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The retarded Green’s function G(K, w) of a single small spin polaron in the three-band model
for the CuO; plane is calculated in the self-consistent Born approximation. It is shown that such a
spin polaron is a good quasiparticle excitation for realistic values of spin exchange J and effective
hopping 7. The polaron spectral density Ap(k, w) demonstrates small damping in contrast to the
results of calculations starting from the bare hole, i.e., the pole strength Z, (K) of the energetically
low-lying quasiparticle peak varies from 50% to 82% for J/7 ~ 0.1-0.7. The quasiparticle peak
dispersion reproduces the main features of the bare polaron spectrum Qy near the band bottom.
The spherically symmetric approach is used for the description of spin excitations. This approach
makes it possible to consider the quantum antiferromagnetic background without the spontaneous
symmetry breaking and the unit cell doubling. The new method of the self-consistent calculation,
based on continuous-fraction expansion of the Green’s function, is presented in detail. The method
preserves the proper analytical properties of the Green’s function and makes it possibile to analyze
the nature of its singularities.

1. INTRODUCTION

The hole motion in a two-dimensional (2D) s = 1/2 quantum antiferromagnet (AFM)
has been studied in depth theoretically [1]. The important question is whether a hole injected
in the undoped ground state behaves like a quasiparticle. This problem is mainly investigated
within the framework of self-consistent Born approximation (SCBA) for the ¢t—J model [2-7]
and Kondo lattice [8]. There are only a few studies devoted to the three-band Hubbard model or
the Emery model [9, 10] which is more realistic for CuO, planes in high-T, superconductors
(HTSC). For the t-J model it was shown that the spectral density function A(k,w) of a
doped hole revealed a quasiparticle peak of intensity Zy = J/t and a broad incoherent part
that has a width of about (6-7)t. The quasiparticle band bottom corresponds to the momenta
k; = (£7/2,%+7/2) . Similar results were obtained for the Emery model [11,12]. Both the
presence of a large incoherent part and small intensity of quasiparticle peak indicate that bare
holes are rather poor elementary excitations even for k close to k.

In order to investigate the hole motion in the ¢-J model one usually decouples the hole
operator into a spinless fermion and an antiferromagnetic magnon operator. As a result, the
zero approximation corresponds to the dispersionless band with zero energy of the hole. The
hopping of the particle appears only due to the fermion-magnon scattering, which is treated
by the usual perturbation method in k-space. For this reason, we think that in this approach
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the resulting quasiparticle pole in the fermion Green’s function involves mainly a polaron with
a large radius. A similar situation takes place in the usual treatment of a hole motion in the
effective three-band model [11-13] and the Kondo-lattice model [8], when one starts from a
bare hole, rather then from a magnetic polaron of a small radius.

In the framework of the effective three-band model we studied the spectral density function
Ap(k,w) of a single small polaron, i.e., an excitation which at the outset takes into account
a local hole-spin coupling . It is known that the simplest candidate for such a small polaron
is an analog of the so-called Zhang-Rice singlet in CuQ, plaquette [14,15]. The mean-field
spectrum € of this excitation has been studied extensively [15] and will be used as the zero
approximation in our treatment. We shall consider the coupling of a small polaron to spin-wave
excitations in SCBA for the corresponding two-time retarded Green’s function G(k,w).

Our motivations to study A,(k,w) and the corresponding quasiparticle band are the
following. First, it is easy to show for the one-hole problem that the mean-field energy of
the polaron Qy represents the center of gravity of the spectral function:

oo

Q. = /wAp(k,w)dw. 1)

—o0

This means that the minimum of € is the upper bound of the actual position for the
quasiparticle band bottom. The SCBA, based on a bare hole Green’s function, gives the
minimum value of quasiparticle energy w,’[”'" = —2.67 [12] for a typical value of copper—
copper AFM exchange constant J = 0.77. Here 7 is a constant of the effective oxygen—-oxygen
hopping via an intervening copper site (note that our unit of energy is twice that of [12], 7 = 2t).
As to the value of the small polaron mean field band bottom, it turns out to be substantially
lower than w,Ti", Q = —3.177 for the same value of J/r. We may conclude, therefore, that
important local correlations are lost in SCBA when we start from the bare hole operators.

Second, we shall show that a small polaron represents the elementary hole excitation much
more better than a bare hole dressed by magnons within the framework of SCBA. This is
manifested by a relatively large intensity of a quasiparticle peak in our calculation.

Finally, the mean field spectrum €, of the simplest small spin polaron explicitly depends
on the state of the antiferromagnetic background. In the case of long-range order state, Qi
demonstrates a flat band region close to the magnetic Brillouin zone boundary [15]. This region
corresponds to the bottom of the band. Moreover, if one takes into account the direct oxygen—
oxygen hopping, finite temperature, and a more complicated form for a small polaron wave
function, then Q reproduces the experimentally observed extended saddle point [16-20], which
is directed along the line (0, 7) — (0, 0) [21]. Therefore, it seems important to ascertain whether
the quasiparticle band reproduces the peculiarities of Q dispersion. Using a very simple variant
of the model, we shall determine below whether this is in fact the case.

