ОРИЕНТАЦИОННЫЕ СОСТОЯНИЯ МОЛЕКУЛЫ С60 В КРИСТАЛЛАХ

В. Л. Аксенов^а, Ю. А. Осипьян^b, В. С. Шахматов^а*

 ^а Объединенный институт ядерных исследований 141980, Дубна, Россия
 ^b Институт физики твердого тела Российской академии наук 142432, Черноголовка, Россия

Поступила в редакцию 2 октября 1997 г.

Исследована локальная симметрия ориентационных состояний молекулы C_{60} в кристаллах. Показано, что различные ориентационные фазовые переходы связаны в разных кристаллах с разными ориентационными орбитами. Предложена модель ориентационных фазовых переходов, основанная на последовательности ориентационных состояний разной симметрии. Обнаружено повышение как локальной симметрии молекулы C_{60} , так и симметрии ее внутренних колебаний при понижении пространственной симметрии кристалла при фазовом переходе. Этот эффект имеет общий характер и может наблюдаться при ориентационных фазовых переходах типа порядок-беспорядок с волновым вектором на границе зоны Бриллюэна. Рассмотрены возможные проявления предсказанного эффекта.

1. ВВЕДЕНИЕ

Известно, что в фуллереновых кристаллах фазовые переходы приводят к изменению ориентационного состояния молекулы C_{60} . Экспериментальные исследования чистого кристалла C_{60} (фуллерита) [1] показали, что молекулы C_{60} в высокосимметричной фазе Fm3m испытывают анизотропное и заторможенное вращение, а при фазовом переходе $Fm3m \rightarrow Pa3$ вращение прекращается и происходит ориентационное упорядочение молекул C_{60} . В кристаллах AC_{60} (фуллеридах), где A = K, Rb, наблюдается более сложный фазовый переход $Fm3m \rightarrow Pnnm$, при котором в низкосимметричной фазе Pnnm ориентационное упорядочение молекул сопровождается их деформацией и эти два явления приводят к образованию ковалентных связей между ближайшими молекулами C_{60} [2]. В обоих случаях параметр порядка фазового перехода должен связывать между собой усредненные ориентационные состояния молекулы C_{60} в высокосимметричной фазах и описывать ориентационное упорядочение молекул.

В настоящее время единой теории изменения ориентационных состояний молекулы C_{60} в кристаллах не существует. При теоретическом описании ориентационных фазовых переходов в фуллереновых кристаллах используют два метода, а именно, континуальный и дискретный, каждый из которых хорошо описывает ориентационные состояния молекулы C_{60} только в одной из двух фаз. Так, для описания вращающихся молекул C_{60} в фазе Fm3m применяется континуальный метод [1], основанный на разложении

^{*}E-mail: shank@nf.jinr.dubna.ru

усредненного анизотропного распределения ориентаций молекулы С₆₀ по симметризованным сферическим функциям, которые преобразуются по неприводимым представлениям икосаэдрической (У_b) или кубической (О_b) точечных групп. Однако в таком приближении трудно описать как конкретную выделенную ориентацию дискретной молекулы С₆₀ в низкосимметричной фазе кристалла, так и деформацию самой молекулы С₆₀ при фазовом переходе в фуллеридах АС₆₀. В дискретном методе для описания ориентационного фазового перехода в фуллерите используются дискретные ориентационные состояния для вращающейся молекулы С₆₀ [3] (см. также [1]). В этом случае ориентационное состояние молекулы С₆₀ в низкосимметричной фазе описывается точно, а состояние вращающейся молекулы в высокосимметричной фазе — приближенно, а именно, заменяется набором нескольких дискретных ориентационных состояний. Так как дискретный метод точно описывает ориентационные состояния молекул С₆₀ в низкосимметричной фазе кристалла, ясно, что и другие физические свойства низкосимметричной фазы, связанные с ориентационным фазовым переходом, могут быть также хорошо описаны в рамках данного метода. Например, в работе [4] с помощью обобщения дискретного метода была описана деформация молекулы С₆₀ при фазовом переходе в кристалле фуллерида AC₆₀.

В данной работе показано, что некоторые физические свойства высокосимметричной фазы также могут быть описаны в рамках дискретного метода. Это связано с тем, что различные дискретные ориентационные состояния молекулы C₆₀ в кристалле имеют различную собственную локальную симметрию. Следовательно, физические явления, наблюдаемые в высокосимметричной фазе и связанные с определенными дискретными ориентационными состояниями, можно классифицировать в соответствии с симметрией ориентационных состояний.

В разд. 2 построены все различные по своей локальной симметрии ориентационные состояния молекулы C_{60} в фазе Fm3m. На основе ориентационных состояний обсужден фазовый переход (разд. 3) и построены распределения атомной плотности вращающейся молекулы C_{60} (разд. 4). Локальная симметрия и симметрия внутренних колебаний молекулы C_{60} в кристалле исследована в разделе 5. В разделе 6 обсуждены возможности экспериментальной проверки предсказанных типов ориентационных состояний с помощью дифракции нейтронов и рентгеновских лучей, а также рассмотрено проявление эффекта повышения симметрии внутренних колебаний молекулы C_{60} при фазовом переходе в экспериментах по рассеянию света.

