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The retarded Green's function G(k, w) ofa single small spin polaron in the three-band model 
for the СuО2 plane is calculated in the self-consistent Born approximation. It is shown that such а 
spin polaron is а good quasiparticle excitation for realistic values of spin exchange J and efТective 
hopping т. The polaron spectral density Ap(k, w) demonstrates small damping in contrast (о the 
results ofcalculations starting from the bare hole, i.e., the pole strength Zp(k) ofthe energetically 
low-Iying quasiparticle peak varies from 50% to 82% for J/r rv 0.1-0.7. The quasiparticle peak 
dispersion reproduces the main features of the bare polaron spectrum !}k near the band bottom. 
The spherically symmetric approach is used for the description of spin excitations. тhis approach 
makes it possibIe to consider the quantum antiferromagnetic background without the spontaneous 
symmetry break:ing and the unit сеll doubIing. The new method of the self-consistent calculation, 
based оп continuous-fraction expansion ofthe Grcen's function, is presented in detaiI. The method 
preserves the proper analytical properties ofthe Green's function and makes it possibile (о analyze 
the nature of its singularities. 

1. INТRODUCTION 

ТЬе Ьоlе motion in а two-dimensional (2D) s = 1/2 quantum апtifепоmаgпеt (АРМ) 
has Ьееп studied in depth theoretically [1]. ТЬе important question is whether а Ьоle injected 
in the undoped ground state behaves like а quasiparticle. This problem is mainly illvestigated 
within the framework of self-consistent Вот approximation (SCBA) for the t-J model [2-7] 
and Kondo lattice [8]. There are only а few studies devoted to the three-band Hubbard model or 
the Emery model [9,10] whicl1 is more realistic for СиО2 planes in high-Tc superconductors 
(HTSC). For the t-J model it was shown tlшt the spectral density function Ah(k, w) of а 
doped Ьоlе revealed а qпаsiраrticlе peak of intensity Zk ~ J /t and а broad illcoherent part 
that has а width of about (6-7)t. ТЬе qпаsiраrtiсlе band bottom сопеsропds to the momenta 
k\ = (±7Г /2, ±7Г /2) . Similar results were obtained for the Emery model [11, 12]. Both the 
presence of а large incoherent part and small illtensity of qпаsiраrtiсlе peak indicate that bare 
holes are rather poor elementary excitations еvеп for k close to k\. 

In order to investigate the hole тоtiоп in the t-J model опе usнally dесопрlеs the l101e 
operator into а sрiпlеss fеrmiоп and ап апtifепоmаgпеtiс magnon operator. As а result, the 
zero approximation сопеsропds to the dispersiollless band with zero energy of the hole. ТЬе 
hopping of the particle appears only due to the fermion-magnon scattering, which is treated 
Ьу the пsнаl pertнrbation method iп k-space. For this reason, we think that in this approach 
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the resulting quasiparticle pole in the ferrnion Green's function involves mainly а polaron with 
а large radius. А similar situation takes place in the usual treatment of а hole motion in the 
effective three-band model [11-13] and the Kondo-lattice model [8], when one starts from а 
bare hole, rather then from а magnetic polaron of а small radius. 

In the framework ofthe effective three-band model we studied the spectral density function 
Ap(k, "-') of а single small polaron, i.e., an excitation which at the outset takes into account 
а local hole-spin coupling . It is known that the simplest candidate for such а sma1l polaron 
is an analog of the so-called Zhang-Rice singlet in СuО4 plaquette [14,15]. The mean-field 
spectrum Qk of this excitation has been studied extensively [15] and will Ье used as the zero 
approximation in oиr treatment. We shall consider the coupling of а small polaron to spin-wave 
excitations in SCBA for the corresponding two-time retarded Green's function G(k,w). 

Oиr motivations to study Ap(k, "-') and the corresponding quasiparticle band are the 
following. First, it is easy to show for the one-hole problem that the mean-field energy of 
the polarol1 Qk represents the center of gravity of the spectra1 function: 

00 

Qk = J wAp(k,w)dw. (1) 

-00 

This means that the IШшmum of Qk is the upper bound of the actual position for the 
quasiparticle band bottom. The SCBA, based оп а bare hole Green's function, gives the 
mil1imum value of quasiparticle energy wh'in = -2.6т [12] for а typical value of copper­
copper АРМ exchange constal1t J = 0.7т. Here т is а COl1stant ofthe effective oxygen-oxygen 
hopping via an intervening copper site (note that oиr unit of energy is twice that of [12], т = 2t). 
As to the value of the small polaron mean field band bottom, it tums out to Ье substantially 
10wer than wh'in, Qk = -3.17т for the same value of J/T. We тау conclude, therefore, that 
important 10саl correlations are 10st in SCBA when we start from the bare hole operators. 

Second, we shall show that а small polaron represents the elementary hole excitation much 
more better than а bare hole dressed Ьу magnons within the framework of SCBA. This is 
mal1ifested Ьу а relatively large intensity of а quasiparticle peak in oиr ca1culation. 

Finally, the mean field spectrum Qk of the simplest small spin polaron explicitly depends 
оп the state of the antiferromagnetic background. In the case of 10ng-range order state, Qk 

demonstrates а flat band region close to the magnetic Brillouin zone boundary [15]. This region 
corresponds to the bottom ofthe band. Moreover, if one takes into account the direct oxygen­
oxygen hopping, finite temperatиre, and а more complicated [оrrn for а small polaron wave 
function, then Qk reproduces the experimentally observed extended saddle point [16-20], which 
is directed along the line (0,71") - (О, О) [21]. Therefore, it seems important to ascertain whether 
the quasiparticle bal1d reproduces the peculiarities of Qk dispersion. Usil1g а very simple variant 
of the model, we shall deterrnine below whether this is in fact the case. 

The distinctive feature of oиr investigation is the consideratiol1 of the АРМ copper spin 
subsystem in а spherically symmetric approach [22,23]. Such an approach is most appropriate 
in treating the quantum 2D АРМ at any finite temperatиre. As а result, the scattering of а 
spin polaron Ьу spin excitations in the singlet spin background leads to the spectral function 
periodicity relative to the full Brillouin zone. Note that the conventional two-sublattice spin 
approach leads to periodicity relative to the magnetic (reduced) Brillouin zone [2-7,12]. 