The distinctive feature of our investigation is the consideration of the AFM copper spin
subsystem in a spherically symmetric approach [22,23]. Such an approach is most appropriate
in treating the quantum 2D AFM at any finite temperature. As a result, the scattering of a
spin polaron by spin excitations in the singlet spin background leads to the spectral function
periodicity relative to the full Brillouin zone. Note that the conventional two-sublattice spin
approach leads to periodicity relative to the magnetic (reduced) Brillouin zone [2-7,12].

The paper is organized as follows. In Sec. 2 we give the derivations for the self-consistent
equation for the Green’s function in the case of the small polaron approach. In Sec. 3 we
present the procedure that makes it possible to avoid the iterative solution of the self-consistent
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equation for complex energies. The procedure is based on the continuous-fraction expansion
of Green’s function and makes it possible to calculate consequently the coefficients of the
continuous-fraction expansion with the use of the quadrature method. In Sec. 4 we offer the
termination of the continuous-fraction, which leads to the correct analytical properties of the
resulting Green’s function. Numerical results for the self-energies and spectral functions, the
relation of our results to the previous approaches, and discussion are given in Sec. 5. In Sec. 6
we summarize the results. An Appendix contains some details of the approach which gives the
expression for integrals over the spectral density in terms of the chain representation of the
continuous fraction.

Some of our results were presented in a brief Report [24]. In this paper we present additional
results, describe the new method, and give more details about the calculations.

2. EFFECTIVE HAMILTONIAN AND SMALL POLARON GREEN’S FUNCTION

Following [9, 10, 15], we adopt the Hamiltonian that corresponds to one-hole problem in
the CuO, plane of the high-T, superconductors:

~ 1
H=r1 Z CIH,,ocer,a’ (5500’ + 2saa’sr) + % Z Srsr+ga (2)
ng

r,a;,8,0,0'

where a,,a, = +g,/2,+g,/2, g = +g,, +g,. Here and below g, , are the basic vectors of a
copper square lattice ( |g| = 1), r + a are four vectors of the O sites nearest to the Cu site r,
the operator cf, creates a hole with the spin index o = %1 at the O site, s,,» = 05,/ /2, and
the operator S represents the localized spin at the copper site. As mentioned above, 7 is the
integral of oxygen hole hoppings, which takes into account the coupling of the hole motion with
copper spin subsystem, and J is the constant of the nearest neighbor AFM exchange between
the copper spins.

It is well known that the most prominent feature of the Hamiltonian (2) is that the low-
energy physics of hole excitations is described by the Bloch sums .%’I,a based on one site small

polaron operators %}:a

1 .
B = "B, 3)
ke /N Rx Z »
1 - _
Blo =5 (chaoZ?® = claz 2%, )

1 —ik(r—r = 1
K = <Nze k( ){gr’mﬂ:ﬂ’g}> =1+ (Cg+ Z) Yk-

r,r

Here and below {, }, [,] stand for an anticommutator and commutator, respectively; (...) =
=Q 'TrlePH”..], and Q = TrePH; g8 = (kT)~! is an inverse temperature; & =
= —o0; Z7'%* = |01) (0| are the Hubbard projection operators for Cu sites state, y =
=(1/4) Zg exp(ikg), and Cy = (SoS,).

To calculate the average for commutators and anticommutators such as Ky, we take
into account that these expressions are reduced to the two-site or three-site spin correlation
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functions. In principle, it is necessary to solve a self-consistent problem for hole and spin
subsystems in order to find these correlation functions. However, in the limit of a small
number of holes it is possible to ignore the reverse influence of the holes on the spin subsystem.
We can then use the results of [22,23], where the indicated spin correlation functions are
calculated in the spherically symmetric approach for the spin subsystem. In particular, in
this approach the three-site correlation functions can be expressed in terms of the two-site
spin correlation functions, C, = (S;S,). We recall that due to the spherical symmetry

<Sf‘ Sf > = bap (SFS%) = 5 (SiS;), (S¢) = 0. Simultaneously, as T — 0, the spin subsystem
is described by a long-range-order state with finite effective magnetization m, C(Jr] — o0) =
= m2(—1)"=*"»; here the value of m is dictated by the Bose condensation of spin excitations

at the antiferromagnetic vector q; = (7, 7).
Note that QI’U |L) corresponds to the CuO, plane state with the total spin equal to 1/2 if

|L) is the singlet state. We treat %L,a as a candidate for the elementary excitations operator and
calculate the corresponding retarded two-time Green’s function G(k,w) and spectral density

1
Apk,w) = - Im G(k,w +i0%),

oo (5)
Gk,w) = (Broo | B = ~i /dteiw“—t’)({gfk,g(t), 2,1,
tl

Using the equations of motion, the retarded two-time Green’s function G (k, w) can be expressed
(see, for example, [25, 26]) in the following form, which is analogous to the Dyson’s equation:

G_l(k7 (U) = G(-)-l - Z(k7 UJ), (6)

-1

2(k,w) = (B| R = (R o| R ) — (Po | BL N (Bro| BL ) (Bol BL,), (D

where
. 1 .
Go = - Q _17‘% = 1 aaH = —zkr%rrn 8
0= (w— Q) ko = [Bro, H] \/N—KkZe : ®)
P = AR+ R+ R, 9)

T . -
oo o oo 0,0,
.%r‘a - _'2—0 < E Uer ‘Cr+g+a,t'n - E : 0-2ZI' ]ZH']B Cr+g+a,61) ’

8,2,01 8,3,01,02

(10)
J . . . .
9?;_]’0 = ZU (Z JI(ZI'UUZZ::—Z;I _ Zﬂ?zlfrw')crﬂ,a,) ,
8,a,0,
U= ({Po, B} = (7Q- + TQ1)/ Ky, (11)

7 1 1 1 1 1
Q- k) = 5~ 8 (Z + Cg) Mt <§ - Cg+ 502g> Yo + 2 <§ —Cgt+ icd) Ydks
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Q&) = Coln — 4.