СИММЕТРИЯ ОРИЕНТАЦИОННЫХ СОСТОЯНИЙ МОЛЕКУЛЫ С₆₀

Для определения различных типов ориентационных состояний рассмотрим различные вложения молекулы C₆₀, имеющей икосаэдрическую симметрию, в кристаллическую решетку кубической симметрии.

Молекула C_{60} имеет точечную группу симметрии Y_h , которая, как показано в табл. 1, содержит 6 осей поворота пятого порядка (C_5), 10 осей поворота третьего порядка (C_3), 15 осей поворота второго порядка (C_2) и инверсию (I). В кристаллической решетке молекула C_{60} занимает позицию с локальной симметрией O_h . Точечная группа O_h имеет 3 оси поворота четвертого порядка (C_4), 4 оси поворота третьего порядка, 6 осей поворота второго порядка и инверсию.

Из сравнения наборов осей симметрии точечных групп O_h и Y_h следует, что для по-

T	аблица	1
_		_

Элементы	симметрии	свободной	молекулы	C ₆₀ :	и ее	позиции	BF	сристалличес	кой
		решетке в	субической	фаз	ы <i>F</i>	m3m			

Элементы симметрии	C_5	C_4	C_3	C_2	Ι
Молекула С ₆₀	6	-	10	15	1
Позиция в решетке с симметрией O _h	_	3	4	6	1

Рис. 1. Исходная ориентация молекулы C_{60} в различных ориентационных базисах. *a*), *b*), *b*), *c*), *d*) и *e*) — одно из ориентационных состояний молекулы C_{60} в 2-, 8-, 12(*a*)-, 12(*b*)-, 24- и 6-кратном базисах

лучения только одной оси симметрии четвертого порядка, которая имеется в кристаллах кубической симметрии, молекула С₆₀ должна занимать либо два дискретных ориентационных состояния, если ось симметрии второго порядка молекулы С₆₀ направлена вдоль направлений типа (100) в кристалле, либо занимать четыре дискретных состояния при любой другой ориентации молекулы С₆₀. В случае ориентации оси симметрии второго порядка молекулы C_{60} вдоль направления типа (100) в кристалле, можно повернуть молекулу C_{60} вокруг оси второго порядка таким образом, чтобы ее оси симметрии третьего порядка совпали с направлениями типа (111) в кристалле. В этом случае происходит наиболее симметричное вложение молекулы С₆₀ в кубическую кристаллическую решетку (см. рис. 1*a*). Такое вложение приводит к двум, так называемым стандартным ориентациям, которые связаны друг с другом с помощью поворота на угол 90° вокруг оси, совпадающей с любым из направлений типа (100). Молекула С₆₀, занимающая в кристаллической решетке фазы Fm3m позицию с симметрией O_h и находящаяся в стандартной ориентации, имеет локальную симметрию $T_h = O_h \cap Y_h$ [5]. Подобная ситуация реализуется в кристалле А₃С₆₀, в котором молекулы С₆₀ статически разупорядочены по двум стандартным ориентациям [6].

Далее рассмотрим ситуацию, когда только одна из осей симметрии третьего порядка молекулы C_{60} совпадает с одним из направлений типа (111) кубического кристалла (см. рис. 16). Учитывая симметрию относительно инверсии, получаем, что шесть элементов симметрии, которые составляют точечную группу $S_6 = (E, C_3, C_3^2) \times (E, I)$, являются общими как для молекулы C_{60} , так и для точечной группы O_h , здесь E — тождественный элемент симметрии. Группой локальной симметрии молекулы в данном случае является группа S_6 . Так как в точечной группе O_h имеется 48 различных элементов симметрии, число различных ориентационных состояний молекулы C_{60} при таком вложении в кубическую решетку равно 8 = 48/6. Эти восемь ориентационных состояний были использованы для описания фазового перехода в фуллерите C_{60} [3].

В случае ориентации оси второго порядка молекулы C_{60} вдоль направления [110] в кубическом кристалле (см. рис. 1*в*) общими элементами симметрии являются $(E, C_2) \times (E, I)$ и, следовательно, число различных ориентационных состояний молекулы C_{60} равно 12 = 48/4. Эти 12 ориентационных состояний молекулы C_{60} были использованы в работе [4] для описания фазового перехода в фуллериде AC_{60} . Локальной группой симметрии молекулы C_{60} является группа C_{2h} . Заметим, что при ориентации оси второго порядка молекулы C_{60} вдоль направления [001] в кубическом кристалле и при несовпадении осей третьего порядка с направлениями в кристалле типа (111) возникает другой 12-кратный ориентационный базис (см. рис. 1*г*). Ниже два этих ориентационных базиса обозначены соответственно 12(*a*) и 12(*б*).

