# ТОНКАЯ СТРУКТУРА УРОВНЕЙ ЛОКАЛИЗОВАННЫХ ЭКСИТОНОВ В КВАНТОВЫХ ЯМАХ

С. В. Гупалов, Е. Л. Ивченко\*, А. В. Кавокин

Физико-технический институт им. А. Ф. Иоффе Российской академии наук 194021, Санкт-Петербург, Россия

Поступила в редакцию 23 июня 1997 г.

Построена теория дальнодействующего обменного и запаздывающего взаимодействий между электроном и дыркой в квантовой яме. Развит метод, позволяющий рассчитывать основное и возбужденные состояния экситона, локализованного как целое на флуктуации ширины квантовой ямы в форме прямоугольного островка. Показано, что учет исследованных механизмов электрон-дырочного взаимодействия приводит к расшеплению радиационного дублета экситона на две компоненты, поляризованные вдоль сторон прямоугольника. Проанализированы зависимости величины и знака этого расшепления от линейных размеров островка и номера уровня локализованного экситона.

#### 1. ВВЕДЕНИЕ

В идеальной полупроводниковой гетероструктуре с квантовой ямой движение носителей заряда, электронов или дырок, квантовано в направлении роста структуры и свободно в плоскости интерфейсов. В реальных структурах, выращенных даже наиболее совершенным методом молекулярно-пучковой эпитаксии, гетерограница не является идеально плоской и в лучшем случае представляет собой поверхность, участки которой лежат в двух соседних плоскостях, разделенных мономолекулярным слоем. Топология этой поверхности зависит от материалов гетеропары и технологических условий, в частности от температуры и длительности остановок роста. При отсутствии межинтерфейсной корреляции ширина ямы флуктуирует, принимая одно из трех значений. В результате квазидвумерный носитель находится во флуктуационном потенциале, амплитуда которого определяется разностью энергий размерного квантования в двух идеальных ямах с ширинами, различающимися на один или два монослоя. В этом потенциале формируется хвост локализованных экситонных состояний, ответственных за низкотемпературную фотолюминесценцию нелегированных структур с квантовыми ямами [1-3]. В известных нам работах локализованные экситоны рассчитывались для аксиально-симметричного гауссова потенциала [4] или в модели круглого островка [5]. В структурах типа GaAs/AlGaAs(001) состояние такого локализованного экситона, оптически активное в плоскости интерфейса, двукратно вырождено. Ясно, что аксиальная симметрия локализующего потенциала является исключением и, как правило, он анизотропен в плоскости интерфейса. Понижение симметрии должно приводить к снятию вырождения радиационного дублета и влиять на поляризацию фотолюминесценции в условиях оптической ориентации экситонов.

<sup>\*</sup>E-mail: ivchenko@coherent.ioffe.rssi.ru

В настоящей работе построена теория экситонов, локализованных на анизотропных островках монослойной флуктуации ширины квантовой ямы. Предполагается, что линейные размеры островка превышают боровский радиус квазидвумерного экситона. Показано, что в этом случае расщепление дублета, обусловленное дальнодействующим обменным взаимодействием электрона и дырки в экситоне, составляет несколько десятков микроэлектронвольт при различии сторон прямоугольного островка в полтора-два раза. Такое расшепление значительно превышает естественную ширину линии излучения локализованного экситона  $\hbar/\tau$ , так как типичное значение его времени жизни имеет порядок 10<sup>-9</sup> с. Недавно Гаммон с соавт. [6] исследовали спектр фотолюминесценции локализованного экситона из отдельного островка в квантовой яме GaAs/AlGaAs(001) в режиме ближнего поля (optical near-field regime) и обнаружили расщепление дублета e1-hh1(1s) на две компоненты, поляризованные вдоль осей [110] и [110]. В спектре возбуждения фотолюминесценции те же авторы наблюдали возбужденные состояния экситона, локализованного на островке как единое целое. Для основного и четырех возбужденных состояний расщепление  $\Delta = E_{1\bar{1}0} - E_{110}$  между подуровнями, поляризованными вдоль направлений [110] и [110], оказалось равным соответственно -25, +41, +45, -22 и -47 мкэВ. Поэтому представляло интерес выяснить, можно ли подобрать размеры прямоугольного островка так, чтобы воспроизвести указанную последовательность знаков расщепления Δ. Предварительные результаты данной работы представлены в [7].