Here and below d = g, + g, and g = cos(k; g) cos(kyg).

Note that the expession (6) is formally exact. However, in contrast to the Dyson’s
equation for the causal Green’s functions, the diagrammatic representation is absent for
the self-energy part (7). We see from Egs. (6) and (7) that the self-energy Z(k,w), which
accounts for the interaction effects, is expressed in terms of the higher-order Green’s functions.
One should notice, first, that the terms linear in %, do not contribute to the irreducible
Green’s function (7). Second, the lowest-order self-energy contribution is provided by the first
term on the right-hand side of expression (7), while the second term leads to higher-order
corrections. Following Ref. 7, we evaluate (7) with a proper decoupling procedure for the two-
time correlation function (%k,o(t)%l,,(t'))- This procedure is equivalent to SCBA in a usual
diagrammatic technique [7]. In our case this means that the two-time correlation function is
decoupled into the spin-spin correlation function and the polaron-polaron correlation function.
The adopted decoupling procedure preserves the main character of polaron site operator (4) —
four hole site operators surround the copper spin operator. It can be represented schematically
in the form

<Z,,<t) (ch (t)zn(t)) (Z Z,J(t')cljﬂz(t')) Zn(t'>> ~

=~ < (Z cr,ﬂ,l(t)zrz(t)) (Z Z, (t')ci,ﬂz(t’)) > (Ze,(£)Ze, () - (12)

We note that the more complex decoupling procedure was also tested by us; it did not
qualitatively alter the results given by approximation (12). In the next step we project the
polaron operators in (12) onto %y, :

GOZ;(t) = EFe(®), €= ({a®Z;0), BL,}). a3

Scince we calculate only the irreducible part of Green’s function (7), the avera-
ges (Z, (t)Z,(t')) are transformed the to corresponding spin-spin correlation functions
(52()Se(t")). Collecting all terms, we have

(P s ()R () = Z "r2<k O Br—q,e ) F)_, ,EN(S_o(DSe(t)),  (14)

where

J
F(k7 Q) =7l (k, q) + EFJ(ka q)v

1+ v 3 4y —
rr(k7 q) = 4’Yk—q (—'—FYk_q - 1) 9 FJ(kvq) = 4’Yq I:(Z - Cg) 3}—7(‘:( i 1:| )
—q

(S_qg(1)Sq(t)) = % D e (S,(1)S (1)) -

r,r’
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Using the spectral representation for the Green’s functions, we obtain the following
intermediate result for the self-energy:

Tk, w) = — K"“'r2(k qQ / =L x
7’ dw, ePlortwn) 4 1 Im [G(k — q,w; +10%)] Im [D(q, w, + i0%)] (15)
T (ePwr +1) (efer — 1) w — (w1 +wy) +1i0* .
The spin excitation Green’s function is [22,23]
ez tess . 8JCy 11—~
D(q,w) = (SZ,|57) = —Tg r{jz, (16)

q

where
wi = —32Ja;,Cy(1 — 7)(2A + 1 +,).

We ignore the influence of doped holes on copper spin dynamics and use the spin spectrum
parameters calculated in Ref. 22 (the vertex correction a; = 1.7, the spin excitations
condensation part m? = 0.0225, and A =0 at T = 0).

As a result, we obtain the integral equation for the Green’s function that always arises
within the framework of SCBA:

_ 1
N o o

where

1
k,w) = N Z Mz(k, q) [(1 + )Gk —qw —w,) t Gk —qw+ wq)] . (18)
q

Here vy = 1/ [exp(Bw,) — 1] is the Bose function and

Mk, q) = U, o U= (19)
q

The function I'(k, q) corresponds to the bare vertex for the coupling between a spin polaron
and a spin wave. It is known [27] that this vertex is substantially renormalized for q close to
the AFM vector qy = (7, 7) . This renormalization is due to the strong interaction of a polaron
with the condensation part of spin excitations that must be taken into account at the outset. As
a result, the renormalized vertex I'(k, q) must be proportional to \/(q — qo)? + L3 2 [27], where
L, is the spin-spin correlation length; L, — oo in case of a long-range-order state of the spin
subsystem. Below we take this renormalization into account empirically by the substitution

Ik, @) — 'k, @) =Tk, q)+/1+ 7. (20)

The introduced vertex correction is proportional to |q — qo| for q close to qo . We have used
also the following two functions for the vertex correction, /1 + 73 and /1 ++;, and have
obtained the results similar to those presented below. Note that the bare vertex leads to a
dramatic decrease of the quasiparticle bandwidth.
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3. SOLUTION OF THE INTEGRAL EQUATION

The equation (17) is usually solved by an iteration procedure. We propose here an
alternative method, which is based on the continuous-fraction expansion of G(k, 2):
b bi by,

Gk = . .
&, 2) Z—ay— Z—Q1— Z—Qp—

y an=an(k), by =bu(k), (21)

where

[ee] 1 o0
b2 = / Ak, w)dw = Ky, ag= = / wA, (K, w)dw = Q.

