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Most of the current inertial confinemet fusion (ICF) schemes are based on the ignition of
a high-density DT fuel by a single, high-temperature spherical hot spot (the spark). The spark
is self-generated by the implosion process, which is used to bring the fuel to high density. To
start ignition the spark has to be dimensioned in such a way that the ion temperature would
be greater than 5-7 keV, and that the spark radius would be greater than the a-particle range.
A spark with these features is indicated as supercritical. In the scheme based on self-generated
spark, ignition can fail to occur when the produced spark strongly deviates from spherical shape,
which can make all the surface losses highly relevant. High deformation, or even spark splitting,
can occur due to the amplification of initial deviations from spherical shape by hydrodynamic
instabilities (or by secular growth) during the implosion process. In principle, ignition can be
recovered if the implosion is designed in such a way as to make supercritical at least one of the
portions of hot fuel which are produced in this way near stagnation. As a general trend, more
compressed final assemblies are required. In this paper we present fuel gain calculations (Gain =
Thermonuclear energy/Energy in the compressed fuel) for DT assemblies ignited at the end of an
implosion process by a supercritical spark statistically created within a cluster of many subcritical
ones. It is assigned the total number of sparks and the probability of having at least one of them
supercritical. As a function of these quantities we calculate, in the framework of an isobaric model,
the average thermal energy associated with the spark assembly. The same model is also used to
evaluate, by statistical arguments, the areal mass, the burn fraction, and the system’s total fuel
gain. It is found that the energy distribution function of the sparks is influenced only by a single
global parameter, in which the assigned ignition probability and the number of sparks are also
represented. Compared to the single central-spark approach, being the final states with allowed
inner turbulence, the multispark scheme is characterized by relaxed initial symmetry requirements.
For multispark systems we can realistically consider the achievement of fuel gains comparable or
greater than those typical of the single-spark approach, when evaluated for currently accepted
spark convergence ratios. With regard to the single spark case, higher cold fuel densities are
needed, as expected (typically 2x-3x, for the same gain, depending on the energy distribution
function ).

1. INTRODUCTION

The conventional ICF scheme is based on fuel triggering by a single, self-generated hot
spot (the ignition spark) at the center of a compressed, cold DT fuel assembly. Hot spot
ignition is usually preferred to volume ignition because, in the cases of interest for the energetic
application of ICF, it provides higher fuel gains at substantially smaller extreme parameters for
the compressed fuel assembly (pressure, density, density x fuel size). This is basically due to
the circumstance that, to get high fuel gains in uniform systems it is necessary to ignite the fuel
at comparatively low temperatures. This requires radiation trapping, in order to make radiative
losses smaller than the thermonuclear energy released to the fuel.
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In the central spark approach, ignition is initiated when the ion temperature in the spark,
T; (= T., the electron temperature), is greater than 5-7 keV and the spark radius, R,pqrk, iS
greater than the range of the a-particle produced in the DT reaction. Under such conditions,
in a stagnant spark the thermonuclear energy deposited inside the spark exceeds the radiative
and the electronic conductivity losses, and self-heating occurs. A spark with these features is
called as supercritical spark.

Burn propagates from the spark to the surrounding fuel, bringing it to temperatures in
the range of 40-100 keV. Fuel combustion is quenched by hydrodynamic expansion in a
time te;p & Ryyei/4cs, where Ry, is the total radius of the compressed fuel and c, is the
sound velocity at the burning temperature (much greater than the ignition temperature). The
governing number for this process is clearly ¢ = (ov)pr(p/Mpr)tesp, Where (ov)pr is the
usual Maxwellian averaged product of the DT reaction cross section times the ion velocity, p
is the fuel mass density, and Mpr is the ionic average mass. The maximum of ¢ occurs at a
temperature T' = 40.6 keV and is ¢mqes = pRfyer/4.7 (CGS units are used). It is therefore
clear that values of pRy,.; of several g/cm? are needed to obtain high values for the fractional
fuel burn, fyurn. A widely used formula for fu,., is given in the next section. Typically, for
Pfuet = 0.3, we have fr,e = 0.3. The value R,p,.« of the spark radius is typically assumed
to be of the order of 1/40 of the initial fuel capsule radius R;,.4.: Of the (i. €. the convergence
ratio is Cspark = Rtarget/Rspark = 40). Such a large value of C,par is used to maintain the
ablation pressure, needed to drive the fuel up to the required high implosion velocity, within
technically available values (at laboratory energy releases).