# 2. ОБМЕННЫЙ И ЗАПАЗДЫВАЮЩИЙ МЕХАНИЗМЫ ВЗАИМОДЕЙСТВИЯ ЭЛЕКТРОНА И ДЫРКИ

Последовательная теория электрон-дырочного обменного взаимодействия в полупроводниках развита Пикусом и Биром [8,9]. В приближении эффективной массы оператор кулоновского взаимодействия между электроном и дыркой в полупроводниковом кристалле включает три вклада, описывающих соответственно прямое, или внутризонное, кулоновское взаимодействие  $(U_C)$  и обменное взаимодействие, дальнодействуюшее  $(U_{exch}^{(long)})$  и короткодействующее  $(U_{exch}^{(short)})$ . Введем двухчастичные возбужденные состояния кристалла  $|m, \mathbf{k}_c; n, \mathbf{k}_h \rangle$ , где  $\mathbf{k}_{e,h}$  — волновой вектор электрона или дырки, индексы m и n нумеруют вырожденные состояния электрона в зоне проводимости и дырки в валентной зоне при  $k_{e,h} = 0$  (для определенности рассматривается прямозонный полупроводник кубической симметрии с экстремумом в Г-точке). Тогда матричные элементы операторов  $U_C$  и  $U_{exch}^{(long)}$  между этими состояниями можно привести к виду

$$\langle m', \mathbf{k}'_e; n', \mathbf{k}'_h | U_C | m, \mathbf{k}_e; n, \mathbf{k}_h \rangle = -\frac{1}{V} \frac{4\pi e^2}{\kappa_0 |\mathbf{k}_e - \mathbf{k}'_e|^2} \delta_{m'm} \delta_{n'n} \delta_{\mathbf{k}_e + \mathbf{k}_h, \mathbf{k}'_e + \mathbf{k}'_h} , \qquad (1)$$

$$\langle m', \mathbf{k}'_e; n', \mathbf{k}'_h | U^{(long)}_{exch} | m, \mathbf{k}_e; n, \mathbf{k}_h \rangle = \frac{1}{V} \frac{4\pi e^2 \hbar^2}{\kappa_b m_0^2 E_g^2} \frac{(\mathbf{K} \mathbf{p}_{m'\bar{n}'}) (\mathbf{K} \mathbf{p}_{m\bar{n}})^*}{K^2} \delta_{\mathbf{k}_e + \mathbf{k}_h, \mathbf{k}'_e + \mathbf{k}'_h} . \tag{2}$$

Здесь **К** — суммарный волновой вектор,  $\mathbf{k}_e + \mathbf{k}_h = \mathbf{k}'_e + \mathbf{k}'_h$ ,  $m_0$  — масса свободного электрона,  $E_g$  — ширина запрещенной зоны,  $\mathbf{p}_{m\bar{n}}$  — матричный элемент оператора импульса, рассчитанный между электронными блоховскими функциями  $|m, \mathbf{k}=0\rangle$  и  $|\bar{n}, \mathbf{k}=0\rangle$  (дырочное состояние  $n, \mathbf{k}$  и электронное состояние  $\bar{n}, -\mathbf{k}$  связаны между собой операцией инверсии времени),  $\kappa_0$  и  $\kappa_b$  — диэлектрические проницаемости, низкочастотная и высокочастотная (на частоте электронно-дырочного возбуждения), e — заряд электрона,



Рис. 1

V — объем кристалла. Взаимодействие (2) описывается последовательностью диаграмм рис. 1, где парной линии сопоставляется функция Грина электронно-дырочного возбуждения, а волнистой линии — фурье-компонента неэкранированного кулоновского потенциала  $4\pi e^2/V |\mathbf{k}_e - \mathbf{k}_h|^2$ . Таким образом, это взаимодействие можно интерпретировать как результат виртуальной рекомбинации и генерации электронно-дырочной пары, а его уменьшение в  $\kappa_b$  раз возникает при учете в диаграммах цепочки виртуальных электронно-дырочных возбуждений, индуцированных кулоновским потенциалом. Формулу (2) можно получить еще одним способом: рассчитать макроскопическое электрическое поле, порождаемое электронно-дырочной парой, и учесть самосогласованное влияние этого поля на энергию пары.