— 00

The coefficients b,,,a,,n > 0 are related to the spectral density A,(k,w) via the set of
orthogonal polynomials P, (w), which satisfy the recurrence [28-32]:

P——l(w) = 07 Pﬂ(w) = 15

(22)
Prs1(W) = (W — az) Po(w) — b3 Py 1 (W),
and

/ wPfL(w)Ap(k, w)dw
an = = , (23)

/ P2(w)Ap(k,w)dw

/ me(w)Ap(k,w)dw
by = =5 : (24

/ P,f(w)Ap(k, w)dw

Here we have used the nonnormalized form of the polynomials
o0 m=n 2
/ Pr(w)Ps(w) Ap(k, w)dw = 6, (H bm) :
oo m=1

Comparing Eqgs.(21) and (17), we see that the self-energy Z(k, z) is the continuous fraction
similar to G(k, z). Thus we can introduce the spectral density

pk,w) = —1Im [E(k,w + i0+)] /T
and the set of polynomials I1,,(w) with the recurrence analogous to (22):
nn(w) = (UJ - an)nn—l(w) - binn—Z(w)y HO(W) = 1) 1—I—I(W) = Oa
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where
. oo _ 1 oo
bl - p(ka w)dw’ a; = ? ‘-'-’P(k7 w)dwv
1
/ WIT (w) p(k, w)dw / 112 (w) p(k, w)dw (25)
An+1 =—0°°° ) b?ﬁl = _ozo y T Z L.
/ 2 (w) p(k, w)dw / 7 _ (w)p(k, w)dw

On the other hand, we have the following relation from Eq. (18):

1
p(k,w) = E% 3 MK, Q) [(1+ ) Ap(k— 4,2 — wo) + Ak — gz +wy)] . (26)
q

Inserting the expression for p(k,w) in Eq. (25), we can express the coefficients a,+; and
bn+2 in terms of the integrals of the form

oo .
/ (W w)™2A, Kk - qw)dw, i<n, m=0,1, (27)

—00

Now, the trick is that the polynomials in w in the integrals (27) have the degree less than
or equal to 2n + 1. As it was proved by Nex [29], such integrals may be expressed in terms of
the coefficients {aq,...,an,bo...,b,}. The details of such a procedure are presented in the
Appendix. It turns out, therefore, that in SCBA we can recursively calculate pairs of coefficients
an+1, bn+1 and obtain X(k,w) in the continuous-fraction form. Of course, we must calculate
simultaneously the coefficients at all the chosen k + q points in the first Brillouin zone. Below
the chosen points correspond to a lattice of 32 x 32 unit cells. Our procedure allows us to
avoid the iterative solution of Eq. (17) for complex energies.

4. TERMINATION OF THE CONTINUOUS FRACTION

The procedure outlined in the previous section would be efficient if after calculating a finite
number of coefficients a.,, b,, n < ng, we could appropriately approximate that part (infinite
in our case) of the continuous fraction 7},, which has not been calculated. In other words, we
rewrite the expression (21) in the form

b b b

Z—Qayp— Z— a— zZ = an, — Tk, 2)

G(k,z2) = (28)

and try to find a function fno (so-called «terminator») that is close to T5,,.

Various ways to construct such approximations are described in the literature on the
recursion method [29-31]. The asymptotic behavior of continuous-fraction coefficients is
governed by the band structure and singularities of spectral density [31]. The main asymptotic
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behavior depends on the band structure: {a,} and {b,} converge toward limits in the single
band case and oscillate endlessly in a predictable way in the multiband case. Damped
oscillations are created by isolated singularities. The main point here is that an isolated simple
pole produces exponentially damped contribution in {a,},{bn}, n — oco. For our case it
means that the quasiparticle pole position and weight could be obtained with high accuracy
from finite number of coefficients, and the asymptotic behavior determines the incoherent part
of the spectrum. It is obvious that the spectrum we deal with has a lower bound and no upper
bound. We can thus expect that coefficients will not converge to some finite values but will
rather tend to infinity.

In Fig. 1 we represent the coefficients a,, and b,, as functions of n calculated according to
the procedure described in the preceding section for two values of J (J = 0.77 and J = 0.17)
and for k = (r/2,m/2). We see that the distinctive feature of this dependence is that for
large n the coefficients a,, and b,, are linear functions of n. Accordingly, the slope for a,
coefficients is twice as large as the slope for b,,. The behavior of the coefficients may therefore
be approximated as

bp = An+ Xy, an =20+ ), A=XEk), n>1. (29)

It is interesting that the coefficients for ¢-J model have the analogous behavior when the slave-
fermion Hamiltonian of this model [2] is treated in SCBA [4]. For J = 0.4t, k= (7r/ 2,7/ 2)
the coefficients a,, and b,, , which are governed by the relation analogous to (18), are shown
in Fig. 2a.