The controlled formation of the ignition spark is a main issue in this scheme. Actually, due
to the required high convergence ratio, this target design seems sensitive to nonuniformities in
the ablation pressure, to irregularities in the target structure, and to hydrodynamic instabilities.
For instance, it has been shown [1], how due to the nonuniformities in the initial energy
deposition (percent sized low modes, mode number [ up 10-20), the thermonuclear gain can
drop abruptly to zero. The reason for ignition failure (no gain) is the formation of a highly
deformed spark, in which the surface heat losses, due to an unfavourable surface-to-volume
ratio, are too large. Numerical modeling shows that because of hydrodynamic instabilities, the
final spark, at stagnation, can be so distorted as to become nearly split into ! substructures by
the well-known mushroom-shaped jets [2, 3]. Preliminary studies [3] of 3D perturbed spherical
stagnation show that saturation occurs when the perturbation amplitude is of the same order
of wavelength. These studies have been made for the single mode at low harmonic indices (I
and m up 6).

It should be noted that low modes (mode indices 5-10) can, in principle, generate a large
number of substructures. If the prevailing grain size is of the order of R,;/n (R, is the radius
within which the sparks are enclosed, and n is a typical mode number), approximately n?2
fragments saturated at R,/n can be allocated on a single spherical layer, while n® can be
allocated in a volume. At any rate, unbalanced direct irradiation with multibeam modern laser
installations may already produce a large number of substructures (rn oc (number of beams)!/2).

To the best of our knowledge, multimode 3D studies with realistic implosion dynamics
and burn are still lacking, as is any acceptable theoretical description for the final turbulence,
as it may result for given initial conditions. However, for conventional target designs, it seems
reasonable to assume that, unless very high spherical symmetry is achieved in the initial stages of
the implosion (by high-quality irradiation and target finish), spark splitting and ignition failure
at stagnation can occur.

Let us assume that the initial requirements for symmetry are deliberately relaxed, so that
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a final turbulent condition is allowed. In this context, an interesting question which must be
be answered has to do with the possibility of recovering ignition and high gain for this final
assembly. Clearly, to find the answer, the relevant key parameter to be determined is the
investment in energy required to make supercritical, with assigned probability p, at least one
of the hot fuel portions in the turbulent mix (in the center or elsewhere). Once this energy is
determined, the assembly parameters needed for high gain can be also found. This information
can then be used to identify the general features of implosions which may lead to such final
configurations. Since an ignition probability p is introduced, the question may arise about the
scheme’s usefulness for energy applications, as now a finite ignition failure probability (1 — p)
is allowed. In energy applications, however, the concept of ignition failure can be introduced
without harm, if the implosion is designed in such way as to make the ignition probability p
sufficiently high. For this kind of design, the well-known reactor loop condition, which relates
the target gain to the driver efficiency 74 iyer, SaY Nariver X target gain = 10, needs only be
changed to p X 7J4river X target gain = 10. Ignition failure can arise under reactor conditions
for a number of reasons, different from target design (e.g., misalignment, target structural
imperfections, lack of reproducibility of the driver pulse, etc.), so that the probability of ignition
p should to be introduced in any case.

2. A MODEL FOR GAIN CALCULATIONS

The following model is adopted to answer the questions discussed in the previous section.

a) Uniform pressure (P) is assumed at stagnation for the final fuel assembly. Ignition and
fuel gain calculations with this assumption have been made by a number authors [4] since 1976.

b) The fuel is divided into two phases, hot and cold. The hot fuel is assumed to be split
into NV parts at the same temperature. Having the same temperature and pressure, the hot
sparks have also the same density (p,pqrx). The pressure in the cold fuel is assumed to be

P= (IIDF, (1)

where « is the factor by which this part of the fuel is not degenerate, and Py is the Fermi
pressure [5].

