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We consider the cooperative decay of incoherently pumped atoms in а disordered medium, 
where light undergoes multiple scattering. It is shown that the cooperation number, which 
determines the duration and amplitude of superfluorescent impulses, is given Ьу the number of 
atorns along а diffusive trajectory of the light propagating through the medium. We also consider 
the problem of reflection of а probe wave during cooperative emission. 

1. INТRODUCTION 

@1998 

There is growing interest in active photonic paints. These are media in which light 
undergoes тuШрlе random scattering, resulting in а diffusive propagation of radiation, while 
interacting with atoms that сап Ье pumped to obtain а positive population difference. The 
reflection and transrnission of the electromagnetic waves through such а cavity has Ьееп 
extensively studied over the past decade. The speckle pattern resulting from scattering has 
ап average enhancement in the direction opposite the direction of the incident radiation [1] (а 
comprehensive review of other statistical properties of the speckle of reflected and transmitted 
waves is given in Ref. [2]). 

Feedback provided Ьу scattering in such а random cavity сап serve to set uр laser 
oscillations [3]. Laser action in powdered laser materials [4,5], laser dye solutions with 
scattering nanoparticles [6], and dye-doped rnicrodroplets containing Intralipid as а scatterer [7] 
has recently Ьееп reported. These experiments concentrated mostly оп temporal and spatial 
properties of ernission. 

Recently, the proposed [8] enhancement of the weak 10calization peak in backscattering 
from ап amplifying photonic paint was observed [9]. 

The relevantquestion concerning recent observations of generation of light in active 
photonic paints [4,5] is to what extent this phenomenon is reminiscent of superfluorescen
се [10,11] (i.e., the cooperative decay of ап incoherently pumped system of dipole transitions, 
started Ьу initial noise or ап external electrornagnetic field), which has usually Ьееп studied in 
systems without scattering. 

Here we consider the cooperative decay of incoherently pumped atoms in а random cavity, 
which is а slab ofthickness L (L ~ l, where l is the теап free path of radiation). This geometry 
is often used in experiments. The time that light spends in this cavity is of the order of L 2 / D, 
where D is diffusion constant. This time is to Ье compared with the energy exchange time 
between atoms and field. We show that if the latter is greater than L 2 / D, then after some 
delay, the system will generate а superfluorescent pulse of hyperbolic secant form. 
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The dиration of the superfluorescent pulse is TradNc' [10], where Trad is the time of 
radiative decay of а single atom and Ne is the cooperation number, i.e., the number of atoms 
that take part in cooperative decay. We find that in disordered systems, this number is N е сх 
сх рл2 L2 / l (л is the wavelength of the radiation and р is the density of active atoms, such that 
рлЗ ~ 1), i.e., it is equal to the number of atoms in а tube with cross section л2 and length 
of the order of L2/l, which is the length of а diffиsive trajectory of radiation. 

The intensity of radiation of cooperating atoms at the maximum of the superfluorescent 
pulse is сх Nb!Trad [10]. We show that the diffиsive slab radiates at maximum as а system 
of V / N е independent groups of cooperating atoms, and at the peak of superfluorescent pulse, 
the intensity emitted Ьу the slab is сх (Nb!Trad)(V /Ne); V is the volume of the slab. 

The maximum cooperation number for given Trad and density of active atoms is determined 
Ьу the condition that the Нте of energy exchange between atoms and the field equa1s the time 
that light spends in the cavity. From this condition, we find that the таЮтит cooperation 
number in the random cavity is Ncax сх лv'СРТrаd, where с is the speed of radiation in the 
slab. 

These results are valid in the case of weak dephasing processes and long relaxation of 
population difference. Below we take into account the effect of dephasing оп superfluorescence. 

In the limit of the large escape time L 2 / D of radiation, atorns exchange energy with the 
field many times, so stimulated ernission becomes important and the system exhibits oscillatory 
behavior. 

We also consider the reflection of the probe wave during decay of the pumped system. 

