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Most of the current inertia! сопfшеmеt fusion (ICF) schemes are based оп the ignition of 
а high-density DT [ие! Ьу а sing!e, high-temperature spherica! hot spot (the spark). The spark 
is se!f-generated Ьу the imp!osion process, which is used to bring the [ие! to high density. То 
start ignition the spark has to Ье dimensioned in such а way that the ion temperature wou!d 
Ье greater than 5-7 keV, and that the spark radius wou!d Ье greater than the а-ратс!е rangе. 
А spark with these features is indicated as supercritica!. In the scheme based оп se!f-generated 
spark, ignition сап fail to occur when the produced spark strong!y deviates from spherica! shape, 
which сап make аН' the surface !osses high!y re!evant. Нigh deformation, or even spark splitting, 
сап occur due to the amplification of initia! deviations from spherica! shape Ьу hydrodynamic 
instabilities (or Ьу secu!ar growth) during the imp!osion process. In princip!e, ignition сап Ье 
recovered if the imp!osion is designed in such а way as to make supercritica! at !east опе of the 
portions of hot [ие! which are produced in this way near stagnation. As а genera! trend, more 
compressed fina! assemblies are required. In this paper we present [ие! gain ca!cu!ations (Gain = 

Thermonuc!ear energy /Energy in the compressed [ие!) for DT assemblies ignited at the end of ап 
imp!osion process Ьу а supercritical spark statisticaHy created within а c!uster of тапу subcritica! 
ones. It is assigned the tota! number of sparks and the probability of having at !east опе of them 
supercritica!. As а function ofthese quantities we caJcu!ate, in the framework of ап isobaric mode!, 
the average therma! energy associated with the spark assembly. The same mode! is a!so used to 
eva!uate, Ьу statistica! arguments, the area! mass, the Ьит fraction. and the system's tota! [ие! 
gain. It is found that the energy distribution function of the sparks is influenced оп!у Ьу а sing!e 
g!oba! parameter, in which the assigned ignition probability and the number of sparks are a!so 
represented. Compared to the sing!e centra!-spark approach, being the fша! states with allowed 
inner turbu!ence, the mu!tispark scheme is characterized Ьу re!axed initia! symmetry requirements. 
For mu!tispark systems we сап realistically consider the achievement of fue! gains comparable or 
greater than those typica! of the sing!e-spark approach, when eva!uated for current1y accepted 
spark convergence ratios. With regard to the sing!e spark case, higher co!d [ие! densities are 
needed, as expected (typically 2х-3х, for the same gain, depending оп the energy distribution 
function ). 

1. INТRODUCTION 

@1998 

The conventional ICF scheme is based оп [uеl triggering Ьу а single, self-generated hot 
spot (the ignition spark) at the center of а compressed, cold ОТ fиel assembly. Hot spot 
ignition is usually preferred to volume ignition because, in the cases ofinterest for the energetic 
application of ICF, it provides higher fиel gains at substantially smaller extreme parameters for 
the compressed fиel assembly (pressure, density, density х fиel size). This is basically due to 
the circumstance that, to get high fиel gains in uniform systems it is necessary to ignite the fиel 
at comparatively low temperatures. This requires radiation trapping, in order to make radiative 
losses smaller than the thermonuclear energy released to the fиel. 
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In the central spark approach, ignition is initiated when the ion temperature in the spark, 
Ti (~ Те, the electron temperature), is greater than 5-7 keV and the spark radius, Rspark, is 
greater than the range of the a-particle produced in the ОТ reaction. Under such conditions, 
in а stagnant spark the thermonuclear energy deposited inside the spark exceeds the radiative 
and the electronic conductivity losses, and self-heating occurs. А spark with these features is 
called as supercritical spark. 