¢) The compressed DT fuel assembly is assumed to be a perfect gas. Thus the energy per
unit volume is 3P/2 everywhere, regardless of the degeneracy degree [6].

d) Lacking better descriptions, simple test-distribution-functions for the turbulence
spectrum in energy are adopted (size o< energy'/?). Various dependences are tried for trend
sampling. The final gain is computed for the distribution which gives the smaller gains in the
explored set.

¢) To ignite the assembly, we assume [5] there must be at least a spark with energy (F)
such that

E > By, m - 127 ), @
spark

where Tpor is in keV, and pypori iS in g/cm’. The inequality (2) holds for a set of spheres
with a radius R > 0.3/psparr cm and the same density (pspari) and temperature (Tgpori). To
obtain ignition a Tspq-x = 5 keV is usually considered sufficient. In all the following numerical
examples T'sp, .1 = 7 keV will be assumed. Unless a critical spark (E > Ej,) has been created
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in the assembly, the subcritical sparks (E' < E;j.) are ultimately cooled by thermal conduction,
radiative losses or the general assembly expansion.

f) The probability p to have within N sparks at least one with E > Ey;,. is assigned. Once
p and the energy distribution function for sparks are assigned, the total spark energy (Erot)
can be calculated in terms of E;,., N, and p.

g) The gain calculations require an estimate for the fraction (fy,rn) of mass burned by
thermonuclear reactions before the general fuel disassembling occurs. For DT fuel assemblies
with spherical symmetry we apply a widely used formula [5] for fyy,n

Rfvel

[ pdr
fourn = —————— [CGS units], (3)

Rfucl

[ pdr+7
0

where the integral is taken from the symmetry center to the radius of the total fuel assembly
Rjuer. In our case we use a variant of Eq. (3), in which the integral is statistically evaluated.

3. THE PROBABILITY OF IGNITION

We assume that, as a result of the implosion, within the isobaric fuel IV hot sparks have been
formed and distributed in energy E according to dq = f(E, Ey)dE, where E; is a parameter
with dimensions of energy and dq is the probability for a spark to be between E and FE + dE.
Let f(E, Ey) = w(E/Ey)/Ey, where w is a dimensionless function. The probability p to have
at least one supercritical spark can easily be calculated in terms of w as

N
E¢nr[Eo

p=1- / w(z)dz| . 4)
0

This equation can be solved for Ej as a function of E;,, p, and N. After this value of Ej is
inserted in

oo

Ehot =N / Ef(E,E)dE = NE, / zw(z)dz, (5)
0

0

an estimate results for the total energy, E},:, Which is required in order to obtain, with assigned
probability, at least one above-threshold spark. Clearly,

Enot =7Eunr, 7=Nh|[(1-p'"], ©)

where the function A is calculated from Egs. (4) and (5). We note that, when NV is large, the
expected p-dependence for v can be slow.

Since E o« R?, where R is the radius of the spark, to use w is tantamount to using the
space turbulence spectrum. The distribution functions in E can then be seen in terms of spark
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radii by introducing a space scale R, through E = (R/Ry)*E,, so that the function f(E, Ey)
will correspond the function

_ dE
9(R, Ro) = Ry f(E, Eo)-d—R—- 7

We now consider a few examples of the distribution functions in E, chosen to illustrate some
relevant points in view of their mathematical simplicity. We adopt three functions, a squa-
re-box, an exponential, and a simple combination of power-laws in energy, which qualitatively
represent quite different energy (radii) distributions. The square-box dependence is

1
f(E,Ey)) = = for E L Ey, ®)
Ey

f(E,Ey) =0 for E > Ey, )

and the corresponding normalized energy is

N
" N (10
The exponential dependence
exp(—E/E
(i, By) = ZRETED an
0
corresponds to
N
=_ , 12
T Tl (1 =p'/V] (12)
and for the power-laws case
2 E\'? (E)‘2/3 1
E, E)==-|1—|—= — — for FE < Ey,
T8, Bo) = 3 [ (Eo) Eo E = (13)
f(E,Ey))=0 for E > Ey,
N .
v = (14)