The paper is organized as follows. In Sec. 2 we give the derivations for the self-consistent 
equation for the Green's function in the сме of the small polaron approach. In Sec. 3 we 
present the procedиre that makes it possible to avoid the iterative solution of the self-consistent 
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equation for complex energies. The procedure is based оп the continuous-fraction expansion 
of Green's function and makes it possible to calculate consequently the coefficients of the 
continuous-fraction expansion with the use of the quadrature method. In Sec. 4 we offer the 
termination of the continuous-fraction, which leads to the сопесt analytical properties of the 
resulting Green's function. Numerical results for the self-energies and spectral functions, the 
relation of ош results to the previous approaches, and discussion are given in Sec. 5. In Sec. 6 
we summarize the results. An Appendix contains some details of the approach which gives the 
expression for integrals over the spectral density in terms of the chain representation of the 
continuous fraction. 

Some of ош results were presented in а brief Report [24]. In this paper we present additional 
results, describe the new method, and give more details about the calculations. 

2. EFFECТIVE НAМILTONIAN AND SМALL POLARON GREEN'S FUNCTION 

FoJ1owing [9,10,15], we adopt the Hamiltonian that сопеsропds to one-hole problem in 
the СиО2 plane of the high-Те superconductors: 

(2) 

where al, а2 = ±gx/2, ±gy/2, g = ±gx, ±gy. Here and below gx,y are the basic vectors of а 
copper square lattice ( Igl :::::: 1), r + а are four vectors of the О sites nearest to the Си site r, 
the operator ct creates а hole with the spin index (j = ± 1 at the О site, SO'O" = (j 0'0" /2, and 
the operator S represents the localized spin at the copper site. As mentioned above, т is the 
integral ofoxygen hole hoppings, which takes into account the coupling ofthe hole motion with 
copper spin subsystem, and J is the constant of the nearest neighbor AFM exchange between 
the copper spins. 

It is wel1 known that the most prominent feature of the Hamiltonian (2) is that the low­
energy physics of hole excitations is described Ьу the Bloch sums 9]~,0' based оп опе site small 

polaron operators 9];,0' 

=t _ 1 "" ikr Cii'Jt 
JClkO' - Л\f1'Т ~e JClrO" , yNKk r ' 

(3) 

=t = ~ ""( t Z"" _ t ZO''') 
.;,r) r ,(7 2 ~ cr+a,u r cr+a,o- r , (4) 

а 

к = (J... "" e-ik(r-r'){9] 9]t }) = 1 + (о +~) ""-k N ~ r,O', r' ,О' g 4 , ... 
r,r' 

Here and below {,}, [,] stand for an anticommutator and commutator, respective1y; ( ... ) :::::: 
:::::: Q-l Тr[е-,вн ... ], and Q = Tr е-,вн; f3 = (kt)-l is ап inverse temperature; 0-:::::: 
:::::: -а; Z;'IO" :::::: l(jl) (а21 are the Hubbard projection operators for Си sites state, ')'k = 

= (1/4) I:g exp(ikg), and Og = (SoSg). 
То calculate the average for commutators and anticommutators such as Kk , we take 

into account that these expressions are reduced to the two-site or three-site spin сопеlаtiоп 
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functions. In principJe, it is necessary to soJve а self-consistent problem for hole and spin 
subsystems in order to find these correlation functions. However, in the limit of а small 
number of holes it is possible to ignore the reverse inf1uence of the holes оп the spin subsystem. 
We сап then use the results of [22,23], where the indicated spin correlation functions are 
ca1culated in the spherically symmetric approach for the spin subsystem. In particular, in 
this approach the three-site correlation functions сап Ье expressed in terrns of the two-site 
spin correlation functions, Cr = (808r ). We recall that due to the spherical symmetry 

( ву В?) = 8а{З (ву В}) = ~ (8 i 8j ), (В'!) = О. Simultaneously, as Т -+ О, the spin subsystem 

is described Ьу а long-range-order state with finite effective magnetization т, Cr(lrl -+ 00) = 
= m 2( -ly,+r,,; here the уаluе of т is dictated Ьу the Bose condensation of spin excitations 
at the antiferromagnetic vector qo = (7!', 7!'). 

Note that $~ О' IL) corresponds to the СиО2 рlапе state with the total spin equal to 1/2 if 

IL) is the singlet st~te. We treat $1 О' as а candidate for the elementary excitations operator and 
ca1culate the corresponding retarde'd two-time Green's function G(k, w) and spectral density 

1 G( . + Ap(k,w) = -- 1т k,w + ~O ), 
7!' 

00 

G(k,w) = ($k,O'I$~,O')", == -i !dtei",<t-t')({ $k,O'(t), $~,O'(t')}). 
(5) 

t' 

Using the equations ofmotion, the retarded two-time Green's function G(k, w) сап Ье expressed 
(see, for ехатрlе, [25,26]) in the following [оrrn, which is analogous to the Dyson's equation: 

G-1(k,w) = G01 - L(k,w), (6) 

where 

(8) 

(9) 

(10) 

(11) 

Q т (k) = - ~ - 8 ( ~ + Cg ) /k + (~ - Cg + ~ C2g) /2k + 2 (~ - Cg + ~ Cd) /dk, 
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Here and below d = gx + gy, and /'dk = cos(kxg) cos(kyg). 
Note that the expession (6) is formally exact. However, in contrast to the Dyson's 

equation for the causal Green's functions, the diagrammatic representation is absent for 
the self-energy part (7). We see from Eqs. (6) and (7) that the self-energy :E(k, w), which 
accounts for the interaction effects, is expressed in terms ofthe higher-order Green's functions. 
Опе should notice, first, that the terms linear in !?IJk,,, do not contribute to the iпеduсiblе 
Green's function (7). Second, the lowest-order self-energy contribution is provided Ьу the first 
term оп the right-hand side of expression (7), while the second term leads to higher-order 
сопесtiопs. Following Ref. 7, we evaluate (7) with а proper decoupling procedure for the two­
time correlation function (~k,,,(t)~~,,,(t'»). This procedure is equivalent to SCBA in а usual 
diagrammatic technique [7]. In our case this means that the two-time сопеlаtiоп function is 
decoupled into the spin-spin сопеlаtiоп function and the polaron-polaron сопеlаtiоп function. 
The adopted decoupling procedure preserves the main character ofpolaron site operator (4)­
four hole site operators suпоuпd the copper spin operator. It сап Ье represented schematically 
in the form 

