\widehat{b}(\mathbf{r}) \, dr^3,$$

где $\hat{b}^{\dagger}(\mathbf{r}), \hat{b}(\mathbf{r})$ — операторы рождения и уничтожения атомов в состоянии когерентного пленения населенностей (1) в точке **г**.

Подчеркнем, что при выполнении условий (2) вследствие эффекта когерентного пленения населенностей наиболее сильное диполь-дипольное взаимодействие атомов существенно подавлено ($n_e n \lambda^3 \ll 1$), и мы будем им пренебрегать, также как и межатомными столкновениями, т.е. ограничимся приближением идеального газа.

3. ЭФФЕКТИВНЫЙ ГАМИЛЬТОНИАН ДЛЯ АТОМОВ, НАХОДЯЩИХСЯ В ТЕМНОМ СОСТОЯНИИ

Используя явный вид (1) для состояния когерентного пленения населенностей, запишем одночастичный гамильтониан (3) в виде суммы четырех слагаемых:

$$\widehat{H}_{eff}^{(1)} = \frac{\widehat{p}^2}{2M} + U(\mathbf{r}) + \frac{1}{2M} \left\{ (\mathbf{A}(\mathbf{r})\widehat{\mathbf{p}}) + (\widehat{\mathbf{p}}\mathbf{A}(\mathbf{r})) \right\} + W(\mathbf{r}) \,. \tag{4}$$

Первое слагаемое в (1) — оператор кинетической энергии. Второе слагаемое представляет собой магнитооптический потенциал:

ЖЭТФ, 1998, 113, вып. 6 О возможности использования темных магнитооптических решеток...

$$U(\mathbf{r}) = \hbar \Omega \, \frac{i(\mathbf{B}[\mathbf{E}(\mathbf{r})\mathbf{E}^*(\mathbf{r})])}{|\mathbf{B}| \, |\mathbf{E}(\mathbf{r})|^2} \,, \tag{5}$$

ниже будем полагать $\Omega > 0$. Последние две поправки в (4) обусловлены пространственной неоднородностью темного состояния. Первая из них имеет порядок величины kv и может быть интерпретирована как взаимодействие с эффективным векторпотенциалом:

$$A_j(\mathbf{r}) = -i\hbar \left(\frac{\mathbf{E}^*}{|\mathbf{E}|} \frac{\partial}{\partial x_j} \frac{\mathbf{E}}{|\mathbf{E}|} \right) \,. \tag{6}$$

Вторая поправка имеет порядок однофотонной энергии отдачи $\hbar \omega_r$ и дает вклад в потенциальную энергию атома:

$$W(\mathbf{r}) = \frac{\hbar^2}{2M} \sum_{j} \left| \frac{\partial}{\partial x_j} \frac{\mathbf{E}}{|\mathbf{E}|} \right|^2.$$
(7)

Если величина зеемановского расщепления

$$\Omega \gg k\bar{v}, \omega_r \,, \tag{8}$$

то последними двумя членами в (4) можно пренебречь. В этом случае

$$\widehat{H}_{eff}^{(1)} \approx \frac{\widehat{p}^2}{2M} + U(\mathbf{r}),$$

и задача сводится к движению бесструктурной частицы в магнитооптическом потенциале (5), глубина которого определяется магнитным полем, а пространственная периодичность — длиной волны света.

4. КОНФИГУРАЦИЯ ПОЛЕЙ ДЛЯ УСТОЙЧИВОГО ТРЕХМЕРНОГО ЗАХВАТА АТОМОВ

Очевидно, что потенциал (5) можно использовать для создания трехмерной решетки атомов, если лазерное поле $E(\mathbf{r}, t)$ является конечным набором плоских волн. Однако при этом возникает следующая проблема: форма потенциала (5) зависит в общем случае от фаз образующих плоских волн, которые обычно не контролируются. Изменение фаз полей может приводить, в частности, к нарушению условия устойчивого трехмерного захвата атомов, т. е. минимумы потенциала образуют непрерывные линии или плоские поверхности. Поэтому особый интерес с точки зрения экспериментальной реализации представляют такие конфигурации световых полей, при которых форма потенциала не зависит от выбора фаз, приводящего только к пространственному сдвигу всей картины.