10[1—\/wr'

The dimensionless hot energy « (in units of IV) is represented as a function of p in Fig. 1, for
N = 10. It is worth noting how already for this value of IV both the «exponential» and the
«power-laws» functions give better results than the «square-box» function. As is obvious from
Egs. (10), (12), and (14), the dependence on p becomes less important for increasing V. Note
also that E},; is substantially smaller than N Eyy,,.
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4. FUEL ASSEMBLY DIMENSIONS

Let us assume that an energy Ey,.; has been transferred to the compressed fuel. The
fraction

v= Ehot/Efuel (15)

is used to parametrize our calculations. If the parameter v is given, by using Eq. (6), we can
write the allowed E,;, as follows:

Euhr = 2 Eguer, (16)
Y

so that the allowed hot fuel density, pspark, can be computed from Eq. (2). Since the
temperature is given (say, Tspark = 7 keV), we can find the hot fuel pressure. Because the
system is isobaric, the pressure (P) is the same everywhere in the fuel. Equation (1) can then
be used to determine the cold fuel density, p..iq. The energy density throughout the fuel is
3P/2, so that when we assume the fluid is entirely enclosed within a sphere of radius Ry,
(see Fig. 2), the system size is

Epu\ 3 ' )
&w=(;;). (17)

Similar considerations provide the total fuel mass, as a sum of the cold and hot part
contributions:

2 Efue
Mfuel = 3 [pcold(l - U) + pspa'rky] fF, l‘ (18)

Since the critical spark volume is Eyp,/(3P/2), from the previous formulas the critical spark
radius is found to be

Rthr = (V/'Y)I/BRfuel- (19)

We note that the distribution function in energy (or R) enters in these estimates only through the
single dimensionless parameter y introduced in the initial F, evaluation [through Eq. (16)].
The thermonuclear gain for this fuel assembly is then

fburn ) (20)

where ¢;, is the thermonuclear energy released by burning the unit mass, and fy,,, is the
fraction of burned mass, now to be evaluated by a statistical version of Eq. (3).
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Fig. 2. The numerical examples reported in

the paper refer to sparks randomly distributed

within a sphere of radius R, smaller or
equal to the fuel radius Rfye;

5. THE BURN FRACTION fiurn

For the situation analyzed in this paper, the integral appearing in the Eq. (3) for fy,.,.n is

Rfuel

pdr = psparkLspa'rk + pcold(Rfuel - Lspa,rk), (21)
0

where L.« is obtained by adding the portions of the radius Ry,.; embedded in the randomly
distributed sparks (e.g., the dashed segments in Fig. 2).

Let us assume that a line starting from the system’s center meets a spherical spark of
radius R (cx E'/?). Tt is easily seen that, on the average, the line segment within the sphere is
(4/3)R(E). If, along the radial coordinate r in the fuel, the space-energy distribution is then
assumed to be dN = 4nr’n(r)f(E, Ey)dr dE, we obtain

Rfyel oo
Lopark = / dr / AEn(r) (B, BymR(E) - § R(E) 22)
0

0

However, (4/3)mR® = 2E/(3P), where P is the constant presure of the system, so that through
Egs. (5), (17), and (19) follows that

R 2 4 Ryyet -1

ue 7

Lspa.'rk = Rf'u.elV (Rf l ) ) R%urb =N "3— / n(T)d’l’ N (23)
0

turd

without any additional assumption on the distribution function f(F, E;). As we have seen in
the previous section, the system dimensioning depends on f(E, Ey) only through . Thus the
entire model depends only on the integral parameters v and R;,.5.