( Zr, (t) ( ~ cr,+a, (t)Zr, (t») (~Zr, (t')c;,+a, (t'») Zr, (t'») := 

:= ( (~cr,+a,(t)Zr,(t») (~Zr,(t')c;,+a,(t'») ) (Zr,(t)Zr,(t'»). (12) 

We note that the more complex decoupling procedure was also tested Ьу us; it did not 
qualitatively alter the results given Ьу approximation (12). In the next step we project the 
polaron operators in (12) onto g}k": 

(13) 

Scince we ca1culate оn1у the irreducible part of Green's function (7), the avera­
ges (Zr, (t)Zr.(t'») are transformed the to сопеsропdiпg spin-spin сопеlаtiоп functions 
(S~(OS::и'»). Col1ecting аl1 terms, we have 

(~k,,,(t)~~,,,(t'») := н- 1 L K.;-qr(k,q)(g}k_q,,,(t)g}~_q,,,(t'»)(S_q(t)Sq(t'»), (14) 
q k 

where 

_ (1 + /'k-q ) rT(k,q) - 4/'k-q 2Kk_q - 1 , 

(S_q(t)Sq(t'») = ~ L eiq.(r'-r) (Sr(t)Sr' (t'») . 
r,r' 
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Using the spectral representation for the Green's functions, we obtain the following 
interrnediate result for the self-energy: 

00 
1 ""' Kk- q 2 / dы! L(k, W) = N L.,; K

k 
Г (k, Ч) --;- х 

q -00 
х /00 dW2 е,в(""+,,,,) + 1 1т [G(k-q,wj+iO+)]Im [D(q,W2+iO+)] (15) 

7r (е,в"" + 1) (е,в"" - 1) W - (Wj + W2) + iO+ . 
-00 

The spin excitation Green's function is [22,23] 

8JC 1- rq 
D(q,w) = (S':'qIS:) = --3 g 2 2' 

W -Wq 
(16) 

where 

We ignore the influence of doped holes оп copper spin dynamics and use the spin spectrum 
parameters calculated in Ref. 22 (the vertex сопесtiоп й! = 1.7, the spin excitations 
condensation part т2 = 0.0225, and ~ = О at Т = О). 

As а result, we obtain the integral equation for the Green's function that always arises 
within the framework of SCBA: 

1 
G(k,w) = (k )' 

W-Пk-L ,W 
(17) 

where 

L(k, w) = ~ L M 2(k, ч) [(1 + vq)G(k - q,w - Wq) + vqG(k - q,w + Wq)] . (18) 
q 

Неге vq = 1/ [exp(Bwq) - 1] is the Bose function and 

M2(k, ч) = Kkk - q r 2(k, ч) (-4Cg ) (1 - rq) . 
k wq 

(19) 

The function r(k, ч) сопеsропds to the Ьаге vertex for the coupling between а spin polaron 
and а spin wave. It is known [27] that this vertex is substantial1y renorrnalized for q close to 
t11e AFM vector ЧО = (7r, 7r) . This renormalization is due to the strong interaction ofa polaron 
with the condensation part of spin excitations that must Ье taken into account at the outset. As 
а result, the renormalized vertex t(k, ч) must Ье proportional to V(q - чо)2 + L s 2 [27], where 
L s is the spin-spin сопеlаtiоп length; L s --; 00 in case of а 10ng-range-order state of the spin 
subsystem. Below we take this renormalization into account empirically Ьу the substitution 

r(k, ч) --; t(k, ч) = r(k, ч) ~ . (20) 

The introduced vertex сопесtiоп is proportional to Iq - qol for q close to Чо . We have used 
also the fol1owing two functions for the vertex сопесtiоп, ~ and ~, and have 
obtained the results similar to those presented below. Note that the Ьаге vertex leads to а 
dramatic decrease of the quasiparticle bandwidth. 
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3. SOLUTION OF ТНЕ INТEGRAL EQUATION 

ТЬе equation (17) is usually solved Ьу an iteration procedure. We propose here an 
alternative method, which is based оп the continuous-fraction expansion of G(k, z): 

Ь2 Ь2 
G(k, z) = _--,--о __ -=-1 _ (21) 

z-ao- Z- al-

where 

00 00 

b~ = J Ap(k, w)tfuJ = K k , ао = :5 J wAp(k, w)tfuJ = Пk • 
-00 -00 

ТЬе coefficients Ьn , аn , n > О are related to the spectral density Ap(k, w) via the set of 
orthogonal polynomials Pn(w), which satisfy the recurrence [28-32]: 

P- 1(w) = О, Po(w) = 1, 

Pn+1(w) = (и; - an)Pn(w) - Ь~Рn-l(W), 
(22) 

and 

00 J wP~(w)Ap(k, w)tfuJ 

-00 
аn = -00-,-------- (23) 

J P~(w)Ap(k, w)tfuJ 

-00 

00 J P~+I(w)Ap(k,w)tfuJ 
ь2 _ -_00--=::-______ _ 

n+l - 00 
(24) 

J P~(w)Ap(k, w)tfuJ 

-00 

Here we have used the nonnorrnalized forrn of the polynomials 

J p.(w)P.(w)A,(k,w)dы ~ Б .. (ц ьт)' 
-00 

Comparing Eqs.(21) and (17), we see that the self-energy L(k, z) is the continuous fraction 
similar to G(k, z). Thus we сап introduce the spectral density 

p(k, w) = - 1т [L(k, w + iO+)] /7Г 

and the set of polynomials пn(w) with the recurrence analogous to (22): 
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where 

ею ею 

bi = J p(k, w)dы, аl = :i J wp(k,w)dw, 

-ею -ею 

ею ею J wП;(w)р(k,w)dw J П;(w)р(k,w)dы (25) 

-ею 

аn+l = ~ею~------------ Ь2 __ -~ею~ __________ __ 
n+1 - ею n ~ 1. 

J П;(w)р(k, w)dw J П;_l(w)р(k,w)dы 
-ею -ею 

Оп the other lland, we have the following relation from Eq. (18): 

Inserting the expression for p(k, w) in Eq. (25), we сап express the coefficients аn+l and 
Ьn+2 in terrns of the integrals of the form 

ею , J (w ± wq)mПfАр(k - q,w)dw, i ~ n, m = О, 1, (27) 

-ею 

Now, the trick is that tJle polynornials in w in the integrals (27) have tlle degree less than 
or equal to 2n + 1. As it was proved Ьу Nex [29], such integrals тау Ье expressed ill terms of 
tIle coefficients {ао, ... , аn , ЬО ••• , Ьn }. The details of such а procedure are presented in the 
Appendix. It turns out, therefore, that in SCBA we сап recursively calculate pairs of coefficients 
аn+l, Ьn+ 1 and obtain L(k, w) in the continuous-fraction form. Of course, we must calculate 
simultaneously the coefficients at all the chosen k + q points in the first Brillouin zone. Below 
the chosen points correspond to а lattice of 32 х 32 unit cells. Ош procedure allows us to 
avoid the iterative solution of Eq. (17) for complex energies. 