В случае, если ни одна из осей симметрии молекулы C_{60} не совпадает ни с одним соответствующим симметричным направлением в кристалле, единственными общими элементами симметрии являются (E, I) и, следовательно, число различных ориентационных состояний молекулы C_{60} равно 24 = 48/2, а локальная симметрия молекулы определяется группой I (см. рис. 1*д*).

Ориентационные состояния из одного базиса имеют одинаковые непрерывные степени свободы. Например, для ориентационного состояния из 8-кратного базиса угол поворота вокруг одной из осей третьего порядка может быть произвольным. Аналогичная ситуация имеет место и для 12-кратного базиса, но в данном случае произвольный поворот может быть сделан вокруг оси симметрии второго порядка. Для 24-кратного базиса допустимы уже два независимых поворота. Заметим, что при некотором угле поворота может произойти дополнительное вырождение ориентационных состояний молекулы C_{60} . Это происходит в результате того, что в некотором частном ориентационном положении могут произойти дополнительные совмещения осей симметрии молекулы С₆₀ и симметричных направлений в кристалле. Например, для 8-кратного ориентационного базиса при некотором угле поворота вокруг оси третьего порядка оси симметрии второго порядка могут совпасть с направлениями типа (100) в кристалле. Это приводит к вырождению ориентационных базисных функций, при котором из 8 состояний остаются только 2 стандартные ориентации. Для двух 12-кратных ориентационных базисов в частной позиции, когда ось симметрии второго порядка молекулы С₆₀ совпадает с направлениями типа [100] в кристалле для базиса 12(а) или с направлениями типа [110] для другого базиса 12(6), число независимых ориентационных функций уменьшается до 6 (см. рис. 1e). В этом случае локальная симметрия ориентационного состояния определяется группой D_{2h}. Ясно, что все перечисленные выше частные позиции могут быть получены и из 24-кратного базиса. Заметим также, что ориентационные состояния из 2- и 6-кратных базисов являются наиболее симметричными и в отличие от ориентационных состояний из других базисов не имеют поворотных степеней свободы.

В таблице 2 приведены различные типы ориентационных базисов и указаны соединения (фуллерит C₆₀ и фуллерид AC₆₀), в которых эти базисы используются для описания ориентационного фазового перехода. Отметим, что в фуллериде A_3C_{60} ориентационный фазовый переход не происходит, а в фазе Fm3m экспериментально наблюдалось [6] статическое разупорядочение молекул C_{60} по двум стандартным ориентациям.

Таблица 2 Различные типы ориентационных базисов для молекулы C₆₀ в фазе Fm3m

Кратность ориент. базиса	Симметрия ориент. состояния	Кристалл	Примечание
2	T_h	A ₃ C ₆₀	Статич. разупоряд.
6	D_{2h}		
8	S_6	C ₆₀	Динамич. разупоряд.
12(<i>a</i>)	C_{2h}	AC_{60}	Динамич. разупоряд.
12(6)	C_{2h}		
24	Ι		

Функции ориентационных состояний, относящихся к одному базису, преобразуются друг в друга под действием поворотных элементов симметрии из группы Fm3m и образуют (на языке теории групп, см., например, [7]) орбиту, в данном случае ориентационную орбиту.

3. ОРИЕНТАЦИОННЫЙ ФАЗОВЫЙ ПЕРЕХОД

Дифракционные исследования фуллерита C_{60} в фазе Fm3m [1] показали, что вращающаяся молекула C_{60} имеет анизотропное распределение своей ориентации в кристалле. Следовательно, ориентационные состояния молекулы C_{60} не являются равновероятными. В предыдущем разделе было показано, что ориентационные состояния можно объединить в ориентационные орбиты, которые различаются между собой локальной симметрией (см. табл. 2). Так как ориентационные состояния из одной ориентационной орбиты являются физически эквивалентными, то эти состояния занимаются молекулой C_{60} с одинаковой вероятностью, поэтому для объяснения анизотропного распределения молекулярной ориентации необходимо допустить, что состояния из разных орбит занимаются вращающейся молекулой C_{60} с разной вероятностью, которая определяется следующей формулой:

$$P_n = \exp(-V_n/kT) / \sum_m \exp(-V_m/kT), \tag{1}$$

здесь k — постоянная Больцмана, V_n — потенциальная энергия одного из состояний n ориентационной орбиты, а суммирование проводится по всем ориентационным состояниям из всей ориентационных орбит.

Таким образом, можно предложить следующую модель ориентационного фазового перехода в фуллереновых кристаллах. При высоких температурах ($T \gg T_c$) вращающаяся молекула C₆₀ занимает все ориентационные состояния из всех ориентационных орбит. При температурах близких к температуре фазового перехода ($T > T_c$) вращающаяся молекула C_{60} большую часть своего времени занимает состояния из одной ориентационной орбиты, а именно из той, которая соответствует конкретному ориентационному кристаллическому потенциалу молекулы C_{60} в конкретном кристалле. При фазовом переходе происходит «вымораживание» орбиты и молекула занимает одно из ориентационных состояний, принадлежащих этой орбите.