Виrn propagates from the spark to the surrounding fuel,bringing it to temperatures in 
the range of 40-100 keV. Fuel combustion is quenched Ьу hydrodynarnic expansion in а 
time t exp ~ R fue l/4cs , where R fuel is the total radius of the compressed fuel and св is the 
sound velocity at the burning temperature (much greater than the ignition temperature). The 
governing number for this process is clearly Ф = ((Jv)oт(p/MDT)texp, where ((JV)DT is the 
usual Maxwellian averaged product of the ОТ reaction cross section times the ion velocity, р 
is the fuel mass density, and М DT is the ionic average mass. The maximum of Ф occurs at а 
temperature Т ~ 40.6 keVand is Фmах ~ pRfue1 /4.7 (CGS units are used). It is therefore 
clear that values of pRfuel of several g/cm2 are needed to obtain high values for the fractional 
fuel Ьиrn, fburn' А widely used formula for fburn is given in the next section. Typically, for 
Pfuel = 0.3, we have ffuel = 0.3. The value Rspark of the spark radius is typically assumed 
to Ье of the order of 1/40 of the initial fuel capsule radius Rtarget of the (i. е. the convergence 
ratio is Cspark = Rtarget/ Rspark = 40). Such а large value of Cspark is used to rnaintain the 
ablation pressure, needed to drive the fuel ир to the required high implosion velocity, within 
technicallyavailable values (at laboratory energy releases). 

The controlled forrnation ofthe ignition spark is а rnain issue in this scheme. Actually, due 
to the required high convergence ratio, this target design seems sensitive to nonuniforrnities in 
the ablation pressure, to irregularities in the target structure, and to hydrodynarnic instabilities. 
For instance, it has been shown [1], how due to the nonuniforrnities in the initial energy 
deposition (percent sized low modes, mode number 1 ир 10-20), the thermonuclear gain can 
drop abruptly to zero. The reason for ignition failure (по gain) is the formation of а higbly 
deformed spark, in which the surface heat losses, due to an unfavourable surface-to-volume 
ratio, are too large. Numerical modeling shows that because of hydrodynarnic instabilities, the 
final spark, at stagnation, сап Ье so distorted as to Ьесоте nearly split into 1 substructures Ьу 
the well-known mushroom-shapedjets [2, 3]. Preliminary studies [3] of 3D perturbed spherical 
stagnation show that saturation occurs when the perturbation amplitude is of the same order 
of wavelength. These studies have been made for the single mode at low harmonic indices (1 
and т ир 6). 

It should Ье noted that low modes (mode indices 5-10) сап, in principle, generate а large 
number of substructures. If the prevailing grain size is of the order of Rs/n (Rs is the radius 
within which the sparks are enclosed, and n is а typical mode number), approximately n 2 

fragments saturated at Rs/n сап ье allocated оп а single spherical layer, while n 3 сап ье 
allocated in а volume. At any rate, unbalanced direct irradiation with multibeam modern laser 
installations тау already produce а large number of substructures (n ос (number of beams) 1/2). 

То the best of our knowledge, multimode 3D studies with realistic implosion dynarnics 
and Ьиrn are stilllacking, as is any acceptable theoretical description for the fшаl turbulence, 
as it rnaу result for given initial conditions. However, for conventional target designs, it seems 
reasonable to assume that, unless very high spherical symmetry is achieved in the initial stages of 
the implosion (Ьу high-quality irradiation and target finish), spark splitting and ignition failure 
at stagnation сап occur. 

Let us assume that the initial requirements for symmetry are deliberately relaxed, so that 
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а final turbulent condition is allowed. In this context, аn interesting question which must Ье 
Ье answered has to do with the possibility of recovering ignition and high gain for this final 
assembly. Clearly, to find the answer, the relevant key parameter to ье determined is the 
investment in еnещу required to make supercritical, with assigned probability р, at least оnе 
of the hot fuel portions in the turbulent mix (in the center or elsewhere). Оnсе this energy is 
determined, the assembly parameters needed for high gain сап Ье also found. This information 
сап then Ье used to identify the general features of implosions which тау lead to such final 
configurations. Since аn ignition probability р is introduced, the question тау arise about the 
scheme's usefulness for еnещу applications, as now а finite ignition fai1ure probabi1ity (1 - р) 

is allowed. In energy applications, however, the concept of ignition fai1ure сап Ье introduced 
without harm, if the implosion is designed in such way as to make the ignition probability р 
sufficiently high. For this kind of design, the well-known reactor loop condition, which relates 
the target gain to the driver efficiency 17driver, say 17driver Х target gain ~ 10, needs only Ье 
changed to р х 17driver Х target gain ~ 10. Ignition failure сап arise under reactor conditions 
for а number of reasons, different from target design (е. g., misalignment, target structural 
imperfections, lack ofreproducibility ofthe driver pulse, etc.), so that the probabi1ity ofignition 
р should to Ье introduced in аnу case. 