4. TERMINATION OF ТНЕ CONТINUOUS FRACТION 

The procedure outlined in the previous section would Ье efficient if after calculating а finite 
питЬег of coefficients аn , Ьn , n ~ по, we could appropriately approximate that part (infinite 
in оиг case) of tlle continuous fraction Тnо wl1ich has not Ьееп calculated. In other words, we 
rewrite the expression (21) in the form 

G(k,z) = (28) 
z - ао- z - аl-

and try to find а function Т по (so-called «terminator») that is close to Т По' 
Various ways to сопstшсt such approximations are described il1 the literature оп the 

recursion method [29-31]. The asymptotic behavior of continuous-fraction coefficients is 
governed Ьу the band structure апд singularities ofspectral dellsity [31]. The main asymptotic 
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behavior depends оп the band structure: {аn} and {Ьn } converge toward lirnits in the single 
band case and osci11ate endlessly in а predictable way in the multiband case. Damped 
osci11ations are created Ьу isolated singularities. The main point here is that аn isolated simple 
роlе рюduсеs exponentialZy damped contribution in {аn }, {Ьn }, n --> 00. For our case it 
means that the quasiparticle роle position and weight could Ье obtained with high ассurасу 
fюm finite number of coefficients, and the asymptotic behavior determines the incoherent part 
of the spectrum. It is obvious that the spectrum we deal with has а 10wer bound and по upper 
bound. We сап thus expect that coefficients wi11 not converge to some finite values but wi11 
rather tend to infinity. 

In Fig. 1 we represent the coefficients аn and Ьn as functions of n ca1culated according to 
the procedure described in the preceding section for two values of J (] = 0.7 т and J = 0.1 т) 
and for k = (К / 2, 7r / 2 ). We see that the distinctive feature of this dependence is that for 
large n the coefficients аn and Ьn are linear functions of n. Accordingly, the slope for аn 
coefficients is twice as large as the slope for Ьn . The behavior of the coefficients тау therefore 
Ье approximated as 

(29) 

It is interesting that the coefficients for t-J model have the analogous behavior when the slave­
fermion Hamiltonian of this model [2] is treated in SCBA [4]. For J = O.4t, k = (К /2, 7r /2) 
the coefficients аn and Ьn , which are govemed Ьу the relation analogous to (18), are shown 
in Fig. 2а. 

Now we shall show that the same asymptotic expression (29) has the continuous-fraction 
expansion of incomplete gamma function which is written as [33] 

о 

-2 •••• 
•••• • • • 

• 

n 

•• •• •••• •• 

•• 
•••• •• 

n 

Fig. 1. The coefficients аn (squares) and Ьn (crosses) ofthe continuous-fraction expansion 
of Gp(k, ш) as functions оп n for k = (К /2, 7r /2): а) J = 0.7т; Ь) J = 0.1 т. Calcu1ated 

оп the 32 х 32 сеll 1attice 
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е-Хх'" 1 - а 1 2 - а 
Г(а х)=-------··· 

, х+ 1+ х+ 1+ 
(3О) 

We shall use this circumstance for the construction ofthe terminator TN(k, z) for G(k, z) (28). 
We introduce the function 

where 

_ Г(а, -х) ( 1 - а) -1 
g(a,x) = - ( ) = х - -1 е ' 

еХ -х '" - 1 

( n+l-а)-1 
е n = n х - -:----:::---

1 - еn+ 1 

(31) 

(32) 

In order to rewrite the continuous fraction (31) in the [опn analogous to Eq. (21), we denote 

1 
т-=в == 1 + ntn · 

n 

We сап then obtain the relations 

1 
t n = х - (2n + 1 - а) - (n + 1)(n + 1 - a)tn +1 ' 

so that 

g(a, х) = to 

has the form (28) with the coefficients Ь6 = 1 and 

аn = 2n + 1 - а, Ь;, = n(n - а). 

(33) 

(34) 

(35) 

(36) 

Comparing Eqs. (29) and (36) for large n, when vn(n - а) ~ n - а/2, we see that the 
substitution 

leads to the function д: 

G(k ) = ~ - (_ 2А2 Z + 2А2 - Аз + А1 ) 
,z ..\1 g ..\1 ' ..\1 ' (37) 

which has the same asyтptotic behavior as G(k, z) (Eq. (21». This means that G(k, z) сап 
Ье used as the terminator for G(k, z); i.e., we сап express Tno(k, z) = bno+1tno+1 in terms of 
G(k, z) and the coefficients аn , Ьn , n ~ по, and then substitute it for Tno(k, z) (see Ref. зо 
for the detai1s of matching Greenians). 

We thus obtain G(k, z) in the whole сотрlех energy plane including the real axis. Note 
that usually the procedure of discretizing the energy range (J) is used for the iteration process 
when the Dyson's equation is solved numerically. It is not obvious that such а self-consistent 
solution leads to the сопесt analytical properties ofthe resulting Green's function. In contrast, 
the continuous-fraction representation guarantees these properties (e.g., the positive definiteness 
of spectral function Ap(k, си». 
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5. RESULTS AND DISCUSSION 

In this section we present our resu!ts for the retarded Green's function C(k, '"'-') for the 
three-band model at Т = о. The se!f-consistent equation (17) was solved оп а 32 х 32 cell 
lattice. The number of calculated continuous-fraction levels по was assumed to Ье по = 30. 

First, we check the validity of the method outlined аЬоуе Ьу calculating the spinless 
hole Green's function for the t-J model and compare the results with the results of 
Martinez and Horsch [4] obtained Ьу the usual iteration procedure. In Fig.2 Ah(k1, w + i1J), 
Re~(kl,w), - Im~(kl,w), k1 = (7[/2,7[/2) for the value of J = O.4t are represented for the 
16 х 16 site lattice and broadening constant 1J = O.Olt. Comparison of Fig. 2b--d and the 
сопеsроnding functions given in Figs. 7 and 8 from Ref. 4 (the same lattice size and the same 
1J) demonstrates that the position of peaks of the hole spectral function and peak's intensities 
coincide. The difference is that our Ah (k1, '"'-') is more smooth and there are по strong oscillations 
in our self-energy ~(k,w) in the interval -2t < w < -0.75t. 