В данной работе нами предложена одна из таких конфигураций, образуемая пятью линейно поляризованными лазерными лучами (рис. 1):

$$\mathbf{E}(\mathbf{r}) = \mathbf{e}_x E_1 \exp(i\mathbf{k}_1 \mathbf{r}) + \mathbf{e}_y E_1 \exp(i\mathbf{k}_2 \mathbf{r}) + \mathbf{e}_z E_2 \left\{ \exp(i\mathbf{k}_3 \mathbf{r}) + \exp(i\mathbf{k}_4 \mathbf{r}) + \exp(i\mathbf{k}_5 \mathbf{r}) \right\}.$$

Два встречных пучка распространяются вдоль оси z ($\mathbf{k}_2 = -\mathbf{k}_1 = |k|\mathbf{e}_z$), имеют одинаковые амплитуды E_1 и взаимно ортогональные линейные поляризации (lin⊥lin-конфигурация). Другие три пучка одинаковой амплитуды E_2 линейно поляризованы вдоль

Рис. 1

Рис. 2

Рис. 1. Конфигурация оптических и магнитного полей, в которой форма магнитооптического потенциала (5) не зависит от фаз образующих световых волн и выбором начала системы координат приводится к виду (9)

Рис. 2. Светоиндуцированные переходы (отмечены стрелками) в точках локализации. Темное состояние (1) совпадает с зеемановским подуровнем $|g, \mu = -1\rangle$ (отмечено звездочкой)

 \mathbf{e}_z , их волновые векторы \mathbf{k}_3 , \mathbf{k}_4 , \mathbf{k}_5 лежат в плоскости xy и образуют друг с другом угол 120°.

Можно показать, что для любых фаз образующих волн выбором начала системы координат магнитооптический потенциал (5) приводится к виду

$$U(\mathbf{r}) = \frac{-2\hbar\Omega\cos(2kz)}{2 + |E_2/E_1|^2 \left\{ \sin^2(3ky/2) + [\cos(3ky/2) + 2\cos(\sqrt{3}kx/2)]^2 \right\}} .$$
 (9)

Минимумы этого потенциала расположены в плоскостях $z = m\lambda/2$ ($m = 0, \pm 1, ...$) и в каждой из них образуют двумерную решетку, состоящую из правильных треугольников со стороной $2\lambda/3$. В этих точках поляризация поля **E**(**r**) является левоциркулярной, а состояние когерентного пленения населенностей (1) совпадает с зеемановским подуровнем $|g, \mu = -1\rangle$ и не разрушается магнитным полем **B** (рис. 2). Как показано в [7], локализация атомов около таких точек приводит к дополнительной устойчивости состояний когерентного пленения населенностей по отношению к деструктивному влиянию магнитного поля. В результате для локализованных атомов имеем более сильную оценку:

$$(1-n_{nc}) \sim n_e \sim \left(\frac{\Omega}{V\sqrt{G}}\right)^2 \sqrt{\frac{\omega_r}{\Omega}} \ll 1,$$

которая за счет фактора $\sqrt{\omega_r/\Omega} \ll 1$ заметно отличается от общей оценки, приведенной в разд. 1.

ЖЭТФ, 1998, 113, вып. 6 О возможности использования темных магнитооптических решеток...

Рис. 3. Схематическое изображение низколежащих колебательных уровней в магнитооптическом потенциале (9)

Нетрудно показать, что потенциал (9) соответствует трехмерной периодической решетке с объемом элементарной ячейки

$$u = \frac{\lambda^3}{3\sqrt{3}}$$

Хорошо известно, что энергетический спектр в периодическом потенциале имеет зонную структуру. Однако для нижних зон в силу условия (8) туннелированием частиц из одной ямы в другую можно пренебречь. При этом ширины нижних зон будут экспоненциально малы по параметру $\exp\left(-\sqrt{\Omega/\omega_r}\right)$, а положение этих зон определяется из гармонического разложения потенциала (9) вблизи дна отдельно взятой ямы:

$$U(\mathbf{r}) \approx -\hbar\Omega \left[1 - \frac{9|E_2|^2}{8|E_1|^2} k^2 (x^2 + y^2) - 2k^2 z^2 \right]$$

Отсюда видно, что расстояние между двумя самыми нижними энергетическими зонами при соизмеримых величинах амплитуд $|E_1|$ и $|E_2|$ имеет порядок $\hbar\sqrt{\Omega\omega_r}$ (см. рис. 3). Выбирая $|E_2| = 4|E_1|/3$, получим трехмерный изотропный гармонический осциллятор с частотой

$$\Omega_{osc} = \sqrt{8\Omega\,\omega_r}\,.$$

Далее для определенности будем рассматривать именно этот случай.

5. КВАЗИКОНДЕНСАЦИЯ

При температурах $k_BT < \hbar\Omega$ атомы совершают финитное движение в магнитооптическом потенциале (9). Как известно, эффекты квантовой статистики становятся заметными, когда длина волны де Бройля сравнивается со средним межатомным расстоянием. В рассматриваемом случае это соответствует условию $k_BT < \hbar\Omega_{osc}(nu)^{1/3}$, где nu — среднее число атомов в одной элементарной ячейке (nu > 1).