Проводя аналогию между ориентационными фазовыми переходами и структурными фазовыми переходами типа смещения, можно сделать следующие выводы. Набор состояний из всех ориентационных орбит представляет собой аналог возможных смещений всех атомов в кристаллической ячейке. Конкретную ориентационную орбиту можно понимать как аналог смещений только тех атомов, которые связаны с мягкой модой структурного перехода. Таким образом, различные ориентационные орбиты являются микроскопическими реализациями параметров порядка разных ориентационных фазовых переходов.

В таблице 3 приведены ориентационные орбиты и ориентационные состояния, необходимые для описания ориентационных фазовых переходов в фуллерите C_{60} и фуллериде AC_{60} .

Таблица 3 Ориентационные состояния молекулы C₆₀ в разных фазах кристаллов C₆₀ и AC₆₀

Кристалл	Высокосимм $T \gg T_c$	етричная фаза $T > T_c$	Низкосимметричная фаза $T < T_c$
Фуллерит С ₆₀	$\{2, 6, 8, \ldots\}$	{8}	8
Фуллерид АС ₆₀	$\{2, 6, 8, \ldots\}$	{12}	12

Из таблицы 3 видно, каким образом происходит ориентационный переход. В кристалле C_{60} (AC₆₀) при высоких температурах вращающаяся молекула C_{60} занимает все ориентационные состояния из всех ориентационных орбит (из 2-кратной орбиты, 6-кратной и так далее), вблизи фазового перехода (при $T > T_c$) молекула большую часть времени занимает состояния из 8-(12-)кратной орбиты, а в низкосимметричной фазе происходит ориентационное упорядочение молекулы C_{60} в одном из состояний 8-(12-)кратной орбиты.

4. РАСПРЕДЕЛЕНИЕ АТОМНОЙ ПЛОТНОСТИ ВРАЩАЮЩЕЙСЯ МОЛЕКУЛЫ С₆₀

В предыдущем разделе было показано, что вблизи температуры фазового перехода вращающаяся молекула C_{60} в фазе Fm3m большую часть времени занимает ориентационные состояния из одной ориентационной орбиты, следовательно, распределение ориентации молекулы C_{60} в кристалле будет определяться состояниями только одной орбиты. Выберем некоторое ориентационное состояние, тогда для этой (первой) ориентации ψ_1 атомная плотность на поверхности молекулы C_{60} в точке Ω , которая определяется полярными углами θ и φ в системе координат, показанной на рис. 1, имеет вид

$$\rho_1(\mathbf{\Omega}) = \sum_n \delta_1(\mathbf{\Omega} - \mathbf{\Omega}_n), \tag{2}$$

здесь δ — дельта-функция Дирака, а суммирование проводится по 60 углеродным атомам в молекуле. Учитывая оставшиеся ориентационные состояния в выбранной орбите и моделируя тепловое движение молекулы C₆₀ с помощью нормального закона распределения с дисперсией по углу поворота σ , можно рассчитать усредненную атомную плотность $\langle \rho(\mathbf{\Omega}) \rangle$:

$$\langle \rho(\mathbf{\Omega}) \rangle = C \int dS' \exp\left[-(\mathbf{\Omega} - \mathbf{\Omega}')^2 / 2\sigma^2\right] \sum_k \rho_k(\mathbf{\Omega}') =$$
$$= \int dS' \exp\left[-(\mathbf{\Omega} - \mathbf{\Omega}')^2 / 2\sigma^2\right] \sum_{k,n} \delta_k(\mathbf{\Omega}' - \mathbf{\Omega}_n), \tag{3}$$

здесь C — числовая константа, интеграл берется по поверхности молекулы C_{60} , $|\Omega - \Omega'|$ — расстояние между точками Ω и Ω' на поверхности молекулы, которое выражено в градусах, суммирование проводится по ориентационным состояниям орбиты (индекс k) и по 60 углеродным атомам в молекуле C_{60} (индекс n).

На рис. 2 показаны распределения атомной плотности вращающейся молекулы C_{60} в кристалле AC_{60} в фазе Fm3m. Расчеты были проведены по формуле (3) с ориентационными состояниями, взятыми из 12-кратной орбиты. В качестве исходного ориентационного состояния ψ_1 было взято состояние, которого показано на рис. 1*в*. Другие ориентационные состояния молекулы C_{60} были получены из исходной ориентации с помощью следующих поворотов: $\psi_2 = C_4\psi_1$, $\psi_3 = C_4^2\psi_1$, $\psi_4 = C_4^3\psi_1$. Остальные ориентационные состояния получаются из предыдущих с помощью действия поворотов C_3 и C_3^2 согласно следующей символической схеме: $(\psi_5, \psi_6, \psi_7, \psi_8) = C_3(\psi_1, \psi_2, \psi_3, \psi_4)$ и $(\psi_9, \psi_{10}, \psi_{11}, \psi_{12}) = C_3^2(\psi_1, \psi_2, \psi_3, \psi_4)$, где C_4 — поворот на угол 90° вокруг оси z, а C_3 — поворот на угол 120° вокруг направления [111].