The results for the smal1 spin polaron spectral density, rea! and imaginary parts of the 
se!f-energy for the characteristic value of energetic parameter J = 0.7т, are given in Fig. 3 
for the symmetrical points k1 = (7[/2,7[/2), k2 = (0,0), kз = (7[,7[). The energy broadening 
parameter is 1J = 0.002 (we wi1l refer to аН quantities in units of т from now оп). The main 
соттоn feature in the spectra! density for k1 and k2 is the existence of а sharp quasipartic!e 
peak at the bottom of each spectrum. The position of the quasiparticle peak сопеsроnds to 
the condition Re С- 1 (k, '"'-') = О, i.e., the point where we have the crossing of the functions 
у = w - Пk and Re~(k,w), see Figs. 3а and 3Ь. In Fig. 3d we show Ap(k1,w) calcu!ated 
for 1J = 0.002 (solid line) and 1J = 0.0005 (dashed line) in order to study the scaling behavior 
of the peaks and their widths with respect to changes in 1J. Both реаkБ fit quite c!osely with 
а Lorentzian (l/7[) {Z(k1)1J/ [('"'"' - f(k1»2 + 1J2]} , where f(k1) is the location of the peak, 
which in the limit 1J -> О becomes Z(k1)8(w - f(k)). This means that Im~(k,wp) -> О in the 
same limit. Here and be!ow we speak about the position f(k) of such peaks (with the imaginary 
part of the pole close to zero) in terms of the quasiparticle energy. 

Figures 3а and Ь also demonstrate that the incoherent part of Ap(k, '"'-') increases and the 
pole strength decreases with the increasing of f(k), Z(k1) = 0.82, Z(k2) = 0.347. We recal1 
that Пk represents the center of gravity of the spectral function. In our figures the center of 
gravity сопеsроnds to the crossing of the real axis Ьу the line у = w - Пk. Therefore, if the 
quasiparticle peak is far from this point, we wou!d have а large incoherent part. 

Quite different features are demonstrated in Ар(kз , '"'-') in Fig. 3с. The broad lowest peak 
is determined Ьу the appearance ofnonzero Im~(kз, '"'-') in the region where Re С-1(kз , '"'-') has 
по zeros. Two broad additiona! реаkБ at w ~ -1.6 and w ~ -1. О 5 are formed due to the 
zero values ofReC-1(kз,w) c!ose to these '"'-'. At the same time, the Im~(kз,w) is strong in 
these regions. Moreover, the maximum оfIm~(kз, '"'-') (near the point w ~ -1.37) dеtепninеs 
the local minimum of Ар(kз , '"'-'), despite of the fact that this point is close to the frequency 
w!lere Re С- 1 (kз , '"'-') = о. It is clear that it is impossible to treat аnу of the Ар(kз , '"'-') peaks as а 
quasiparticle peak. Bear in mind that the qualitative behavior of the real part of the self-energy 
in Fig. 3с is c!ose to that оnе which is represented Ьу Kampf and Schrieffer; see Fig. 3Ь in 
Ref. 34, for the pseudogap regime of the Hubbard model. Figure 3с gives three solutions of 
ReC-1(kз,w) = о. Although there is а sharp crossover from а situation with three solutions 
to оnе quasiparticle solution, the spectral function sti11 changes smoothly due to the presence 
of the imaginary part of~. 

Figures 3Ь and 3с demonstrate qua!itatively а different character of Ap(k, '"'-') for the points 
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Fig. 2. Resu!ts for the ho!e Green's function G h (k, w) for the t-J mode! calcu!ated with 
the same parameters as in Ref. 4 (] = O.4t, k = (1Г /2, 7r /2), 'f/ = 0.01, 16 х 16 site !attice): 
а) the coefficients аn (squares) and Ьn (crosses) of the continuous-fraction expansion of 
Gh(k, w) as functions of n; Ь) spectra! function Ah(k, w); с) rea! part of the se!f-energy; 

d) imaginary part of the se!f-energy. The unit of energy is t = 1 

k2 = (О, О), kз = (?Г, ?Г). This is the consequence of the spherical1y symmetric approach in 
treating the AFM copper spin subsystem. As mentioned in the Introduction, this approach 
gives rise to the spectral function periodicity relative to the [и1l Bril10uin zone, not the magnetic 
zone. 
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Fig. З. Spin po!aron spectra! density (Ap(k, w), so!id !ines), real (Re :E(k, w), dashed !ines) 
and imaginary ( - 1т :E(k, w), dotted lines) parts of the se!f-energy calculated for J = 0.77, 
32 Х 32 сеН !attice, and different k: а) k = (К /2, 7r /2), here we also reproduce the hole 
spectra! function Ah(k, w), which was obtained in Ref. 12; Ь) k = (О, О); с) k = (к,К). 
In Fig. lа-с 'r/ = 0.0027, the sloping straight Iines represent the function w - Qk. d) 
The dependence of the quasipartic!e peak of Ap(k = (К /2, 7r /2), w) for two values of the 

broadening factor 'r/: 1 - 'r/ = 0.02; 2 - 'r/ = 0.0004. The unit of energy is 7 = 1 
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Fig. 4. ТЬе dispersion of the quasipartic1e band E(k) (symbols) and the теап field 
dispersion Qk (solid line) along the symmetry lines in the Brillouin zone (see the inset) 

for J = 0.7, 32 х 32 се111аШсе, and 'ГJ = 0.002 

In Fig. 4 we show the dispersion relation E(k) of the quasiparticle band and the теап 
field dispersion Пk along the symmetry lines in the Brillouin zone. For E(k) we reproduce 
оnlу those k values for which the lowest peak has а pronounced quasiparticle peak, taking into 
account the following criteria: - Iml:(k, E(k) + irJ) < 2'Г/, 'Г/ = 0.002. As we know [15], due to 
the апtifепоmаgпеtic character of the spin сопеlаtiоп functions the Пk demonstrates а «flat 
dispersion region» close to the line l'k < о, 11'kl « 1, i.e., close to the boundary ofthe magnetic 
Brillouin zone X-N-X (see Fig. 4). As we see from Fig. 4, the quasiparticle band exists in the 
greater part of the Brillouin zone except the region at the top of the Пk spectrum. Moreover, 
the dispersion law E(k) qualitatively reproduces the main featиres of the spectrum Пk • As we 
mentioned in the Introduction, Пk demonstrates the important featиres of the hole spectrum 
for Сu02 plane if опе takes into account the о-о hoppings and spin frustration [21]. We hope 
that in this сме E(k) will reproduce these featиres also. 