Вклад в короткодействующее взаимодействие вносят фурье-компоненты кулоновского потенциала с волновыми векторами  $\mathbf{b} + \mathbf{k}'_e - \mathbf{k}_e$ , где  $\mathbf{b}$  — отличные от нуля векторы обратной решетки. При достаточно малых значениях  $k_e$  и  $k_h$ , удовлетворяющих критерию применимости метода эффективной массы, оператор  $U_{exch}^{(short)}$  имеет характер контактного взаимодействия и его можно представить в виде  $\Delta_{m'n',mn}a_0^3\delta(\mathbf{r}_e - \mathbf{r}_h)$ , где  $a_0$  — постоянная решетки и множитель  $a_0^3$  выделен, чтобы коэффициенты  $\Delta_{m'n',mn}$ имели размерность энергии. Зависимость этих коэффициентов от зонных индексов находится из соображений симметрии, а их абсолютные значения — из сравнения теории с экспериментом по изучению тонкой структуры экситонных уровней (см., например, [10-12]). Число линейно независимых коэффициентов совпадает с числом неприводимых представлений, содержащихся в прямом произведении  $\Gamma_c \times \Gamma_v$ , по которым преобразуются электронные состояния на дне зоны проводимости и в вершине валентной зоны. Для иллюстрации рассмотрим пару зон Г<sub>6</sub> и Г<sub>7</sub> в полупроводниках типа GaAs:  $\Gamma_6 \times \Gamma_7 = \Gamma_2 + \Gamma_5$ . Удобно перейти к базису электронно-дырочных возбуждений, в котором три состояния  $|\nu, \mathbf{k}_{e}, \mathbf{k}_{h}\rangle$  ( $\nu = x, y, z$ ) оптически активны в поляризации  $\mathbf{e} \parallel \boldsymbol{\nu}$ , а оптический переход в четвертое состояние  $|\Gamma_2, \mathbf{k}_e, \mathbf{k}_h\rangle$  запрещен. Обменное взаимодействие (2) затрагивает только состояния  $|\nu, \mathbf{k}_e, \mathbf{k}_h\rangle$  и имеет в новом базисе вид

$$\langle \nu', \mathbf{k}'_{e}, \mathbf{k}'_{h} | U^{(long)}_{exch} | \nu, \mathbf{k}_{e}, \mathbf{k}_{h} \rangle = \frac{4\pi}{\kappa_{b} V} \left( \frac{e\hbar p_{0}}{m_{0} E_{g}} \right)^{2} \frac{K_{\nu'} K_{\nu}}{K^{2}} \, \delta_{\mathbf{K}', \mathbf{K}} \,, \tag{3}$$

где  $p_0$  — межзонный матричный элемент оператора импульса при оптическом переходе в состояние  $|\nu\rangle$ .

Мы обобщили теорию Пикуса и Бира [8] с учетом запаздывающего взаимодействия, возникающего в результате последовательного излучения и поглощения электронно-дырочной парой поперечного фотона и описываемого диаграммой рис. 2. Здесь штриховой линии сопоставляется фотонная функция Грина в среде с диэлектрической прони-



цаемостью  $\kappa_b$ , а вершине — множитель  $-i/\hbar$ , а также матричный элемент электронфотонного взаимодействия

$$-rac{e}{m_0}\left(rac{2\pi\hbar}{V\omega_K\kappa_b}
ight)^{1/2}\mathbf{e}\mathbf{p}_{mar{n}}$$

при поглощении фотона или комплексно-сопряженное выражение при испускании фотона, где частота фотона  $\omega_K = (c/\sqrt{\kappa_b})K$ , е — вектор его поляризации. В результате для матричных элементов запаздывающего взаимодействия получаем

$$\Sigma_{el-phot}(\nu', \mathbf{k}'_{e}, \mathbf{k}'_{h}; \nu, \mathbf{k}_{e}, \mathbf{k}_{h}; \omega) = -\frac{4\pi}{\kappa_{b}V} \left(\frac{e\hbar p_{0}}{m_{0}E_{g}}\right)^{2} \left(\delta_{\nu\nu'} - \frac{K_{\nu}K_{\nu'}}{K^{2}}\right) \frac{k^{2}}{K^{2} - k^{2} - i0} \delta_{\mathbf{K}', \mathbf{K}}, \quad (4)$$