Симметрийный анализ фазового перехода в фуллериде AC₆₀ показывает [8], что низкосимметричная фаза возникает в результате конденсации одной из шести компонент параметра порядка, следовательно, можно ожидать появления шести доменов в низкосимметричной фазе. Распределение атомной плотности (см. рис. 2*a*, *b*), которое построено с помощью всех 12 ориентационных состояний, связано со всеми шестью доменами. Однако в деформированном кристалле ориентационные состояния становятся физически неэквивалентными и, следовательно, изменяется вероятность нахождения молекулы в том или ином состоянии. На основе симметрийного анализа фазового перехода [4, 8] можно понять, какие из 12 ориентационных состояний и как связаны с различными деформациями. В случае внешних напряжений, $\sigma_{xx} = \sigma_{yy} = -2\sigma_{zz} \neq 0$ распределение атомной плотности показано на рис. 2*e*, оно построено с помощью ориентационных состояний ψ_1 , ψ_2 , ψ_3 и ψ_4 . Прикладывая к деформированному кристаллу дополнительное сдвиговое напряжение $\sigma_{xy} \neq 0$, можно еще больше ограничить ориентационные степени свободы молекулы C₆₀. Распределение атомной плотности в этом случае показано на рис. 2*e* и построено на двух ориентационных состояниях ψ_1 и ψ_3 .

5. ЛОКАЛЬНАЯ СИММЕТРИЯ И СИММЕТРИЯ ВНУТРЕННИХ КОЛЕБАНИЙ МОЛЕКУЛЫ С₆₀ в кристалле

В предыдущих разделах было показано, что вращающаяся молекула C₆₀ занимает все ориентационные состояния из всех орбит, однако вблизи фазового перехода (в фазе

Рис. 2. а) Фрагмент (1/8 часть молекулы) распределения атомной плотности вращающейся молекулы С₆₀ в фазе Fm3m. Темные области соответствуют максимальной плотности (от 100% до 66%), более светлые области соответствуют атомной плотности от 66% до 33% и светлые области — от 33% до 0%. Ориентационные состояния распределены по нормальному закону с дисперсией по углу 5°; б), в) и г) — то же, что и а), но с дисперсией 3°. Кроме того, при получении в) и г) учтены деформации кристалла: в) деформация типа сжатия $e_{xx} = e_{yy} = -2e_{zz} \neq 0$, г) деформация типа сжатия (в) и плюс дополнительная сдвиговая деформация $e_{xy} \neq 0$

Fm3m) большую часть времени молекула C_{60} занимает.состояния только одной орбиты. Это приводит к тому, что распределение атомной плотности является анизотропным. Локальная симметрия вращающейся молекулы C_{60} в кристалле определяется симметрией наименее симметричного ориентационного состояния, которое занимает молекула. Следовательно, в высокосимметричной фазе Fm3m локальная симметрия вращающейся молекулы C_{60} описывается группой инверсии *I*. С другой стороны, молекулы C_{60} в низкосимметричной фазе ориентационно упорядочены и занимают одно из состояний из конкретной ориентационной орбиты. Например, молекулы C_{60} в фуллерите C_{60} в низкосимметричной фазе Pa3 занимают ориентационное состояние с локальной симметрией S_6 , а в фуллериде AC_{60} в низкосимметричной фазе Pnnm — состояние с локальной симметрией C_{2h} . Следовательно, при фазовом переходе на фоне общего понижения пространственной симметрии кристалла локальная симметрия молекулы C_{60} повышается (см. табл. 4).

Далее рассмотрим симметрию фононов в фазе Fm3m. Для фононов разной энергии имеются две возможности. В случае, если частота фонона выше характерной частоты

Таблица 4 Локальная симметрия молекулы C₆₀ в различных фазах фуллерита C₆₀ и фуллерида AC₆₀

Кристалл	Фаза Fm3m	Фаза РаЗ	Фаза Рппт
Фуллерит С ₆₀	I	S_6	_
Фуллерид АС ₆₀	Ι	—	C_{2h}

вращения молекулы C_{60} , такой фонон движется в кристалле с различно ориентированными молекулами C_{60} , и в результате медленного вращения молекул C_{60} симметрия кристалла для такого фонона будет достаточно низкой по сравнению с тем, что можно было бы ожидать для пространственной группы Fm3m. С другой стороны, для фонона, частота которого значительно ниже характерной частоты вращения молекулы C_{60} , симметрия кристалла будет полностью соответствовать пространственной группе Fm3m.