2. А MODEL FOR GAIN CALCULATIONS 

ТЬе following model is adopted to answer the questions discussed in the previous section. 
а) Uniform pressure (Р) is assumed at stagnation for the final fuel assembly. Ignition and 

fuel gain calculations with this assumption Ьауе Ьееn made Ьу а number authors [4] since 1976. 
Ь) ТЬе fuel is divided into two phases, hot and cold. ТЬе hot fuel is assumed to Ье sp1it 

into N parts at the same temperature. Having the same temperature and pressure, the hot 
sparks Ьауе also the same density (Pspark). Тhe pressure in the cold fuel is assumed to Ье 

Р=аРр, (1) 

where а is the factor Ьу which this part of the fuel is not degenerate, and Рр is the Fermi 
pressure [5]. 

с) ТЬе compressed DT fuel assembly is assumed to Ье а perfect gas. Тhus the еnещу per 
unit volume is 3 Р /2 everywhere, regardless of the degeneracy degree [6]. 

d) Lacking better descriptions, simple test-distribution-functions for the turbulence 
spectrum in energy are adopted (size сх еnеrgуl/З). Various dependences are tried for trend 
sampling. ТЬе final gain is computed for the distribution which gives the smaller gains in the 
explored set. 

е) То ignite the assembly, we assume [5] there must Ье at least а spark with energy (Е) 
such that 

Е Е - ~ Tspark М} > thr - 2 7 ' 
Pspark 

(2) 

where Tspark is in keV, and Pspark is in g/сmЗ . ТЬе inequality (2) holds for а set of spheres 
with а radius R ~ 0.3/ Pspark ст and the same density (Pspark) and temperature (Tspark)' То 
obtain ignition а Tspark = 5 keV is usually considered sufficient. In all the following numerical 
examples Tspark = 7 keV will Ье assumed. Unless а critical spark (Е> Ethr) has Ьееn created 
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in the assembly, the subcritical sparks (Е < Ethr) are ultimately cooled Ьу thermal conduction, 
radiative losses or the general assembly expansion. 

f) The probability р to have within N sparks at least опе with Е ~ Ethr is assigned. Опсе 
р and the energy distribution fиnction for sparks are assigned, the total spark energy (Ehot ) 
сап Ье calculated in terms of Ethr , N, and р. 

g) The gain calculations require ап estimate for the fraction (fburn) of mass bumed Ьу 
thermonuclear reactions before the general fиel disassembling occurs. For DT fиel assemblies 
with spherical symmetry we apply а widely used formula [5] for fburn 

fburn = 

Rf1tel 

J pdr 

R о [CGS units], 
juel 

J pdr + 7 
о 

(3) 

where the integral is taken from the symmetry center to the radius of the total fиel assembly 
Rfuel. In our case we use а variant of Eq. (3), in which the integral is statistically evaluated. 

З. ТНЕ PROBAВILIТY OF IGNIТION 

We assume that, as а result ofthe implosion, within the isobaric fиel N hot sparks have Ьееп 
formed and distributed in energy Е according to dq = f(E, Eo)dE, where Ео is а parameter 
with dimensions of energy and dq is the probability for а spark to Ье between Е and Е + dE. 
Let f(E, Ео ) = i.AJ(E/ Ео)/ Ео , where i.AJ is а dimensionless fиnction. The probability р to have 
at least опе supercritical spark сап easily Ье calculated in terms of i.AJ as 

[

EthT/EO ]N 
Р = 1 - ! i.AJ(x)dx (4) 

This equation сап Ье solved for Ео as а function of Ethr, р, and N. After this value of Ео is 
inserted in 

00 00 

Ehot = N J ЕЛЕ, Eo)dE = NEo J xi.AJ(x)dx, (5) 

о о 

ап estimate results for the total energy, Ehot, which is required in order to obtain, with assigned 
probability, at least опе above-threshold spark. Clearly, 

(6) 

where the fиnction h is calculated from Eqs. (4) and (5). We note that, when N is large, the 
expected p-dependence for I сап Ье slow. 