Let us compare the small polaron spectral density Ар (k, L<.I) with the results for the bare 
hole Ah(k,L<.I) given Ьу КаЬапоу and Vagov [12] for kJ = (7Г/2,7Г/2), J = 0.77 (see Fig. За). 
First, Fig. За indicates that Ap(kJ, L<.I) has much sharper quasiparticle peaks relative to the 
results for а bare hole. For example, the pole strength Zp(kJ) for the quasiparticle peak of 
Ap(k, L<.I) is Zp(kJ) = 0.82. The сопеsропdiпg value for A h given Ьу Ref. 12 is much smaller, 
Zh(kJ) = 0.25. 

Second, Fig. За explicitly demonstrates the one-peak structure of Ap(kJ,L<.I) in contrast 
to Ah(kJ, L<.I). Finally, it is important that the bottom of oиr quasiparticle band E(k) = -З.52 

is substantially lower than L<.I'hin = -2.6 from Ref. 12. These results are the consequence of 
the fact that elementary excitation, i.e., spin polaron g]k,(J" of small radii from the beginning 
involves the strong local hole-spin coupling. 

It is clear that the qllasiparticle peaks for а bare hole and а small polaron must coincide in 
the exact solution of the problem. The above mentioned discrepancies between oиr calculations 
and those of Ref. 12 are the consequence of different approximations. 
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30 and difТerent lattice sizes; Ь) 32 х 32 сеll lattice and difТerent nl1mbers N L 

of calculated continuous-fraction levels 

In order to test the convergence of our results relative to the increase of the lattice size and 
the number N L of ca1culated continuous-fraction levels, in Fig. 5 we show the quasiparticle 
peak of Ap(k, w) at k = (11'/2,11'/2), J = 0.7 for different lattices and по. This peak, as is 
evident from Fig. 5(а and Ь), changes insignificant1y in going from 24 х 24 to 32 х 32 сеll 
lattice and from N L = 22 to N L = 30. 

We consider now the transformation of G(k, w) witll the decrease of J. In order to clarify 
how the character of the Ap(k, w) peaks is changed, in Fig. 6 we show Ap(k, w) for the Уа1ие 
of J = 0.1 at points k, = (11'/2,11'/2), k2 = (0,0), and kз = (11',11'). The decrease of J leads to 
the enlargement of the broad, incoherent part of Ap(k, w). 

As before, the flat band region of the quasiparticle band bottom en1arges along а magnetic 
Brillouin zone boundary. It is represented Ьу the point k,. 111 Fig. 6а Ap(k" w) demonstrates 
explicitly а rather strong quasiparticle peak, Zp(k1) = 0.5, which сопеsропds to the condition 
Re G-1(k, w) = О. Quite different character of Ap(k, w) is typical for k that correspond to the 
tops of Qk band: in the 10w-energy sector for k2 , kз (see Figs. Ь and 6с) опе observes Ap(k, w) 
peaks with small intensity. For example, the роlе strength Zp of such а quasiparticle peak for 
A p (k2, w) is Zp(k2 ) = 0.016. Assuming wz(k) to Ье the value of w corresponding to the center 
ofthese 10west in energy peaks, we see that ReG-1(k,Wl(k» =j О for the k under discussion. 
Figures 6Ь and 6с demonstrates that these peaks are determined Ьу the peaks in lm L(k, w) 
at points wz(k). The self-energy part L(k, w) occurs tl1fougll t11e Green's function of а small 
polaron bounded to spin waves. Tllese peaks сап Ье considered as the quasiparticle band of 
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Fig.6. Spin po1aron spectra1 density (Ap(k, w) solid lines) , rea1 (Re ~(k, w), dashed 
lines) and imaginary (- Im~(k, w), dotted lines) parts of the se1f-energy ~(k, w) 
ca1cu1ated for J = 0.1 т, rJ = 0.002, 32 х 32 сеВ 1attice at three ditТerent k: а) 

k = (7[/2,7[/2); Ь) k = (О, О); с) k = (7[,7[) 

such complex states. 

Ifwe treat the width W ofthe quasiparticle band as the difference c..!1(k2 = (О, О» - c..!1(k1 = 

= (тr /2, 7г /2», then W tums out to Ье of the order of J for small values of J (] ~ 0.1), 
consistent with the results for the hole Green's function approach [12]. 

It is clear that for small J / т tl1e concept of а small spin polaron fails and it is important 
to estimate tlle va1idity limits of this concept. Ош calculations demonstrate that the intensity 
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of quasiparticle peaks and the structure of Ар (k, UJ) do not change dramatica11y for k, which 
corresponds to the band bottom, ир to J /Т = 0.1. For ехатрlе, Zp(-lr /2, 1г /2) ~ Zр(1Г, О) ~ 
~ 0.50 at J/T = 0.1. Therefore, the J/T 10west boundary уаlие of the sma1l spin polaron 
concept va1idity is 10wer than J / Т = 0.1. 

ТаЫе presents the numerical values UJz (k) of the center position of the 10west Ар (k2, UJ) 
peaks (UJz(k) = €(k) for k values where quasiparticle peak is observed) and their роlе strength 
(area under the peak) Zp(k) for k = (1Г /2, 1г /2), (О, О), (О, 1Г) and different values of J. 

ТаЫе 1 
Position UJ/(k) оС the lowest in energy peak and the агеа Zp(k) under the peak 

Сог different values оС J / т and k 

J/T Zp(O, О) UJz(O, О) Zр(1Г /2, 1г /2) UJz(1Г /2, 1г /2) Zр(1Г, О) UJz(1Г, О) 

0.1 0.016 -4.24 0.50 -4.48 0.55 -4.51 
0.3 0.039 -3.37 0.72 -4.09 0.714 -4.13 
0.5 0.174 -2.714 0.793 -3.79 0.738 -3.83 
0.7 0.347 -2.25 0.823 -3.52 0.808 -3.56 

We do not represent the results for large J (] » Т) as our approach in the present [огт 
fails to describe this limit. Here, from the very beginning we treat а small polaron Ьу а single 
site operator 5rJr,cr (4). For large J the mean field static energy of such а state is proportional 
to J and such а state is unstable. In this limit, therefore, we must extend the basis of the site 
operators. The simplest way to do this is to include in the basis the additional operator of а 
bare hole. In SCBA this wil1 lead to the system of two self-consistent equations. As а result, 
аll effects of interaction between а spin subsystem and holes will Ье proportional to Т / J. The 
more general procedure for the extending of the small polaron operator basis is outlined in 
Ref.21. 