Для примера рассмотрим внутренние колебания молекулы C₆₀ в кристаллах C₆₀ и АС₆₀, которые могут быть исследованы в экспериментах по рассеянию света. Хорошо известно, что в инфракрасном и комбинационном рассеянии света наблюдаются фононы с волновым вектором вблизи нуля, а их симметрия определяется группой волнового вектора $\mathbf{k} = 0$, т.е. $G_{\mathbf{k}=0}$, или, что то же самое, точечной группой симметрии (о локальной, точечной и других группах симметрии в кристаллах см., например, [9]). В примитивной ячейке кристаллов С₆₀ и АС₆₀ в фазе Fm3m содержится только одна вращающаяся молекула С₆₀, которая занимает положение в кристаллической решетке с локальной симметрией О_h. Поэтому можно предположить, что с хорошей точностью внутренние колебания молекулы C_{60} в фазе Fm3m можно рассмотреть на основе икосаэдрической группы Y_h [10, 11] или на основе точечной группы O_h [10, 11], если необходимо учесть расщепление внутренних колебаний молекулы в кристаллическом поле. Но так как молекула C_{60} не имеет оси симметрии четвертого порядка (см. выше), максимальной группой локальной симметрии молекулы С₆₀ в кристалле может быть только группа $T_h = O_h \cap Y_h$. Это явилось одной из причин, почему в работе [12] симметрийный анализ внутренних колебаний молекулы C_{60} в фазе Fm3m был проведен по неприводимым представлениям группы T_h .

Проведенный выше анализ ориентационных состояний молекулы C_{60} показывает, что классификация внутренних колебаний молекулы по неприводимым представлениям группы T_h возможна только в том случае, если молекула C_{60} занимает состояния из 2-кратной ориентационной орбиты. В кристаллах C_{60} и AC_{60} ориентационный кристаллический потенциал таков, что необходимо рассматривать соответственно 8- и 12-кратные орбиты, которые имеют более низкую локальную симметрию, а именно S_6 и C_{2h} . Так как частоты внутренних колебаний значительно выше (в 10–100 раз) характерной частоты вращения молекулы C_{60} , такие фононы распространяются в кристалле, в котором молекулы C_{60} выглядят статически разупорядоченными. Для таких фононов точечная группа симметрии кристалла будет еще ниже. Таким образом, симметрия внутренних колебаний молекулы C_{60} в фазе Fm3m будет не выше S_6 и C_{2h} соответственно для кристаллов C_{60} и AC_{60} . А так как точечные группы низкосимметричных фаз для этих кристаллов соответственно T_h и D_{2h} , можно сделать вывод, что симметрия внутренних колебаний молекулы C_{60} повышается при понижении пространственной симметрии при

11 ЖЭТФ, №3

ориентационном фазовом переходе.

6. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Сформулируем кратко результаты работы. В рамках дискретного метода предложена модель ориентационного фазового перехода в фуллереновых кристаллах. Проведена классификация по симметрии всех ориентационных состояний вращающейся молекулы C_{60} . Показано, что ориентационные состояния молекулы распадаются на разные ориентационные орбиты, которые имеют разную локальную симметрию. Обнаружено, что конкретные ориентационные орбиты связаны с конкретными ориентационными фазовыми переходами, причем ориентационные состояния из одной орбиты являются аналогами атомных смещений, приводящих к мягкой моде при структурном фазовом переходе. Именно ориентационные состояния одной орбиты определяют анизотропию распределения атомной плотности вращающейся молекулы C_{60} в фазе Fm3m. Распределения атомной плотности отражают развитие ориентационного фазового перехода, схема которого предложена в разд. 3. На основе анализа симметрии ориентационных состояний молекулы C_{60} предсказан эффект повышения как локальной симметрии молекулы C_{60} , так и симметрии внутренних колебаний молекулы C_{60} в кристалле при понижении пространственной симметрии кристалла при фазовом переходе.

Теперь обсудим возможности экспериментальной проверки полученных результатов. Рассчитанные выше (см. рис. 2) распределения атомной плотности вращающейся молекулы C_{60} связаны с дифракционными спектрами, получаемыми в экспериментах. Известно (см., например, [13]), что интенсивность брэгговских пиков определяется конкретным расположением атомов в примитивной ячейке кристалла. В нашем случае в примитивной ячейке кристалла содержится вращающаяся молекула C_{60} . Интенсивность брэгговских пиков определяется квадратом структурного фактора:

$$F(\mathbf{Q}) = b_c \left\{ 60c_{con} \exp\left[-W_1(\mathbf{Q})\right] j(QR) + c_{disc} \exp\left[-W_2(\mathbf{Q})\right] \times \int d\mathbf{r}' \langle \sum_{k,n} \delta_k(\mathbf{r}' - \mathbf{r}_n) \rangle \exp(-i\mathbf{Qr'}) \right\},$$
(4)