Since Е сх: R 3, where R is the radius of the spark, to use i.AJ is tantamount to using the 
space turbulence spectrum. The distribution functions in Е сап then ье seen in terms of spark 
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radii Ьу introducing а space scale но through Е = (R/ Но)З Ео , so that the function f(E, Ео) 
will correspond the function 

dE 
g(R, Но) = НоЛЕ, Ео ) dR' (7) 

We now consider а few examples of the distribution functions in Е, chosen to illustrate some 
relevant points in view of their mathematical simplicity. We adopt three functions, а squa­
re-box, ап exponential, and а simple combination ofpower-laws in energy, which qualitatively 
represent quite different energy (radii) distributions. The square-box dependence is 

1 
f(E, Ео ) = Ео for Е ~ Ео , (8) 

ЛЕ, Ео ) = О for Е> Ео , (9) 

and the corresponding normalized energy is 

N 
"(= ---.",,;,,;,:, 

2(1 - p)I/N' 
(10) 

The exponential dependence 

f(E,Eo) = еХР(1/Ео) (11) 

corresponds to 

(12) 

and for the power-laws case 

2 [ ( Е ) 1/3] (Е) -2/3 
ЛЕ,Ео) = - 1- - -

3 Ео Ео Ео 
for Е ~ Ео , 

(13) 

f(E, Ео ) = О for Е > Ео , 

N 
"( = З' 

10 [1 - Jl - (1 - p)l/N ] 
(14) 

The dimension1ess hot energy "( (in units of N) is represented as а function of р in Fig. 1, for 
N = 10. It is worth noting how already for this value of N both the «exponential» and the 
«power-laws» functions give better results than the «square-box» function. As is obvious from 
Eqs. (10), (12), and (14), the dependence оп р becomes less important for increasing N. Note 
also that E hot is substantially smaller than N Ethr . 
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Fig. 1. Dependence of the parameter 1/ N 
оп р. Тhe calculations are presented for 
the distribution functions given Ьу Eqs. (8), 

(9), (11), and (13) 

4. FUEL ASSEMBLY DIMENSIONS 

Let us assume that an energy E fue1 has been traпsfепеd to the compressed fuel. The 
fraction 

(15) 

is ll~ed to parametrize our calculations. If the parameter v is given, Ьу using Eq. (6), we сап 
write the allowed Ethr as follows: 

v 
E thr = - E fue1 , 

'у 

(16) 

so that the allowed hot fuel density, Pspark, сап Ье computed from Eq. (2). Since the 
temperature is given (say, Tspark = 7 keV), we сап find the hot fuel pressure. Весаше the 
system is isobaric, the pressure (Р) is the same everywhere in the fuel. Equation (1) сап then 
Ье used to dеtепniпе the cold fuel density, Pcold. The energy density throughout the fuel is 
3Р/2, so that when we assume the fluid is entirely enclosed within а sphere of radius R fue1 

(see Fig. 2), the system size is 

R fue1 = ( ~~;l ) 1/3 (17) 

Similar considerations provide the total fuel mass, as а sum of the cold and hot part 
contributions: 

_ 2 [ ] E fuel 
M juel -"3 Pcold(l- У) + Pspark V -р' (18) 

Since the critical spark volume is Ethr/(3P/2), from the previous fопnиlas the critical spark 
radius is found to Ье 

(19) 

We note that the distribution function in energy (or R) enters in these estirnates only through the 
single dimensionless parameter 'у introduced in the initial Ethr evaluation [through Eq. (16)]. 