If the sparks are distributed uniformly in the volume enclosed within a radius B; < Ry
(see Fig. 2), through Eq. (23) we find R;,., = R, and

Lspa/rk = Rfuel V(Rfuel /Rs)2- (24)
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For this case, a more convenient parameter, the dilution of the sparks (d), can be used instead

of R,:
4rR} (2E\™' 1 [ R, \’
4= =3 (313) —Z<Rfuez>’ @

where Egs. (15) and (17) were used. By definition d > 1. After d is assigned in the
parametrization, we require vd = (Rs/Rjfyet)’ < 1, so that v < 1/d. In terms of d,
Lipark = Rfyer(v/d?)!/3, so that finally

Rf’u.el

UA1/3
/ pdr = [Pcold — (Pcold — Pspark) (d_Z) ] Rfuer- (26)
0

Since pcotd > Pspark, the integral (and fy.,n) increases with d.

The conventional calculations for single, central spark [5] can be formally recovered from
this model by setting v = 1 and d = 1. From Egs. (15), (16), (19), (24), and (25) it results in
Etot = Ethrs Lspark = Rs = Rinr, and the statement holds.

6. FUEL GAIN CALCULATIONS

In the following we present some gain evaluations for assemblies having the sparks dispersed
uniformly within a radius R, < Ry, [see Fig. 2, and Egs. (24)—(26)]. The uniform distribution
in the entire fuel is obviously included as a special case (v = 1/d). The relevant formula for
fourn is that obtained by using Egs. (3) and (26).

The numerical results presented in this section refer to E,.; = 400 kJ; this value is taken
just for illustrative purposes. Here, we are not interested in the value of the gain which can
be achieved, but in its relative change as a function of the number of sparks V. In all the
calculations, the ignition temperature was assumed to be 7 keV (see Eq. (2)).

All the graphs presented refer to an ignition probability p = 0.9 (unless the lowest values of
N are considered, the results are largely insensitive to the value of this parameter (see Fig. 1).
The ratio between the fuel pressure and the Fermi pressure, in the cold fuel, was assumed to
be [8] a = 2. The typical behavior of the gain G in terms of v and d is illustrated in Fig. 3,
where the isolevels for G are shown. The behavior is always qualitatively the same, regardless
of which values of N and p are considered, or the distribution function in energy is adopted.

The curve I represents the boundary for the region where v < 1/d (R, < Rjyer; see
Sec. 5). The points on I represent uniform distributions of the sparks throughout the fuel
volume (R, = Ryye). The curve 2 represents the loci where a maximum of G occurs for
assigned d. On this curve, in the region below the point A, (8G/8v); = 0. An additional
modest increase in G can be obtained by moving along the curve I/ from A to the point B,
where the line 7 is tangent to an isolevel [on this path (G /dv)4 > 0]. The gain evaluated in B
is the highest possible. The coordinates of B are given in Table for the «square-box» distribution
function (and p = 0.9). Lying on the curve I, these B points correspond to a uniform spark
distribution in the fuel (i. €., R; = Ryyel).
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Fig. 3. Gain isolevels in the v, d plane. The parameter v = Ejo¢/Eue represents the total

energy given to the sparks, measured in units of the total fuel energy Ef..;. The dilution parameter

d represents the ratio of the volume in which the sparks are distributed (radius R,) to the overall

sparks volume. Between the curve I and the line d = 1 lie the physically interesting points,

those for which R, < Rjguei- On the curve 2 lie the points of maximum gain at assigned d.
The maximum possible gain is achieved on B, where I is tangent to an isolevel

G
2400
2200
2000 Fig. 4. The maximum gain (evaluated along
the line 2 in Fig. 3, and then from A to B)
1800 is reported for different values of N. The
starting value is d = 1
1600
1400
1200f ‘ . . .
006 008 0.10 012 014 v
N v d G
10 0.1061 9.423 2523
50 0.1148 8.710 2042
100 0.1197 8.353 1845
500 0.1329 7.526 14435
1000 0.1394 7.174 1297