здесь b_c является длиной когерентного рассеяния нейтрона на ядре углерода (или атомным формфактором в случае рассеяния рентгеновских лучей), непрерывный и дискретный весовые факторы c_{con} и c_{disc} являются подгоночными параметрами и удовлетворяют условию $c_{disc} + c_{con} = 1$, для фуллерита C_{60} имеем $c_{con} = 0.31$, $c_{disc} = 0.69$ [1], $j(QR) = \sin(QR)/(QR)$ — сферическая функция Бесселя, R — радиус молекулы C_{60} . $W_1(\mathbf{Q})$ и $W_2(\mathbf{Q})$ являются факторами Дебая — Валлера атома углерода в молекуле C_{60} . В результате разного типа усреднения $W_1(\mathbf{Q})$ и $W_2(\mathbf{Q})$ могут быть отличны друг от друга. Как видно из формулы (4), в структурный фактор входит величина $\langle \sum \delta_k(\mathbf{r'} - \mathbf{r}_n) \rangle$, ко-

торая описывает анизотропию усредненной атомной плотности молекулы C₆₀ и которая была использована в разд. 4.

Заметим здесь, что вращающаяся молекула C_{60} занимает ориентационные состояния из всех орбит, однако с ориентационным фазовым переходом связана только одна орбита. Именно по состояниям этой орбиты проводится суммирование (индекс k) в выражении $\langle \sum_{k,n} \delta_k (\mathbf{r}' - \mathbf{r}_n) \rangle$, а вклад от ориентационных состояний из всех других орбит моделируется с помощью изотропной функции Бесселя j(QR).

Таким образом, конкретные распределения, показанные на рис. 2, будут определять интенсивность брэгговских пиков в фазе Fm3m и, следовательно, с помощью дифракции нейтронов или рентгеновских лучей можно экспериментально проверить теоретически построенные распределения атомной плотности вращающейся молекулы C_{60} .

Известно, что симметрию колебаний кристаллической решетки можно определить с помощью рассеяния света. В работе [14] были получены спектры комбинационного рассеяния света в фуллерите С₆₀. Из этих спектров видно, что линии, полученные при T = 259 К в низкосимметричной фазе Pa3, имеют более выраженную структуру, чем те же линии, полученные при температуре на два градуса выше, в высокосимметричной фазе Fm3m. Физическая природа больших ширин линий внутренних колебаний молекулы C_{60} в фазе Fm3m, в принципе, может быть обусловлена многими физическими причинами. Однако в чистом кристалле С₆₀ молекулы С₆₀ являются нейтральными, и это значительно уменьшает число возможных причин. (Например, заряженная молекула С₆₀⁻¹ (или С₆₀⁻³) в результате эффекта Яна — Теллера может перейти в деформированное состояние, что приведет к расщеплению внутренних колебаний молекулы. Кроме того, заряженные молекулы С₆₀ могут привести к появлению макроскопического электрического поля в диэлектрическом кристалле, что приводит к расщеплению продольных и поперечных оптических колебаний.) Поэтому большая ширина линий в фуллерите С₆₀ может быть объяснена либо ангармоническими взаимодействиями внутренних колебаний молекулы С₆₀ с другими фононами, либо низкой локальной симметрией молекулы С₆₀ в кристалле (расшепление в кристаллическом поле) и/или взаимодействием между случайным образом ориентированными молекулами (аналогично так называемому давыдовскому расщеплению [15]).

В отличие от ангармонического взаимодействия, последние два эффекта определяют точечную группу, которая может быть проверена в экспериментах по рассеянию света с поляризационным анализом.

Симметрийный анализ (см., например, [10]) показывает, что внутренние колебания молекулы C_{60} , активные в комбинационном рассеянии света, имеют симметрию $2A_g \oplus 8H_g$. Поэтому в спектрах комбинационного рассеяния должны наблюдаться 10 различных линий, две из которых имеют симметрию A_g (невырожденные колебания) и восемь (пятикратно вырожденных) — симметрию H_g . В кристаллическом поле кубической симметрии происходит снятие вырождения у колебаний симметрии $H_g = E_g \oplus F_g$, здесь колебание симметрии F_g является трехкратно вырожденным, а E_g — двукратно вырожденным. Результаты работы [14] показывают, что подобное расшепление экспериментально наблюдается для колебаний $H_g(1)$ и $H_g(2)$ (T = 261 K). Аналогичное расщепление, по-видимому, имеет место и для колебаний $H_g(6)$ и $H_g(7)$ (см. [14]). Согласно поляризационному анализу [14] колебание $H_g(1)$ с более низкой частотой (266.2 см⁻¹) имеет симметрию E_g , а колебание с частотой 272.4 см⁻¹ — симметрию F_g . Для колебания $H_g(2)$ ситуация противоположная: колебание с частотой 430.3 см⁻¹ имеет симметрию F_g , а с частотой 434.3 см⁻¹ — E_g .