Now we shall show that the same asymptotic expression (29) has the continuous-fraction
expansion of incomplete gamma function which is written as [33]

a, b, a, b,
12 2rx xxX
L x
a [ ] 6 xxxxxxxx
- [ ] xxxx
L X
o xxxx"xxxx
n
8} -I-
»
L .'. xxx"xx or
[ ] xxx
" xxx [}
4 m o xX | .-'.
r !,(xx u"
L] [
<% "
| x xX & -.l
iy 25 -I-.
XX -
" . ..-'
or - .
n
Al [N 1 1 419, .., Loy L )
0 10 20 30 0 10 20 30
n n

Fig. 1. The coefficients a,, (squares) and b,, (crosses) of the continuous-fraction expansion
of Gp(k,w) as functions on n for k = (w/2,7/2): a) J = 0.77; b) J = 0.17. Calculated
on the 32 x 32 cell lattice
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e l—-a 1l 2—«

Mo == % o+ 1+

(30)

We shall use this circumstance for the construction of the terminator 7y (k, z) for G(k, z) (28).
We introduce the function

i (o, —z) l—a\™'
== - — 31
9(a, z) (= 2)° (w . 01) ; €2y
where
n+l-—a\™*
0, = - . 32
n (z 1 —0,+1 ) (32)
In order to rewrite the continuous fraction (31) in the form analogous to Eq. (21), we denote
1
=1+nt,. 33
-6, nt (33)
We can then obtain the relations
1
tn (34)

I nFl- -+ Dn -t
so that

gla, ) =ty (35)
has the form (28) with the coefficients 2 = 1 and
in=2n+1-0a, b =n(n-a). (36)

Comparing Egs. (29) and (36) for large n, when v/n(n — @) =~ n — a/2, we see that the
substitution

2)\2 x:z+2)\2~/\3+)\1

)\1 ’ )\1

leads to the function G:

(37

~ 1~ 2/\2 Z+2A2—/\3+/\1
Gk, z) Y ( N N ) )
which has the same asymptotic behavior as G(k, z) (Eq. (21)). This means that é(k, z) can
be used as the terminator for G(k, 2); i.e., we can express T, (K, 2) = bpy+1tn,+1 in terms of
é(k, z) and the coefficients a.,, Bn, n < ng, and then substitute it for T;,,(k, z) (see Ref. 30
for the details of matching Greenians).

We thus obtain G(k, z) in the whole complex energy plane including the real axis. Note
that usually the procedure of discretizing the energy range w is used for the iteration process
when the Dyson’s equation is solved numerically. It is not obvious that such a self-consistent
solution leads to the correct analytical properties of the resulting Green’s function. In contrast,
the continuous-fraction representation guarantees these properties (e.g., the positive definiteness
of spectral function A,(k,w)).
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5. RESULTS AND DISCUSSION

In this section we present our results for the retarded Green’s function G(k,w) for the
three-band model at T' = 0. The self-consistent equation (17) was solved on a 32 x 32 cell
lattice. The number of calculated continuous-fraction levels n, was assumed to be ny = 30.

First, we check the validity of the method outlined above by calculating the spinless
hole Green’s function for the t-J model and compare the results with the results of
Martinez and Horsch [4] obtained by the usual iteration procedure. In Fig.2 A (ky,w + in),
Re Z(k;,w), — ImZ(k,,w), k; = (7/2,7/2) for the value of J = 0.4t are represented for the
16 x 16 site lattice and broadening constant = 0.01¢. Comparison of Fig. 2b-d and the
corresponding functions given in Figs. 7 and 8 from Ref. 4 (the same lattice size and the same
1) demonstrates that the position of peaks of the hole spectral function and peak’s intensities
coincide. The difference is that our Ay (k;, w) is more smooth and there are no strong oscillations
in our self-energy X(k,w) in the interval —2t < w < —0.75t.

The results for the small spin polaron spectral density, real and imaginary parts of the
self-energy for the characteristic value of energetic parameter J = 0.77, are given in Fig. 3
for the symmetrical points k; = (7/2,7/2), k, = (0,0), ks = (m, 7). The energy broadening
parameter is 7 = 0.002 (we will refer to all quantities in units of 7 from now on). The main
common feature in the spectral density for k; and k, is the existence of a sharp quasiparticle
peak at the bottom of each spectrum. The position of the quasiparticle peak corresponds to
the condition Re G~!(k,w) = 0, i.e., the point where we have the crossing of the functions
y = w — Q and ReZ(k,w), see Figs. 3a and 3b. In Fig. 3d we show A,(k;,w) calculated
for n = 0.002 (solid line) and n = 0.0005 (dashed line) in order to study the scaling behavior
of the peaks and their widths with respect to changes in 7. Both peaks fit quite closely with
a Lorentzian (1/7){Z(k)n/ [(w — e(k)))> +n?]} , where e(k;) is the location of the peak,
which in the limit 7 — 0 becomes Z(k;)é(w — e(k;)). This means that Im2(k,w,) — 0 in the
same limit. Here and below we speak about the position (k) of such peaks (with the imaginary
part of the pole close to zero) in terms of the quasiparticle energy.

Figures 3a and b also demonstrate that the incoherent part of A,(k,w) increases and the
pole strength decreases with the increasing of e(k), Z(k;) = 0.82, Z(k,) = 0.347. We recall
that Qy represents the center of gravity of the spectral function. In our figures the center of
gravity corresponds to the crossing of the real axis by the line y = w — €. Therefore, if the
quasiparticle peak is far from this point, we would have a large incoherent part.