2. BASIC EQUATIONS 

We model а random medium in the following way. The dielectric function е:(г) of the 
medium, which contains active atorns, is а random function ofposition, such that (е:(г») = 1. 
Scattering of light is due to fluctuations of the dielectric function with white-noise like variance 

л4 
(&(г)8е:(г'») = 47rЗZ {j (г - г') . 

We consider the case of а weakly disordered system l ~ л, with dimensions larger than 
the mean free path, so propagation of the field сап Ье described as а diffusion process with 
diffиsion constant D = cl/3; с is the speed of light in the medium. 

The coupling between the polarization density 

~ [e iwt Р(г, t) + e-i",t Р*(г, t)] , 

averaged over scales smaller than л, the population difference density дN(г, t), and the field 

~ [eiwt Е(г, t) + e- iwt Е*(г, t)] 

сап Ье described Ьу the classical Maxwell-Bloch equations. In this approach, amp1ified 
spontaneous emission noise is neglected, which is а good approximation for superfluorescen
се [12]; Р(г, t) and Е(г, t) are slowly time-varying complex quantities, which we consider to 
Ье scalars; r.v is the atomic frequency. 

First two Maxwell-Bloch equations have the form [13] 
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[:t +,] Р(г, t) = il~12 AN(r, tjE(r, t), (1) 

:t AN(r, t) = - 2~ [Р*(г, t)E(r, t) - Р(г, t)E*(r, t)] . (2) 

Неге, is the inverse dephasing time and J.l is the electric dipole moment. It is assumed that 
the population inversion relaxation time is longer than the delay time of the superfиorescent 
pulse. We also neglect inhomogeneous bгoadening. 

The quantities AN(r, t) and Р(г, t)/IJ.l1 аге components ofthe 10ca1 Bloch vector averaged 
оуег scales smaller than the wavelength of the radiation. The rate at which its length decreases, 
according to (1) and (2), is determined Ьу ,-[. 

The field wave equation [ог the slow time-varying component Е(т, t) has the [огт 

. dE(r, t) [с2 wc;(r)] ~ z - -- А - -- Е(г t) = 27rwP(r t) dt 2w 2' , . (3) 

Although Е(г, t) and Р(г, t) уагу slowly in time, they stШ contain spatial random phases, 
which result [гот random interference between waves coming to the point r via different diffиsive 
trajectories. То get rid ofthese phase factors, it is convenient to consider the diffusion propagator 
D(r; t[, t2), which determines the correlation function of the polarization density and field: 

(Е(г, t[)E*(r, t2)} = 47ГkЗwD(г; t[, t2). (4) 

Correlation functions involving the polarization density сап Ье obtained Ьу using Eq. (1). 
То obtain the equation [ог the diffusion pгopagator, it is convenient to eliminate the 

polarization density [гот Eqs. (1) and (3). Then the usua1 diagram technique [14] makes it 
possible to calculate the average of the pгoduct Е(г, t[)E*(r, t2). The corresponding diagrams 
аге shown in figиre. 

Considering the evolution of the Вloch vector [гот time t = О, at which а positive 
population difference is created, we obtain [ог the diffиsion propagator 

t, 

[~+dd -DV2] D(r; t[, t2) = f(r; t[, t2)+~ J dt ехр [-,(t[-t)] Ш(г, t)D(r; t, t2)+ 
dt[ t2 рто 

а 

t, 

+~ J dt ехр [-,(t2 - t)] AN(r, t)D(r; t[, t). 
РТа 

(5) 

о 

Неге 

ТО == 

is the characteristic time of energy exchange between the field and the atornic system [11]; р 
is the density of active atoms, and 

_[ _ 8Jr21J.l1 2 

T rad - 3hлЗ 

is the radiative decay time of а single atom. 
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с> + 

+ 

LlN(t) 

Diagram for the ditТusion ladder, which is denoted Ьу shaded triangles. Solid lines correspond 
to the average Green function of the field, dashed lines denote scattering. Shaded circles 
denote interaction between field and atoms. Тhe average Green function satisfies the equation 

idE(r, t)/dt - {-c2"'/2w - w/2 + ic/21} E(r, t) = Б(r - г)Б(t) 

The function f(r; t], t2) depends оп initial conditions. Here we choose the initial condition 
such that (P(r, t = О») = О and (P(r, t = O)P* (r', t = О») = pIIL1 28(r-r'). This initial condition 
corresponds to ап initial incoherent state. In this case 

(6) 

for times greater than the теап free time of radiation l / с. 