Так как колебания симметрии A_g являются невырожденными, большая ширина этих линий может быть обусловлена взаимодействием различным образом ориентированных соседних молекул. В этом случае наиболее сильные взаимодействия между ближайшими молекулами C_{60} с различными ориентациями в фазе Fm3m (первая координационная сфера содержит 12 молекул) могут быть смоделированы с помощью кристаллических ячеек больших размеров (содержащих больше чем одну молекулу C_{60}). Все такие кристаллы с увеличенным размером ячейки могут быть получены из фазы Fm3mс помощью симметрийного анализа всех возможных фазовых переходов, которые приводят к увеличению объема примитивной ячейки. (В кластерном приближении, если учитывать взаимодействие между ближайшими молекулами C_{60} , можно считать, что большая ширина колебаний симметрии A_g представляет собой набор отдельных линий (от 1 до 13) с разными интенсивностями, которые, вообще говоря, пропорциональны времени нахождения молекулы C_{60} в том или ином ориентационном состоянии.)

Следовательно, большую ширину линий симметрии A_g можно объяснить взаимодействием между различным образом ориентированными ближайшими молекулами C_{60} , т. е. давыдовским расшеплением [15], причем точечная группа кристалла с увеличенными размерами примитивной ячейки должна понижаться из-за нескоррелированных ориентаций ближайших молекул.

Далее обсудим ширину линий симметрии F_g и E_g . Проведенный выше анализ симметрии ориентационных состояний молекулы C_{60} в кристаллах C_{60} и AC_{60} показал, что большую часть времени молекула C_{60} занимает состояния с симметрией, соответственно, S_6 и C_{2h} . В этом случае в результате низкой симметрии кристаллического поля происходит дальнейшее снятие вырождения у трехкратно вырожденных колебаний симметрии F_g и у двукратно вырожденных E_g . Кроме того, так же как и для линий симметрии A_g , имеет место давыдовское расщепление из-за взаимодействия между различным образом ориентированными ближайшими молекулами C_{60} .

Таким образом, из-за низкой локальной симметрии ориентационных состояний, а также из-за взаимодействия между разориентированными ближайшими молекулами, симметрия внутренних колебаний молекулы C_{60} в кристаллах C_{60} и AC_{60} не может быть выше соответственно S_6 и C_{2h} . Это означает, что колебания симметрии F_g , которые в фазе Fm3m должны были бы наблюдаться только в перпендикулярных ориентациях векторов поляризации падающего и рассеянного света, в действительности должны наблюдаться и в параллельной ориентации, колебания симметрии E_g должны наблюдаться и в перпендикулярной ориентации. Поэтому представляет интерес проведение аккуратного поляризационного анализа колебаний симметрии F_g и E_g в фуллерите C_{60} (фаза Fm3m) в экспериментах по комбинационному рассеянию света.

Работа выполнена в рамках Государственной научно-технической программы «Фуллерены и атомные кластеры» № 97032 и поддержана грантом INTAS-РФФИ № 95-0639.

Литература

- J. D. Axe, S. C. Moss, D. A. Neumann, in Solid State Physics: Advances in Research and Applications, ed. by H. E. Ehrenreich and F. Spaepen, Academic Press, New York, Vol. 48 (1994), p. 149.
- 2. P. W. Stephens, G. Bortel, G. Faigel et al., Nature 370, 636 (1994).
- 3. K. Rapcewicz and J. Przystawa, Phys. Rev. B 49, 13193 (1994).
- 4. В. Л. Аксенов, Ю. А. Осипьян, В. С. Шахматов, Письма в ЖЭТФ 64, 110 (1996).
- 5. Р. А. Диланян, О. Г. Рыбченко, В. Ш. Шехтман, Кристаллография 40, 604 (1995).
- 6. S. Teslic, T. Egami, and J. E. Fisher, Phys. Rev. B 51, 5973 (1995).

- 7. Ю. А. Изюмов, В. Н. Сыромятников, *Фазовые переходы и симметрия кристаллов*, Наука, Москва (1984).
- 8. В. Л. Аксенов, Ю. А. Осипьян, В. С. Шахматов, Письма в ЖЭТФ 62, 417 (1995).
- 9. О. В. Ковалев, Неприводимые и индуцированные представления и копредставления федоровских групп, Наука, Москва (1986), с. 23.
- 10. G. Dresselhaus, M. S. Dresselhaus, and P. C. Eklund, Phys. Rev. B 45, 6923 (1992).
- 11. В. Н. Денисов, Б. Н. Маврин, Ж. Руани и др., ЖЭТФ 102, 300 (1992).
- 12. Ю. С. Грушко, Ю. В. Ганжа, М. Ф. Ковалев и др., ФТТ 35, 980 (1993).
- 13. В. Л. Аксенов, А. М. Балагуров, УФН 166, 955 (1996).
- 14. P. J. Horoyski, M. L. W. Thewalt, and T. R. Anthony, Phys. Rev. B 54, 920 (1996).
- 15. А. С. Давыдов, Теория твердого тела, Наука, Москва (1976), с. 341.