6. SUMМARY 

We have studied the small spin polaron motion in the three-band model. The two­
time retarded Green's function was ca1culated in the framework of self-consistent Вот 
approximation for 32 х 32 сеll lattice. We have shown that spin polaron of small radius 
represents а good approximation of the true quasiparticle low-energy excitation even at the 
mean-field level. A110wance for the self-energy does not crucia1ly change the polaron motion 
picture for rea1istic values of parameters. For quasimomenta k values, which correspond to 
the band bottom, most of the total spectral weight is concentrated in the quasiparticle peak 
(ТаЫе 1). In the same region of k-space the shape of the quasiparticle dispersion curve €(k) 
reproduces the shape of the mean-field dispersion nk (Fig. 4). 

We compared our results with the previous studies [11,12] which started from the bare 
hole. We see that the small polaron mean-field energy nk lies much 10wer than the quasiparticle 
pole obtained from SCBA for the bare hole. Since nk determines the center of gravity for the 
Green's function spectral density, the actual quasiparticle pole position (at least for the band 
bottom) should 1ie deeper in energy than nk (Figs. 3 and 6).This means that in the tllree-band 
model the important local correlations should Ье taken into account in zero approximation and 
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small spin polaron should Ье constrиcted. The po!aron scattering оп spin waves wi11 then Ье 
of !ess importance and it тау Ье treated Ьу perturbation methods. 

We conclude that the 10w-energy physics ofhigh-Tc superconductors should Ье considered 
in terms of small spin polaron dynamics. In particular, the problem of superconducting hole 
pairing must Ье treated as pairing of these quasiparticles rather than pairing of bare holes. 

Finally, we wish to clarify the difference between оur the approach and those that use а 
Neel-type spin sпЬsуstеm state. Оur calcu!ations are based оп approach developed in Refs. 22 
and 23, where it is shown that а two-dimensional s = 1/2 апtifепоmаgпеtiс system at !ow 
temperature is in the rotationally invariant state that preserves this invariance in the limit where 
т goes to zero and сопеlаtiоп !ength goes to infinity. Then, even for Т = О, t11e points (0,0) and 
(1!', 1!') are not equiva!ent due to the numerator in the spin Green's function (see Eq. (16». As а 
result, the short-range spin-spin сопеlаtiоп functions, sпсh as Cr\l = {В: S~R)' do not depend 
оп the site r. Let us note that according to Marshall's theore~ [35] the ground state of ап 
antiferromagnet тау Ье а spherically symmetric singlet state in the limit N ~ 00. The question 
about the ground state of а two-dimensiona! s = 1/2 АРМ system is not established exactly. 
Since at апу finite temperature the rotationally invariant theory is trиe for the paramagnetic 
system with strong short-range АРМ сопе!аtiопs, we think that it is impossible for the system 
to undergo ап abrиpt transition to а state with а spontaneously broken symmetry at Т = О. 

Such а transition would теап ап abrиpt rise of the r-dependence in Cr+R and finite {В:). 
We believe that the ground state of а two-dimensional s = 1/2 АРМ system is а spherically 
symmetric state with the !ong-range order, and that it does not !ead to the symmetry of the 
reduced апtifепоmаgпеtic zone. The energy bands therefore are change infinitesimally as we 
go from Т = О to а temperature that is infinitesimally above zero. 

In addition, оur results demonstrate that the nonequiva!ence ofthe (0,0) and (1!', 1!') points 
for the spectral function A(k, U) and Пk do поt contradict the exact diаgопаlizаtiоп studies for 
the gгоuпd state of the t-J mode! (see, e.g., Figs. 18а and 23 iп Ref. 1). 

А few words about the scenario which assumes that а smooth transition from rotationally 
invariant state to the state with sропtапеоus!у broken symmetry takes р!асе. Such а transition 
implies а smooth increase in (вn and г-dерепdепсе of Cr+R. The main effect сопsists поt 
iп the changes of Пk and A(k,U) at (0,0) and (1!',1!') points but iп the opening of the gap 
a!ong the boundary of the magnetic (reduced) Bril10uin zone. As а resu!t, we shall have two 
different bands with the periodicity of the magnetic Brillouin zопе, i.e., tlle (0,0) and (1!', 1!') 
points Ьесоте equiva!ent for each of the two bands. 

We are grateful to О. А. Starykh апd Р. Horsch for va!uable discussions апd 

comments. This work was supported, in part, Ьу the INTAS-PFBR огgапizаtiоп under 
project INTAS-RFBR N295-0591, Ьу the Russian Foundation for Fuпdаmепtаl Research 
(grants Nos.98-02-17187 and 98-02-16730), and Ьу the Russian National Program оп 
Superconductivity (grant No. 93080). 

APPENDIX 

Chain representation and integrals over the spectral density 

The iпtеgгаtiоп over spectra! density cou!d Ье done with the quadrature approach [29], 
which is very efficient when applied to the e!ectron strиcture calculations [32]. Unfortunately, 
the spectral density we deal with has по upper bound and depends ехропепtiаl1у оп the епегgy; 
i.e., it substantially differs from the typical spectral density that appears in Ьапd-strисturе 
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calculations. It tumed out that the direct application of Nex's quadrature approach [29] is 
not stable numerically for our purpose. For calculations of the integrals (27) we therefore 
use the chain representation of the continuous-fraction. This means that the continuous­
fraction expansion of the [оrш (21) mау Ье interpreted as the Green's function G(U.!) = 

= \ uol(u.! - h)-lluo) ofthe one-particle, tight-binding Hamiltonian h ofthe semi-infinite опе­
dimensionallattice with ап. Ьn , and 'иn ) as the site energies, nearest neighbor-hoppings and 
on-site basis states respectively: 

We introduce the eigenstates l'Фm) and eigenenergies Ет of the chain Hamiltonian: 

m 

The Green's function spectral density then becomes the local density of states оп the zeroth 
site of the cllain [28]: 

The following identities will then hold: 