The thепnописlеаr gain for this fuel assembly is then 

G - M jue1 f -f:tn~ Ьuтn, 
juel 

(20) 

where f:tn is the thermonuclear energy released Ьу burning the unit mass, and fburn is the 
fraction of burned mass, now to Ье evaluated Ьу а statistical version of Eq. (3). 
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Fig. 2. Тhe numerical examples reported in 
the paper refer to sparks randorn1y distributed 
within а sphere of radius R s smaller or 

equal to the fиel radius Rjue! 

5. ТНЕ BURN FRACТION !Ьurn 

For the situation analyzed in this paper, the integra1 appearing in the Eq. (3) for fburn is 

Rfuel J pdr = PsparkLspark + Pcold(Rfue1 - Lspark), 

о 

(21) 

where Lspark is obtained Ьу adding the portions ofthe radius R fue1 embedded in the randornly 
distributed sparks (е. g., the dashed segments in Fig. 2). 

Let us assume that а Нпе starting fюm the system's center meets а spherical spark of 
radius R (сх Е 1 / З ). It is easily seen that, оп the average, the Нпе segment within the sphere is 
(4j3)R(E). If, along the radial coordinate r in the fuel, the space-energy distribution is then 
assumed to Ье dN = 4Jrr2n(r)f(E, Eo)dr dE, we obtain 

_ RJfuel JOO 2 4 
Lspark - dr dEn(r)f(E, E O)JrR (Е)· зR(Е). (22) 

о о 

However, (4j3)Jr RЗ = 2Ej(3P), where Р is the constant presure ofthe system, so that through 
Eqs. (5), (17), and (19) follows that 

( )
2 

_ Rfuel 
Lspark - Rfue1V -R ' 

turb 

[ ]

-1 
Rfuel 

2 _ 41Г 
R turb - N 3 I n(r)dr , (23) 

without апу additional assumption оп the distribution function f(E, Ео). As we have seen in 
the previous section, the system dimensioning depends оп f(E, Ео) only through т. Thus the 
entire model depends only оп the integral parameters т and R turb ' 

Ifthe sparks are distributed uniforrnly in the volume enclosed within а radius R s :::; R fue1 
(see Fig. 2), through Eq. (23) we fюd R turb = R s and 

(24) 
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For this case, а more convenient parameter, the dilution ofthe sparks (d), сап Ье used instead 
of R s : 

d = 47rR; (2Е) -1 =.!. (~)3, 
3 3Р v R juel 

(25) 

where Eqs. (15) and (17) were used. Ву definition d ~ 1. Afterd is assigned in the 
parametrization, we require vd = (Rs/Rjuel)3 ~ 1, so that v ~ l/d. In terms of d, 
Lspark = Rjuel(V/d2)1/3, so that finally 

RjtLel J pdr = [PCOld - (Pcold - Pspark) (;) 1/3] Rjuel. (26) 

о 

Since Pcold > Pspark, the integra1 (and fburn) increases with d. 

The conventional ca1culations for single, centra1 spark [5] сап Ье formally recovered from 
this model Ьу setting "у = 1 and d = 1. From Eqs. (15), (16), (19), (24), and (25) it results in 
E hot = Ethr, Lspark = R s = Rthr, and the statement holds. 

6. FUEL GAIN CALCULATIONS 

In the following we present some gain evaluations for assemblies having the sparks dispersed 
uniformly within а radius R s ~ Rjuel [see Fig. 2, and Eqs. (24)-(26)]. The uniform distribution 
in the entire fuеl is obviously included as а special case (v = l/d). The relevant formula for 
fburn is that obtained Ьу using Eqs. (3) and (26). 

The numerica1 results presented in this section refer to E juel = 400 kJ; this value is taken 
just for illustrative purposes. Here, we are not interested in the Уа1ие of the gain which сап 
Ье achieved, but in its relative change as а [ипсНоп of the number of sparks N. In а1l the 
ca1culations, the ignition temperature was assumed to Ье 7 keV (see Eq. (2». 