The equation for the теап population inversion density сап Ье obtained Ьу using Eqs. (1), 
(2) and (5): 

t 

dLlN(r, t) (27г)3 J' [ ( , ] , [ (' (' ] dt = - пр)..3т5 dt ехр -'У t - t) LlN(r, t) D r; t ,t) + D r; t, t) . (7) 

о 

For the population difference we choose LlN(r, t = О) = LlN > О as the initial condition 
(LlN = р). 

The usual boundary conditions for the diffusion propagator are D(r; t], t2) оп ап ореп 
surface and 0\7 D(r; t], t2) = О оп а reflecting surface; n is normal to the reflecting surface. 

The diffusion approach is justified if the time of епещу exchange between atoms and field 
is greater than the теап free time of radiation, То ~ l/c. 
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З. COOPERATIVE DECAY IN PHOTONIC PAINT 

Below we consider а slab of thickness L (L :» l). Let z Ье the coordinate across the slab 
L ~ z ~ О. It is convenient to study the solution of Eq. (5) in the form 

where 

[2 . 7rnZ 
Ч'n(z) = у L Slll L 

(8) 

is ап eigenfunction of the diffusion equation with boundary condition Ч'n(Z) = О at the free 
boundaries z = О, L. 

Let us consider the initial evolution of the diffиsion propagator, when the population 
difference does not depend оп time. For the coefficients in (8), we obtain from (5) 

[d~] + d~2 + ""n] D n(t1, t2) = fi p/ft/2 j dz Ч'n(Z) ехр [-/,(t1 + t2)] + 

t, t, 

!J.Nj !J.Nj +-2 dt ехр [-/'и] - t)] Dn(t, t2) + -2 dt ехр [-/,(t2 - t)] D n(t1, t). 
P~ P~ 

(9) 

о о 

Here ""n = D7r2n2 / L 2 is ап eigenvalue of the diffиsion equation. Solving Eq. (9) through the 
Laplace transform with initial conditions Dn(O, t2) = D n(t1, О) = О (the field vanishes at t = О), 
we obtain 

(10) 

The critical value of positive inversion density !J.Nn , аЬоуе which the growth rate of а 
particular diffusion mode 

( ""n )2 4!J.N ""n 
2-/' + PTJ -2-/' 

becomes positive, is !J.Nn = (""n/,/2)PTJ [3]. More detailed calculations of (10) are given in 
the next section. 

То proceed further in solving Eqs. (5) and (7), we make two approximations. 
1) Below we consider the case of fast escape of radiation [rom the system, where 

""] :» d/dt],d/dt2,/' (or, according to (10), ТО""1 > 1 [ос weak dephasing), so we сап 
neglect the time derivative in Eq. (5). In the language of superfluorescence, this situation 
corresponds to the case in which there is по energy exchange between the emitted field and 
atomic subsystem [12]. The field serves 6nly to develop correlation between atoms. 

2) We consider only the most unstable mode D 1 и1, t2)' At t = О, the off-diagonal 
elements of 

!J.Nnm(t) == j dz !J.N(z, t)Ч'n(z)'Рm(z) 
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are zero Ьу definition, and interaction between modes is irrelevant for most ofthe time of decay. 
We therefore assume that the interaction ofthe first diffиsion mode D! (t!, t2) with higher modes 
does not qualitatively change the description of cooperative decay. 