00 00 

F = J 1(U.!)A(U.!)dы = J f(U.!) L (uоl'Фm) b(U.! - Ет ) ('Фmluо) dы = 

_~ -00 m 

= L (uоl'Фm) I(Em) ('Фmluо) = \ uol/(h)luo) . (38) 
m 

Nex [29] has proved that for а polynomial 1 ofthe degree 2nо + 1 the integral F for the infinite 
chain has the same value as ап analogous integral for the truncated chain of length по + 1. The 
Hamiltonian of the truncated chain in the basis of the states {Iuo) .. . Iuno }} has the [оrш of 
the tridiagonal (по + 1) х (по + 1) matrix: 

hT = 

Now, instead of integrating the spectral density function over u.!, we directly calculate the 
matrix function l(hT) in order to take 100 matrix element. Then F = 100, as follows from the 
last identity in Eq. (38). We see that the result for F is expressed оn1у in terms of the first 
coefficients {ао, ... , аn , Ьо ... , Ьn }. 

1776 



ЖЭТФ, 1998, 113, выn. 5 Dynamics 01 Sma// Spin Polaron . .. 

References 

1. Е. Dagotto, Rev. Mod. Phys. 66, 763 (1994). 
2. S. Schmitt-Rink, С. М. Varma, andA. Е. Ruchenstein, Phys. Rev. Lett. 60,2793 (1988); F. Marsiglio, 

А. Е. Ruchenstein, S. Schmitt-Rink, and С. М. Varma, Phys. Rev. В 43, 10882 (1991). 
3. С. L. Капе, Р. А. Lee, and N. Read, Phys. Rev. В 39, 6880 (1989). 
4. G. Martinez and Р. Horsch, Phys. Rev. В 44,317 (1991). 
5. Z. Lui and Е. Manousakis, Phys. Rev. В 44, 2414 (1991); 45, 2425 (1992). 
6. А. Sherman and М. Schriber, Phys. Rev. В. 48, 7492 (1993); 50, 12887 (1994); 50, 6431 (1994). 
7. N. М. Plakida, У. S. Oudovenko, and У. Уu. Yushankhai, Phys. Rev. В 50, 6431 (1994). 
8. А. Ramsak and Р. Prelovsek, Phys. Rev. В 42, 10415 (1990). 
9. У. J. Етегу, Phys. Rev. Lett. 58, 2794 (1988). 

10. У. J. Етегу and G. Reiter, Phys. Rev. В 38, 4547 (1988). 
11. О. F. de Alcantara Bonfim and G. F. Reiter, in Proceedings 01 the Univ. 01 Miami Workshop оп 

Electronic Structure and Mechanisms lor Нigh-Temperature Superconductivity, ed. Ьу J. Ashkenazi, 
Plenum Press, New York (1991). 

12. У. У. КаЬа110У and А. Vagov, Phys. Rev. В 47, 12134 (1993). 
13. О. А. Starykh, О. F. de A1cantara Bonfim, and G. F. Reiter, Phys. Rev. В 52, 12534 (1995). 
14. F. С. Zhang and Т. М. Rice, Phys. Rev. Lett. В 37, 3759 (1988). 
15. А. F. Barabanov, L. А. Maksimov, and G. У. Uimin, Pis'ma Zh. Ехр. Teor. Fiz. 47,532 (1988) [JETP 

Lett. 47, 622 (1988)]; Zh. Ехр. Teor. Fiz. 96, 655 (1989) [JETP 69, 371 (1989)]; А. F. Barabanov, 
R. О. KuziaJ1, and L. А. Maksimov, J. Phys. Cond. Matter 3, 9129 (1991). 

16. J. G. ТоЫп, С. G. Olson, С. Gu et al., Phys. Rev. В 45, 5563 (1992). 
17. К. Gofron, J. С. Campuzano, Н. Ding et al., J. Phys. Chem. Sol. 54, 1193 (1993). 
18. А. А. Abrikosov, J. С. Campuzano, and К. Gofron, Physica С 214, 73 (1993). 
19. О. S. Dessau, Z.-X. Shen, D. М. Кing et al., Phys. Rev. Lett. 71, 2781 (1993). 
20. О. М. Кing, Z.-X. Shen, О. S. Dessau et al., Phys. Rev. Lett. 73, 3298 (1994). 
21. А. F. Barabanov, У. М. Berezovsky, Е. Zasinas, and L. А. Maksimov, Zh. Eksp. Teor. Fiz. 110, 1480 

(1996) lJETP 83, 819 (1996)]. 
22. Н. Shimahara and S. Takada, J. Phys. Soc. Jap. 60, 2394 (1991). 
23. А. Barabanov and О. Starykh, J. Phys. Soc. Jap. 61,704 (1992); А. Barabanov and У. М. Berezovsky, 

Zh. Ехр. Teor. Fiz. 106, 1156 (1994) [JETP 79,627 (1994)]. 
24. А. F. Barabanov, R. О. Kuzian, and L. А. Maksimov, Phys. Rev. В 55, 4015 (1997). 
25. Н. Mori, Prog. Theor. Phys. 33, 423 (1965); 34, 399 (1965). 
26. N. М. Plakida, Phys. Lett. А 43, 481 (1973). 
27. J. R. Schrietтer, J. Low. Тетр. Phys. 99, 397 (1995). 
28. R. Haydock iJ1: Solid State Physics 35, ed. Ьу Н. Ehrenreich, F. Seitz, and О. Turmbul1, Academic 

Press, New York (1980). 
29. С. М. М. Nex, J. Phys. А: Math. Gen. 11, 653 (1978). 
30. R. Haydock and С. М. М. Nex, J. Phys. С: Solid State Phys. 18, 2235 (1985). 
31. The Recursion Method and its Applications, ed. Ьу О. G. Pettifor and О. L. Weaire, Springer, Berlin 

( 1985). 
32. R. Haydock and С. М. М. Nex, J. Phys. С: Solid State Phys. 17, 4783 (1984). 
33. Handbook 01 Mathematical Functions, ed. Ьу М. Abramowitz and 1. А. Stegun, Nat. Bиr. ofStandards 

(1964). 
34. А. Р. Кampf and J. R. Schrietтer, Phys. Rev. В 42, 7967 (1990). 
35. W. Marshal1, Proc. R. Soc. London Ser. А 232, 48 (1955); Е. Lieb and О. С. Mattis, J. Math. Phys. 

3, 749 (1962). 

1777 