АН the graphs presented refer to ап ignition probability р = 0.9 (un1ess the lowest values of 
N are considered, the results are largely insensitive to the value of this parameter (see Fig. 1). 
The ratio between the fuеl pressure and the Fermipressure, in the cold fuel, was assumed to 
Ье [8] й = 2. The typical behavior of the gain G in terms of v and d is illustrated in Fig. 3, 
where the isolevels for G are shown. The behavior is always qualitatively the same, regardless 
of which values of N and р are considered, or the distribution function in energy is adopted. 

The curve 1 represents the boundary for the region where v ~ l/d (Rs ~ R juel ; see 
Sec. 5). The points оп 1 represent uniform distributions of the sparks throughout the fuеl 
volume (Rs = Rjuel)' The curve 2 represents the loci where а maximum of G occurs for 
assigned d. Оп this curve, in the region below the point А, (BG/BV)d = О. An additional 
modest increase in G сап Ье obtained Ьу moving along the curve 1 from А to the point В, 
where the Нпе 1 is tangent to ап isolevel [оп this path (BG / BV)d ~ О]. The gain evaluated in В 
is the highest possible. The coordinates of В are given in Table for the «square-box» distribution 
function (and р = 0.9). Lying оп the curve 1, these В points сопеsропd to а uniform spark 
distribution in the fuеl О. е., R s = R juel )' 
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d 
; 10Гn~~~-Г~----Т-----------------------~ 

8 

0.05 0.1 0.15 

N = 10, р = 0.9 
Square Ьох 
Ejue/= 400 kJ 

0.2 v 

Fig.3. Gain isolevels in the 11, d plane. Тhe parameter 11 = Ehot/Efuel represents the total 
energy given to the sparks, measured in units ofthe totaJ fuel energy Е fuel. Тhe dilution pararneter 
d represents the ratio ofthe уоlите in which the sparks are distributed (radius R.) to the overaJl 
sparks уоlите. Between the curve 1 and the line d = 1 lie the physicaJly interesting points, 
those for which R. :$ Rfuel. Оп the curve 2 Не the points of maximum gain at assigned d. 