Quite different features are demonstrated in A,(k3,w) in Fig. 3c. The broad lowest peak
is determined by the appearance of nonzero Im £(ks, w) in the region where Re G~!(ks, w) has
no zeros. Two broad additional peaks at w ~ —1.6 and w ~ —1.05 are formed due to the
zero values of Re G~!(ks,w) close to these w. At the same time, the Im Z(k;, w) is strong in
these regions. Moreover, the maximum of Im Z(k;, w) (near the point w = —1.37) determines
the local minimum of A,(ks,w), despite of the fact that this point is close to the frequency
where Re G~!(ks3,w) = 0. It is clear that it is impossible to treat any of the A, (ks,w) peaksas a
quasiparticle peak. Bear in mind that the qualitative behavior of the real part of the self-energy
in Fig. 3c is close to that one which is represented by Kampf and Schrieffer; see Fig. 3 in
Ref. 34, for the pseudogap regime of the Hubbard model. Figure 3¢ gives three solutions of
Re G~!(k3,w) = 0. Although there is a sharp crossover from a situation with three solutions
to one quasiparticle solution, the spectral function still changes smoothly due to the presence
of the imaginary part of X.

Figures 35 and 3¢ demonstrate qualitatively a different character of A, (k, w) for the points
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Fig. 2. Results for the hole Green’s function G (k,w) for the ¢—-J model calculated with

the same parameters as in Ref. 4 (J = 0.4t, k = (7/2, 7/2), n = 0.01, 16 x 16 site lattice):

a) the coefficients an, (squares) and b,, (crosses) of the continuous-fraction expansion of

Gr(k,w) as functions of n; b) spectral function Ay (k,w); ¢) real part of the self-energy;
d) imaginary part of the self-energy. The unit of energy is ¢t = 1

Dynamics of Small Spin Polaron. . .

k; = (0,0), k3 = (7, n). This is the consequence of the spherically symmetric approach in
treating the AFM copper spin subsystem. As mentioned in the Introduction, this approach
gives rise to the spectral function periodicity relative to the full Brillouin zone, not the magnetic

zone.
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-1 . < . 0
-4 -2 0 w -3.54 -3.53 -3.52 =351 o

Fig. 3. Spin polaron spectral density (A, (k, w), solid lines), real (Re Z(k, w), dashed lines)
and imaginary (— Im Z(k, w), dotted lines) parts of the sclf-energy calculated for J = 0.77,
32 x 32 cell lattice, and different k: a) k = (/2, 7/2), here we also reproduce the hole
spectral function Ax(k,w), which was obtained in Ref. 12; b) k = (0,0); ¢) k = (7, 7).
In Fig. la~c n = 0.0027, the sloping straight lines represent the function w — Q. d)
The dependence of the quasiparticle peak of A,(k = (7/2, 7/2),w) for two values of the
broadening factor n: I — n = 0.02; 2 — n = 0.0004. The unit of energy is 7 = 1
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Fig. 4. The dispersion of the quasiparticle band e(k) (symbols) and the mean field
dispersion Q (solid line) along the symmetry lines in the Brillouin zone (see the inset)
for J = 0.7, 32 x 32 cell lattice, and n = 0.002

In Fig. 4 we show the dispersion relation (k) of the quasiparticle band and the mean
field dispersion € along the symmetry lines in the Brillouin zone. For e(k) we reproduce
only those k values for which the lowest peak has a pronounced quasiparticle peak, taking into
account the following criteria: — ImX(k, e(k) +in) < 2n, n = 0.002. As we know [15], due to
the antiferromagnetic character of the spin correlation functions the Q, demonstrates a «flat
dispersion region» close to the line v < 0, || < 1, i.e., close to the boundary of the magnetic
Brillouin zone X-N-X (see Fig. 4). As we see from Fig. 4, the quasiparticle band exists in the
greater part of the Brillouin zone except the region at the top of the €, spectrum. Moreover,
the dispersion law e(k) qualitatively reproduces the main features of the spectrum Q. As we
mentioned in the Introduction, Q; demonstrates the important features of the hole spectrum
for CuQ; plane if one takes into account the O-O hoppings and spin frustration [21]. We hope
that in this case e(k) will reproduce these features also.

Let us compare the small polaron spectral density A,(k,w) with the results for the bare
hole Ap(k,w) given by Kabanov and Vagov [12] for k; = (7/2,7/2),J = 0.77 (see Fig. 3a).
First, Fig. 3a indicates that A,(k;,w) has much sharper quasiparticle peaks relative to the
results for a bare hole. For example, the pole strength Z,(k;) for the quasiparticle peak of
Apk,w) is Z,(k;) = 0.82. The corresponding value for Ay given by Ref. 12 is much smaller,
Zn(ky) = 0.25.

Second, Fig. 3a explicitly demonstrates the one-peak structure of A,(k;,w) in contrast
to Ap(k{,w). Finally, it is important that the bottom of our quasiparticle band e(k) = —3.52
is substantially lower than w" = —2.6 from Ref. 12. These results are the consequence of
the fact that elementary excitation, i.e., spin polaron % ., of small radii from the beginning
involves the strong local hole-spin coupling.

It is clear that the quasiparticle peaks for a bare hole and a small polaron must coincide in
the exact solution of the problem. The above mentioned discrepancies between our calculations
and those of Ref. 12 are the consequence of different approximations.
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Fig. 5. The function A,(k = (7/2,7/2),w) for J = 0.7 and = 0.002 calculated for
a) NL = 30 and different lattice sizes; b) 32 x 32 cell lattice and different numbers N L
of calculated continuous-fraction levels

In order to test the convergence of our results relative to the increase of the lattice size and
the number N L of calculated continuous-fraction levels, in Fig. 5 we show the quasiparticle
peak of A,(k,w) at k = (r/2,7/2), J = 0.7 for different lattices and no. This peak, as is
evident from Fig. 5(a and b), changes insignificantly in going from 24 x 24 to 32 x 32 cell
lattice and from NL =22 to NL = 30.