Under these assumptions the equation for the diffиsion propagator has the forrn 

t, 

+ _1_2 J dt ехр [-')'(t2 - t)] t!NII (t)D! (t!, t), 
{JVJ! То 

О 

and for the population difference 

Introducing 

in (11), where 

we obtain 

t 

X(t) = -1-2 Jdtt!NI1 (t), 
PUJ!To 

О 

Equation (15) сап Ье solved Ьу а Laplace transforrn: 

-iоо+С 

The asymptotic forrn of (16) for Х! =.Х2 == Х > 1 is 

С( ) ~ 2plJ.L1 2 ехр(4х) 
х,х ~ . 

nUJ! V1ГX 

The equation for the population difference (х > 1) is 

d2 8k3 

-d 2 Х = --3 -!. 2 G(x,x)exp(-2')'t). 
t 7ГпРТо 

Taking into account on1y exponential factors, we obtain the solution of Eq. (18): 

t!NI1 (t) = 8N(O)th {2БN(О)(tо - t)} + ,),PT5UJ ! . 
PT5UJ! 2 
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Here we introduce 8Nll (0) == !J.N -",(UJIPT{; /2;!J.N is the population difference at the beginning 
of exponentia1 growth of radiative intensity, when deviation from the initia1 popu1ation difference 
is small (!J.N = р). 

The de1ay time in (19) is 

= UJIPT{; 1 [8N(0) Г\з~] 
to 28N(0) n Р V рл- ..f['5.. . 

In deriving this expression we took into account the re1ation between the time of energy exchange 
between atoms and field and IJLI 2 , which enters into the initial condition for polarization density. 

The radiative intensity is proportiona1 to d!J.Nll (t)/dt, and is emitted as а hyperbo1icsecant 
pu1se. The resu1t (19) coinsides with that ofthe Markov theory ofsuperfluorescence in а system 
without scattering [10,11]. The difference is in the definition of the cooperation number. 

It follows from Eq. (19) that in the case of weak dephasing, the duration of а 
superfluorescent pu1se is T{;UJI/4 == TradN(/, where Trad is the time of radiative decay of 
а sing1e atom and 

is the cooperation number, i.e., the number of atoms that take part in the cooperative decay. 
This is equa1 to the number of atoms in а tube of cross section л 2 with the 1ength of the diffиsive 
trajectory L 2/l. The maximum of the cooperation number is determined Ьу the condition 
TOUJI = 1, whereupon NёJax = 2лJ6СРТrаd' Under this condition, atoms сап exchange energy 
with the fie1d only опсе, i.e., stimu1ated emission сап Ье neg1ected. We note that for а given 
density Р, decay time Trad, and ve1ocity, the maximum cooperation питЬет in а disordered 
system is smaller, than in а pencil-shaped system without scattering [15]. 

The maximum emitted radiation is 

d 
V dt !J.Nll (t = to) 

(V is the vo1ume of the slab). It сап a1so Ье written .Af' Nb! Trad, where .Af' = V Р / N с is the 
number of cooperative regions in the slab. 

The cooperative decay in а diffusive medium сап therefore Ье interpreted as the independent 
cooperative decay of .Af' = V Р / N с systems, each consisting of N с atoms. 

Dephasing processes increase the duration of а puise Ьу the factor p(!J.N - "'(UJIPT{; /2)-1, 
and decrease the peak intensity Ьу the square ofthis factor. Note that this resu1t coincides with 
that for а system without scattering [16]. 

If TOUJI <t: 1, atoms exchange energy with the fie1d тапу times. In this case we expect 
spiking of intensity. The frequency of spiking сап Ье estimated [13] [roт Eq. (10) as 

То obtain this expression we insert а negative value of the рори1аНоп inversion [13] into (10) 
(this situation wi11 оссис after the pumped atoms exchange energy with the fie1d). 
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4. AМPLlFICATION IN ТНЕ ВАСКWЛRD DIRECТION 

Correlation between pumped atoms сап also Ье due to the external field, which stimulates 
emission in the forward direction in а system without scattering [13]. In а disordered system 
one might expect enhancement of emission in the backward direction. 