The maxima corresponding to different values of NV are shown in Fig. 4 for the «square-box»
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Fig. 5. a) Fuel gain for the case of 50 sparks distributed in energy according to the «square-box»
distribution; p = 0.9, Efyey = 400kl; I —d=1,2—d =17, 3—d =28, 4—d =438,
5 — d = 8. b) Cold fuel density plotted as a function of v

distribution (following curve 2 up to the point A, and then the curve I from A to B). Along
each curve the value of the parameter d changes from 1 to the corresponding B points, which
are listed in Table. The sudden change in direction of each curve occurs at the transit through
the A points (see Fig. 3). In Figs. 5a and 5b calculations for G and p.,;4 are presented (at
N = 50) for the «square-box» distribution. To carry out comparisons, the curve for the sing-
le-spark gain is also shown in Fig. 5a. The maximum for a single spark (G;; = 2706) occurs at
v = 0.0483, and the associated cold fuel density is p = 910 g/cm?. This density value is about
0.5 of that associated with the maximum on the curve 5in Fig. 5a. Clearly, substantially more
favorable results for multispark follow from the calculations relative to the other distribution
functions (see Fig. 1). For the single spark approach, the site of the maximum gain is unlikely
to be a working point since it corresponds to spark convergence ratios that are not practical.
This can be deduced from prescriptions deriving from some high-gain capsule designs, where
at 3/4 of the initial target radius the in-flight aspect ratio (IFAR) is set equal 30 and the total
thickness (ablator + DT) is assumed to be equal to that of the initial, solid-state density DT
layer [7, 8]. Thus the initial shell radius follows as

1/3
Ry = (IFAR Mfue[> , @7
3 0o

where pg is the DT density at the solid state. The spark convergence ratio is evaluated as
Cispark = Ro/Rinr. The single-spark maximum gain corresponds to Cipori = 99, a value
much greater than those currently accepted [9] (= 40). The working value (Cpqrr = 40) is
recovered at v = 0.308, where the gain is G, = 1741. This working point was labelled W in
Fig. 5a. The gain at W is smaller than the maximum gain obtained with multi-spark systems.
For multispark, the geometric parameter corresponding to Csporx may be Cpo: = R/ R,,
where R, is the radius of the turbulent region (see Sec. 5). For the highest gain R, = Ry,
and Chot = Cyuer = Ro/Rjuer- Under these conditions, the highest gain for the case of
Fig. 5a corresponds Cy,; = 45, whereas C,.; = 39 for the «power-laws» case. To obtain a
gain G, by multispark configurations, more relaxed conditions are sufficient, namely those
corresponding to Cy,.; =~ 38 for the case of Fig. 5a, and Cyy,e; = 30 for a «power-laws»
distribution. These conditions should be used in the implosion design, taking into account that
in a multispark assembly the overall shape of the final fuel is expected to play a secondary role
in determining thermonuclear performances of the system.
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7. CONCLUSIONS

In the conventional ICF approach a central issue is the formation of a spherical triggering
spark at the center of the fuel, at the end of the implosion process. Highly deformed sparks
do not ignite [1] and in experiments it has been found a substantial deviation of the measured
number of neutrons from that computed in 1D simulations. This deviation increases with
the implosion convergence ratio. The usual interpretation attributes these results to a mixing
process.

In this paper we assumed that as a final result of the implosion a multispark system has been
generated. It was found that high thermonuclear fuel gain can be still obtained from compressed
fuel assemblies, in which a large number of sparks (N = 10-100) with a statistically generated
energy (size) spectrum is created. By requiring to have, with an assigned probability, at least
one spark large enough to ignite the fuel, we have computed the assembly dimensioning and, by
using statistical arguments, the burn fraction and the fuel gain. It was found that the results may
depend on the values of two integral parameters, which depend on the energy-space distribution
function of the sparks.

Although requiring more compressed fuels (typically 2x -3 x ), the multispark approach may
prove to be interesting because (in principle) it is based on the hypothesis of ab initio relaxed
implosion symmetry requirements. Final mixing processes, which are currently considered to
be adverse in ICF, could turn out to be not so dangerous, since high gain can still be obtained.
Based on these considerations, the domain of implosion designs can be expanded so as to make
it relevant for thermonuclear energy.
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