We consider now the transformation of G(k, w) with the decrease of J. In order to clarify
how the character of the A,(k,w) peaks is changed, in Fig. 6 we show A,(k,w) for the value
of J = 0.1 at points k; = (7/2,7/2), k, = (0,0), and k; = (7, 7). The decrease of J leads to
the enlargement of the broad, incoherent part of A,(k,w).

As before, the flat band region of the quasiparticle band bottom enlarges along a magnetic
Brillouin zone boundary. It is represented by the point k;. In Fig. 6a A (k;,w) demonstrates
explicitly a rather strong quasiparticle peak, Z,(k;) = 0.5, which corresponds to the condition
Re G~ !(k,w) = 0. Quite different character of Ap(k,w) is typical for k that correspond to the
tops of Q band: in the low-energy sector for ky, k3 (see Figs. b and 6¢) one observes A, (k, w)
peaks with small intensity. For example, the pole strength Z, of such a quasiparticle peak for
Ap(ky,w) is Z,(ky) = 0.016. Assuming w;(k) to be the value of w corresponding to the center
of these lowest in energy peaks, we see that Re G~ !(k, w;(k)) # 0 for the k under discussion.
Figures 65 and 6¢ demonstrates that these peaks are determined by the peaks in ImX(k,w)
at points w;(k). The self-energy part Z(k,w) occurs through the Green’s function of a small
polaron bounded to spin waves. These peaks can be considered as the quasiparticle band of
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Fig. 6. Spin polaron spectral density (A, (k, w) solid lines), real (Re Z(k, w), dashed

lines) and imaginary (— ImZ(k, w), dotted lines) parts of the self-energy Z(k,w)

calculated for J = 0.17, n = 0.002, 32 x 32 cell lattice at three different k: a)
k = (7/2,7/2); b) k = (0,0); ¢) k = (m,7)

such complex states.

If we treat the width W of the quasiparticle band as the difference w;(k, = (0, 0)) — w;(k; =
= (m/2,7/2)), then W turns out to be of the order of J for small values of J (J =~ 0.1),
consistent with the results for the hole Green’s function approach [12].

It is clear that for small J/7 the concept of a small spin polaron fails and it is important
to estimate the validity limits of this concept. Our calculations demonstrate that the intensity
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of quasiparticle peaks and the structure of A,(k,w) do not change dramatically for k, which
corresponds to the band bottom, up to J/7 = 0.1. For example, Z,(n/2,7/2) = Z,(r,0) =
~ 0.50 at J/7 =.0.1. Therefore, the J/7 lowest boundary value of the small spin polaron
concept validity is lower than J/7 =0.1.

Table presents the numerical values w;(k) of the center position of the lowest A,(k;,w)
peaks (w;(k) = e(k) for k values where quasiparticle peak is observed) and their pole strength
(area under the peak) Z,(k) for k = (7/2,7/2),(0,0), (0, ) and different values of J.

Table 1
Position w;(k) of the lowest in energy peak and the area Z,(k) under the peak
for different values of J/7 and k

J/T Z5(0,0) | wi(0,0) Zy(w[2,7/2) wi(r/2,7/2) | Zp(x,0) | wi(m,0)

0.1 0.016 —4.24 0.50 —4.48 0.55 —4.51
0.3 0.039 —3.37 0.72 —4.09 0.714 —4.13
0.5 0.174 —2.714 0.793 -3.79 0.738 —3.83

0.7 0.347 —2.25 0.823 —3.52 0.808 —3.56

We do not represent the results for large J (J >> 7) as our approach in the present form
fails to describe this limit. Here, from the very beginning we treat a small polaron by a single
site operator #, , (4). For large J the mean field static energy of such a state is proportional
to J and such a state is unstable. In this limit, therefore, we must extend the basis of the site
operators. The simplest way to do this is to include in the basis the additional operator of a
bare hole. In SCBA this will lead to the system of two self-consistent equations. As a result,
all effects of interaction between a spin subsystem and holes will be proportional to 7/J. The
more general procedure for the extending of the small polaron operator basis is outlined in
Ref. 21.

6. SUMMARY

We have studied the small spin polaron motion in the three-band model. The two-
time retarded Green’s function was calculated in the framework of self-consistent Born
approximation for 32 x 32 cell lattice. We have shown that spin polaron of small radius
represents a good approximation of the true quasiparticle low-energy excitation even at the
mean-field level. Allowance for the self-energy does not crucially change the polaron motion
picture for realistic values of parameters. For quasimomenta k values, which correspond to
the band bottom, most of the total spectral weight is concentrated in the quasiparticle peak
(Table 1). In the same region of k-space the shape of the quasiparticle dispersion curve e(k)
reproduces the shape of the mean-field dispersion Qy (Fig. 4).