С учетом конечной ширины $\Delta \varepsilon_0$ нижней энергетической зоны можно выделить две области. Во-первых,

$$\Delta \varepsilon_0 < k_B T < \hbar \Omega_{osc} (nu)^{1/3}, \tag{10}$$

когда практически все бозе-атомы находятся в нижней энергетической зоне с равновероятным распределением по квазиимпульсам. Это соответствует квазиконденсации, когда формируется волновая функция атомов на размерах локализации ($\ll \lambda$) в одной яме. При переходе от одной ямы к другой фаза этой функции меняется случайным образом, т.е. глобальная конденсация во всем объеме решетки отсутствует. В интервале (10) объемная плотность S энтропии системы слабо зависит от температуры и в нулевом порядке по величине ($\Delta \varepsilon_0/k_BT$) $\ll 1$ имеет значение

$$S \approx n \left[(nu)^{-1} \ln(1 + nu) + \ln \left(1 + (nu)^{-1} \right) \right] , \qquad (11)$$

которое может быть получено из комбинаторного анализа:

$$S = \lim_{V \to \infty} \frac{\ln c}{V} \,,$$

где c — число различимых размещений из nV неразличимых объектов (атомов) в V/u ячейках (квазиимпульсы нижней зоны), когда каждая ячейка может содержать любое число объектов (бозе-статистика), т.е.

$$c = \frac{(nV + V/u - 1)!}{(nV)! (V/u - 1)!}$$

Используя теперь хорошо известную асимптотическую формулу Стирлинга для a! при $a \to \infty$ ($a! \approx a^a e^{-a} \sqrt{2\pi a}$), приходим к выражению (11). Получить (11) можно также исходя из большого канонического распределения.

Во-вторых, если $k_BT < \Delta \varepsilon_0$, то происходит упорядочение по квазиимпульсам нижней зоны. При этом, как и должно быть, энтропия системы стремится к нулю. Однако в случае выполнения условий (8) величина $\Delta \varepsilon_0$, как уже отмечалось, является экспоненциально малой, поэтому область температур $k_BT < \Delta \varepsilon_0$ не представляет практического интереса.

6. БОЗЕ-КОНДЕНСАЦИЯ ПРИ АДИАБАТИЧЕСКОМ ОТКЛЮЧЕНИИ МАГНИТНОГО ПОЛЯ

При уменьшении магнитного поля размеры локализации волновой функции в каждой яме увеличиваются, усиливается туннелирование атомов из одной ямы в другую и происходит перекрытие их волновых функций. Это, в принципе, может приводить к корреляции фаз атомных волновых функций и формированию бозе-конденсации во всем объеме газа.

Дадим термодинамическую оценку возможности этого эффекта при адиабатическом отключении магнитного поля. Как известно, термодинамическим условием адиабатичности какого-либо процесса является неизменность энтропии: S = const. В качестве начальных условий будем рассматривать область температур (10), когда значение энтропии S определяется из (11). Для оценки величины термодинамических параметров в отсутствие магнитного поля будем использовать приближение идеального газа свободных бесструктурных частиц. Так, например, энтропия идеального бозе-газа S_I в критической точке T_c есть $S_I(T_c) \approx 1.28n$ [11]. Тогда, для того чтобы при адиабатическом отключении магнитного поля температура стала ниже критической и произошла бозе-конденсация, требуется выполнение условия $S < S_I(T_c)$ (это следует из свойства монотонной зависимости энтропии от температуры). В соответствии с (11) это приводит к неравенству

$$\left[(nu)^{-1} \ln(1+nu) + \ln\left(1+(nu)^{-1}\right) \right] < 1.28,$$
(12)

которое выполняется при nu > 1.17. Таким образом, адиабатическое отключение магнитного поля приводит к значительному понижению температуры, что внешне напоминает магнитное охлаждение. Однако с физической точки зрения здесь имеет место охлаждение за счет расширения газа. Действительно, в нашем случае магнитное поле приводит к формированию магнитооптического потенциала и сильной пространственной локализации атомов на размерах много меньших λ . При отключении магнитного поля происходит делокализация атомов, что и соответствует эффективному расширению газа.