Here we consider the reflection of а weak probe plane wave with frequency (.с) during the 
development of supert1uorescent emission. The amplitude of the probe is low, so the effect 
of the external field оп ernission сап Ье neglected. We сап also neglect interference between 
the external field with the ernitted one, because the initial state of polarization is incoherent. 
Below we consider in detail the linear stage of decay when the inversion density is high enough 
to produce only the lowest diffusion mode instability, ~N = ~Nl (l + 8), 8 <t: 1. This situation 
resembles the experimental setup of [9]. 

It is convenient to calculate the albedo, which is the ratio between the intensities of the 
reflected and incident fields. The time-dependent albedo сап Ье expressed as [17] 

с /00 ( z + z') / a(q,t)= 47Г[2 dzdz'exp --z- dp[l+cos(q,p)]D(z,z',p;t). (20) 

о 

Here q is the sum of the incident and outgoing wave vectors, and р is the position in the plane. 
Diffusion propagator (20) obeys Eq. (5) with the substitution of 8(г - г) for f(r; tl, t2). We 
also assume that the incident wave is close to the normal to the surface. 

The first term describes diffusion scattering, and the second term describes the interference 
part, which is strongly peaked in the backward direction. The physical mecllanism of the 
interference contribution is exhaustively discussed in the literature; see, for example, Refs. [1] 
and [8] and references therein. 

The diffusion propagator сап Ье represented as 

(21) 
n 

The Laplace transform of Eq. (5) for time-independent ~N > О yields 

-iоо+С 

{ ~N (1 1) }-1 Х Рl + Р2 + Qn(q) - - -- + -- , 
рто Рl + 'у Р2 + 'у 

(22) 

where the real part of the integration contour passes to the left of аН singularities, and 
Qn(q) = D q2 + (.с)n is the eigenvalue of the diffusion equation for the slab geometry. 

At t 1 = t2, integrating over the difference р1 - Р2 in (22), we obtain for the first mode at 
t > (.с)1 1 

dp exp(pt) 

27Гi pVP-ZJ(q) 
(23) 

823 



А. Уи. Zyuzin ЖЭТФ,1998, 113, вьm. 3 

Here we introduce 

which is the growth rate of Д (Ч, t, t). 
For moderate times 

we obtain from (23) 

DЛ ( ) _ 2 ехр [ZI (q)t] - 1 
1 Ч, t, t - - J: D 2/ . 

"-'1 и - q "-'1 

This expression is valid for either sign of ZI, i.e., above as well as below threshold. 
Taking into account that 

() f2. 1ГZ 
'1'1 Z = V L Sllly, 

we obtain the singular contribution to the albedo from the first mode: 

J: ( ) = ~ {exP[ZI(O)t] -1 + exp[ZI(q)t] -1} 
uaq,t 1ГL 8 8-Dq2/"-'I' 

(24) 

(25) 

Below threshold the albedo is satиrated. The peak at large times has а Laplacian form 
сх (181 + D q2/"-'I)-I. At threshold and above there is narrowing of the peak with increasing 
time. Exactly at threshold the albedo is linear with time, and above threshold the albedo grows 
exponentially. 

5. CONCLUSION 

То summarize, superfluorescent emission of active photonic paint develops due to the 
cooperation of atoms along а diffиsive trajectory through а system with cross-sectional 
dimensions of the order of а wavelength. The pulse therefore becomes narrower with decreasing 
mean free path of radiation untill the cooperation number reaches its maximum value. The 
maximum cooperation number does not depend оп disorder. 

An external field enhances emission in backward direction. The peak sharpens in coherent 
backscattering during cooperative decay in а disordered system. 

1 thank А. У. Gol'tsev for usefиl suggestions. This work was supported Ьу the Russian 
Fundation for Fundamental Research under Grant number 97-02-18078. 
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