We compared our results with the previous studies [11, 12] which started from the bare
hole. We see that the small polaron mean-field energy Qy lies much lower than the quasiparticle
pole obtained from SCBA for the bare hole. Since Q, determines the center of gravity for the
Green’s function spectral density, the actual quasiparticle pole position (at least for the band
bottom) should lie deeper in energy than Q, (Figs. 3 and 6).This means that in the three-band
model the important local correlations should be taken into account in zero approximation and
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small spin polaron should be constructed. The polaron scattering on spin waves will then be
of less importance and it may be treated by perturbation methods.

We conclude that the low-energy physics of high-T, superconductors should be considered
in terms of small spin polaron dynamics. In particular, the problem of superconducting hole
pairing must be treated as pairing of these quasiparticles rather than pairing of bare holes.

Finally, we wish to clarify the difference between our the approach and those that use a
Neel-type spin subsystem state. Our calculations are based on approach developed in Refs. 22
and 23, where it is shown that a two-dimensional s = 1/2 antiferromagnetic system at low
temperature is in the rotationally invariant state that preserves this invariance in the limit where
T goes to zero and correlation length goes to infinity. Then, even for T' = 0, the points (0,0) and
(m, ) are not equivalent due to the numerator in the spin Green’s function (see Eq. (16)). Asa
result, the short-range spin-spin correlation functions, such as C,f ® = (S} S g}, do not depend
on the site r. Let us note that according to Marshall’s theorem [35] the ground state of an
antiferromagnet may be a spherically symmetric singlet state in the limit N — oco. The question
about the ground state of a two-dimensional s = 1/2 AFM system is not established exactly.
Since at any finite temperature the rotationally invariant theory is true for the paramagnetic
system with strong short-range AFM correlations, we think that it is impossible for the system
to undergo an abrupt transition to a state with a spontaneously broken symmetry at T = 0.
Such a transition would mean an abrupt rise of the r-dependence in C;’y and finite (S7).
We believe that the ground state of a two-dimensional s = 1/2 AFM system is a spherically
symmetric state with the long-range order, and that it does not lead to the symmetry of the
reduced antiferromagnetic zone. The energy bands therefore are change infinitesimally as we
go from 7" = 0 to a temperature that is infinitesimally above zero.

In addition, our results demonstrate that the nonequivalence of the (0,0) and (7, 7) points
for the spectral function A(k,w) and Q do not contradict the exact diagonalization studies for
the ground state of the ¢t-J model (see, e.g., Figs. 18a and 23 in Ref. 1).

A few words about the scenario which assumes that a smooth transition from rotationally
invariant state to the state with spontaneously broken symmetry takes place. Such a transition
implies a smooth increase in (S?) and r-dependence of C:: r - The main effect consists not
in the changes of Q; and A(k,w) at (0,0) and (7, 7) points but in the opening of the gap
along the boundary of the magnetic (reduced) Brillouin zone. As a result, we shall have two
different bands with the periodicity of the magnetic Brillouin zone, i.e., the (0,0) and (7, 7)
points become equivalent for each of the two bands.

We are grateful to O. A. Starykh and P. Horsch for valuable discussions and
comments. This work was supported, in part, by the INTAS-PFBR organization under
project INTAS-RFBR Ne95-0591, by the Russian Foundation for Fundamental Research
(grants Nos. 98-02-17187 and 98-02-16730), and by the Russian National Program on
Superconductivity (grant No. 93080).

APPENDIX
Chain representation and integrals over the spectral density

The integration over spectral density could be done with the quadrature approach [29],
which is very efficient when applied to the electron structure calculations [32]. Unfortunately,
the spectral density we deal with has no upper bound and depends exponentially on the energy;
i.e., it substantially differs from the typical spectral density that appears in band-structure
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calculations. It turned out that the direct application of Nex’s quadrature approach [29] is
not stable numerically for our purpose. For calculations of the integrals (27) we therefore
use the chain representation of the continuous-fraction. This means that the continuous-
fraction expansion of the form (21) may be interpreted as the Green’s function G(w) =
= <u0|(w —h)! |u0> of the one-particle, tight-binding Hamiltonian A of the semi-infinite one-
dimensional lattice with a,,, b,,, and |u,,) as the site energies, nearest neighbor-hoppings and
on-site basis states respectively:

Ay, = <un|h|un> y bner = <un|h|un+1> .
We introduce the eigenstates |1,,) and eigenenergies E,,, of the chain Hamiltonian:

" =" 1¥m) Em (Wm] -

The Green’s function spectral density then becomes the local density of states on the zeroth
site of the chain [28]:

Alw) = —% Im G(w +i0%) = Z {wo|m) 6(w — Em) {¥m|wo) -

m

The following identities will then hold:

F= [ f@A@do= [ 10 (wnlim) 6 - Bn) (o) ds =

=3 (woltom) F(Bm) (imlue) = (ol fBluo) (38)

m

Nex [29] has proved that for a polynomial f of the degree 2no+ 1 the integral F’ for the infinite
chain has the same value as an analogous integral for the truncated chain of length ny+ 1. The
Hamiltonian of the truncated chain in the basis of the states {|uo) . ..|un,,)} has the form of
the tridiagonal (ny + 1) x (ng + 1) matrix:

ao b

by a1 b

hT: .« ..
a'no—l b'n.o
bn, an

0

Now, instead of integrating the spectral density function over w, we directly calculate the
matrix function f(hr) in order to take fo matrix element. Then F' = fy, as follows from the
last identity in Eq. (38). We see that the result for F' is expressed only in terms of the first
coefficients {ao,...,an,b0...,bn}.
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