Тhe maximum possible gain is achieved оп В, where 1 is tangent to an isolevel 

G 

w 

1400 

1200 
~~~~~~~~~~~~~ 

0.06 0.08 0.10 0.12 0.14 v 

N v 

10 0.1061 
50 0.1148 
100 0.1197 
500 0.1329 
1000 0.1394 

Fig. 4. Тhe тaxiшит gain (evaluated aJong 
the line 2 in Fig. 3, and then from А to В) 
is reported for different values of N. Тhe 

starting уаlие is d = 1 

d G 

9.423 2523 
8.710 2042 
8.353 1845 
7.526 1445 
7.174 1297 

The mюdта corresponding to different values of N are shown in Fig. 4 for the «square-box» 
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G l?оМ 
3000 Sing1e spark 

/ а 

N= 50 

3000 
Ь 

1 N= 50 
Square Ьох I Square Ьох 

2000 

1000 
1 

2000 ~~ _5 
.s"% . 

Ро · 
~<r 

1000 
О 0.1 0.2 0.3 0.4 0.5 v О 0.1 0.2 0.3 0.4 0.5 v 

Fig. 5. а) Fue1 gain for the case of 50 sparks distributed in energy according to the «square-box» 
distribution; р = 0.9, Е/ие/ = 400 Ю; 1 - d = 1, 2 - d = 1.7, 3 - d = 2.8, 4 - d = 4.8, 

5 - d = 8. Ь) Co1d fue1 density p10tted as а function of v 

distribution (following curve 2 uр to the point А, and then the curve 1 from А to В). Along 
each curve the value of the parameter d changes from 1 to the corresponding В points, which 
are listed in Table. The sudden change in direction of each curve occurs at the transit through 
the А points (see Fig. 3). In Figs. 5а and 5Ь calculations for G and Pcold are presented (at 
N = 50) for the «square-box» distribution. То сапу out comparisons, the curve for the sing­
le-spark gain is also shown in Fig. 5а. The maximum for а single spark (G ВВ = 2706) occurs at 
l/ = 0.0483, and the aSsociated cold [uеl density is Р = 910 g/cm3. This density value is about 
0.5 ofthat associated with the таЮтuт оп the curve 5in Fig. 5а. Clearly, substantially more 
favorable results for multispark follow from the calculations relative to the other distribution 
functions (see рщ. 1). For the single spark approach, the site ofthe таЮтuт gain is unlikely 
to Ье а working point since it corresponds to spark convergence ratios that are not practical. 
This сап Ье deduced from prescriptions deriving from some high-gain capsule designs, where 
at 3/4 of the initial target radius the in-flight aspect ratio (IFAR) is set equal 30 and the total 
thickness (ablator + DT) is assumed to Ье equal to that of the initial, solid-state density DT 
layer [7,8]. Thus the initial shell radius follows as 

Ro = IFAR M juel , ( )
1/3 

31Г Ро 
(27) 

where Ро is the DT density at the solid state. The spark convergence ratio is evaluated as 
Cspark = Ro/ R thr . The single-spark maximum gain corresponds to Cspark = 99, а value 
much greater than those currently accepted [9] (~ 40). The working value (Cspark = 40) is 
recovered at l/ = 0.308, where the gain is Gssw = 1741. This working point was labelled W in 
Fig. 5а. The gain at W is sma11er than the таЮтuт gain obtained with multi-spark systems. 
For multispark, the geometric parameter corresponding to Cspark тау Ье C hot = Ro/ Rs , 

where R s is the radius ofthe tиrbulent region (see Sec. 5). For the highest gain R s = Rjuel, 

and C hot = C juel = Ro/Rjuel ' Under these conditions, the highest gain for the case of 
Fig. 5а corresponds Cjuel = 45, whereas C juel = 39 for the «power-laws» case. То obtain а 
gain G ssw Ьу multispark сопfщиrаtiопs, more relaxed conditions are sufficient, namely those 
corresponding to C juel ~ 38 for the case of рщ. 5а, and C juel ~ 30 for а «power-laws» 
distribution. These conditions should Ье used in the implosion design, taking into account that 
in а multispark assembly the overoll shape of the final fuel is expected to play а secondary role 
in deterrnining thermonuclear performances of the system. 
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7. CONCLUSIONS 

In the conventiona1 ICF approach а centra1 issue is the forrnation of а spherica1 triggering 
spark at the center of the fиe1, at the end of the imp10sion process. Нigh1y deforrned sparks 
do not ignite [1] and in experiments it has been found а substantial deviation of the measured 
number of neutrons from that computed in lD simu1ations. This deviation increases with 
the imp10sion convergence ratio. ТЬе usua1 interpretation attributes these resu1ts to а mixing 
process. 

In this paper we assumed that as а fina1 result of the imp1osion а mu1tispark system has been 
generated. It was found that high therrnonuc1ear fue1 gain сап ье stil1 obtained from compressed 
fиe1 assemblies, in which а 1arge number of sparks (N = 10-100) with а statistica11y generated 
energy (size) spectrum is created. Ву requiring to Ьауе, with an assigned probability, at 1east 
one spark 1arge enough to ignite the fue1, we Ьауе computed the assembly dimensioning апd, Ьу 
using statistica1 arguments, the Ьиm fraction and the fиe1 gain. It was found that the resu1ts mау 
depend оп the va1ues oftwo integra1 parameters, which depend оп the energy-space distribution 
function of the sparks. 

Although requiring more compressed fиe1s (typica11y 2 х -3 х), the mu1tispark approach тау 
prove to Ье interesting because (in princip1e) it is based оп the hypothesis of аЬ initio re1axed 
imp10sion symmetry requirements. Fina1 mixing processes, which are current1y considered to 
Ье adverse in ICF, cou1d tum out to Ье not so dangerous, since high gain can sti11 ье obtained. 
Based оп these considerations, the domain of imp10sion designs сап Ье expanded so as to make 
it re1evant for therrnonuc1ear energy. 
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