Отметим, что для более строгой оценки состояния системы в отсутствие магнитного поля нужно учитывать последние две поправки в (4), обусловленные периодической неоднородностью состояния когерентного пленения населенностей (1) на размерах порядка длины волны света λ . Однако в случае nu > 1 эти поправки не должны приводить к очень значительному изменению термодинамических величин по сравнению с газом свободных частиц. Так, из общих физических соображений ясно, что энтропия в точке перехода T_c даже с учетом поправок (6), (7) имеет вид $S(T_c) = Dn$, где коэффициент Dс увеличением параметра nu выходит на насыщение и имеет величину порядка единицы, как для свободного газа. При этом множитель $[(nu)^{-1}\ln(1 + nu) + \ln(1 + (nu)^{-1})]$ в (11), наоборот, с ростом nu довольно быстро убывает (фактически, как $(nu)^{-1}$). Таким образом, очевидно, что всегда можно определить величину f такую, что при nu > f выполняется неравенство $[(nu)^{-1}\ln(1 + nu) + \ln(1 + (nu)^{-1})] < D$, т. е. когда при адиабатическом отключении магнитного поля температура опускается ниже критической и возможна бозе-конденсация даже с учетом пространственной неоднородности состояния когерентного пленения населенностей (1).

В то же время при определении волновой функции основного состояния системы необходим точный учет членов (6), (7) в (4). Наиболее вероятно, что основным состоянием системы в нашем случае является известное [10] макроскопическое темное состояние

$$\left|\Psi_{NC}\right\rangle = R |\mathbf{E}(\mathbf{r})| \left|\psi_{nc}(\mathbf{r})\right\rangle = R \sum_{q=0,\pm 1} E^{q}(\mathbf{r}) \left|g,\mu=q\right\rangle,$$

которое не разрушается поступательным движением:

$$\frac{\widehat{p}^2}{2M} \left| \Psi_{NC} \right\rangle = \hbar \omega_r \left| \Psi_{NC} \right\rangle,$$

R — нормировочная константа. Действительно, амплитуда $|\mathbf{E}(\mathbf{r})|$ является собственной функцией для гамильтониана (4) при $\mathbf{B} = 0$, она действительна и в конфигурации, показанной на рис. 1, не имеет узлов.

В качестве примера рассмотрим переход 1 \rightarrow 1 на D_1 -линии ⁸⁷Rb (λ = 7947.6× ×10⁻⁸ см). Взяв величину магнитного поля $B \approx 4$ Гс ($\Omega \approx \gamma/2$), нетрудно определить, что для температур $T \leq 10^{-5}$ К и концентраций $n \geq 1.2 \cdot 10^{13}$ см⁻³ выполняются как условие квазиконденсации (10), так и (12), когда возможна бозе-конденсация во всем объеме газа при адиабатическом отключении магнитного поля (для свободного газа при

 $n = 1.2 \cdot 10^{13} \text{ см}^{-3}$ имеем $T_c = 9.7 \cdot 10^{-8}$ К). Эти оценки демонстрируют также высокую эффективность (несколько порядков) предложенного нового метода адиабатического охлаждения газа с использованием темных магнитооптических решеток. Отметим, что для выполнения условия (2) интенсивность света должна быть порядка или больше 1 Вт·см⁻².

Следует сказать, что такие значения концентраций в экспериментах по лазерному охлаждению и захвату атомов пока еще не достигнуты. Однако наблюдающийся быстрый прогресс в технике эксперимента позволяет надеяться, что в ближайшем будущем режим nu > 1 в темных оптических и магнитооптических решетках будет достигнут.

Случай nu < 1 требует отдельного рассмотрения.

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (проект 98-02-17794) и программы «Университеты России».

Литература

- 1. M. H. Anderson, J. R. Ensher, M. R. Mathews et al., Science 269, 198 (1995).
- 2. C. C. Bradley, C. A. Sackett, J. J. Tollet, and R. G. Hullet, Phys. Rev. Lett. 75, 1687 (1995).
- 3. K. B. Davis, M.-O. Mewes, M. R. Andrews et al., Phys. Rev. Lett. 75, 3969 (1995).
- 4. А. М. Тумайкин, В. И. Юдин, ЖЭТФ 98, 81 (1990).
- 5. G. Grynberg and J.-Y. Courtois, Europhys. Lett. 27, 41 (1994).
- 6. A. Hemmerich, M. Weidemüller, T. Esslinger et al., Phys. Rev. Lett. 75, 37 (1995).
- N. P. Konopleva, A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Quantum Semiclass. Opt. 8, 837 (1996).
- 8. C. Herzog and M. Olshanii, E-preprint atom-ph/9609002 in xxx.lanl.gov.
- 9. В. С. Смирнов, А. М. Тумайкин, В. И. Юдин, ЖЭТФ 96, 1613 (1989).
- А. В. Тайченачев, А. М. Тумайкин, М. А. Ольшаный, В. И. Юдин, Письма в ЖЭТФ 53, 336 (1991).
- 11. Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, Часть 1, Наука, Москва (1976).