где  $k = \sqrt{\kappa_b} (\omega/c), \omega$  — частота возбуждения электронно-дырочной пары, или, на строгом диаграммном языке, аргумент собственно-энергетической функции, возникающей при расчете функции Грина электронно-дырочной пары, в общем множителе произведение  $\omega\omega_K$  заменено на  $(E_g/\hbar)^2$ . Вещественная и мнимая части  $\Sigma_{el-phot}$  определяют соответственно перенормировку энергии и затухание парного возбуждения, обусловленное испусканием фотона. При выводе (4) учтено, что матрица  $e_{1,\nu'}e_{1,\nu} + e_{2,\nu'}e_{2,\nu}$ , где  $\mathbf{e}_1 \perp \mathbf{e}_2 \perp \mathbf{K}$ , есть оператор проектирования на плоскость перпендикулярную вектору **К**.

Экситон, рассчитываемый при учете только главного взаимодействия (1), называется механическим [13]. Кулоновский экситон находится в пренебрежении запаздыванием; согласно (3), расщепление между продольным и поперечными состояниями 1s-экситона связано с микроскопическим параметром  $p_0$  соотношением

$$\hbar\omega_{LT} = \frac{4}{\kappa_b a_B^3} \left(\frac{e\hbar p_0}{m_0 E_g}\right)^2 \,, \tag{5}$$

где  $a_B$  — экситонный боровский радиус. Наконец, учет запаздывающего взаимодействия приводит к поперечным экситонным поляритонам. При  $K \sim k$  расщепление поляритонных ветвей существенно превышает продольно-поперечное расщепление  $\hbar\omega_{LT}$ , и лишь при  $K \gg k$  поляритонным эффектом можно пренебречь по сравнению с дальнодействующим обменным взаимодействием.

#### 3. ЭЛЕКТРОН-ДЫРОЧНОЕ ВЗАИМОДЕЙСТВИЕ В КВАНТОВОЙ ЯМЕ

Рассмотрим электрон-дырочные возбуждения в полупроводниковой квантовой яме, в которой одночастичные состояния характеризуются номером подзоны размерного квантования, двумерным волновым вектором  $\mathbf{k}^{||} = (k_x, k_y)$  и спиновыми индексами m, n, пробегающими по два значения. В квантовых ямах, выращенных на основе полупроводников типа GaAs,  $m = \pm 1/2$  для электрона и  $n = \pm 3/2$  для тяжелой дырки или  $n = \pm 1/2$  для легкой дырки. В пренебрежении межподзонным смешиванием огибающая двухчастичной волновой функции имеет вид

$$\Psi(\mathbf{r}_e, \mathbf{r}_h) = S^{-1} \exp\left[i(\mathbf{k}_e^{\parallel} \boldsymbol{\rho}_e + \mathbf{k}_h^{\parallel} \boldsymbol{\rho}_h)\right] \varphi_e(z_e) \varphi_h(z_h) .$$
(6)

Здесь  $\rho$  — составляющая трехмерного вектора **r** в плоскости интерфейсов (x, y), S — площадь образца,  $\varphi_e(z_e), \varphi_h(z_h)$  — одночастичные функции размерного квантования. В симметричной квантовой яме эти функции характеризуются определенной четностью по отношению к отражению в плоскости, проходящей через середину ямы, z = 0. В дальнейшем для определенности мы считаем, что  $\varphi_{e,h}(-z) = \varphi_{e,h}(z)$ .

Рассчитаем матричные элементы дальнодействующего обменного и запаздывающего взаимодействий между квазидвумерными электроном и дыркой. Для этого нужно умножить сумму матричных элементов операторов  $U_{exch}^{(long)}$  и  $U_{el-phot}$  на

$$\exp\left[i(K_z z - K'_z z')\right]\varphi_e(z')\varphi_h(z')\varphi_e(z)\varphi_h(z),$$

просуммировать по  $K'_z, K_z$  и проинтегрировать по z', z. С учетом симметрии функций  $\varphi_{e,h}(z)$  получим

$$\Sigma(m',n',\mathbf{k}'_{e},\mathbf{k}'_{h};m,n,\mathbf{k}_{e},\mathbf{k}_{h};\omega) = \frac{4\pi}{S\kappa_{b}} \left(\frac{e\hbar}{m_{0}E_{g}}\right)^{2} \delta_{\mathbf{k}'_{e}+\mathbf{k}'_{h},\mathbf{k}_{e}+\mathbf{k}_{h}} \times \left\{ \left[ (\mathbf{q}\mathbf{p}_{m'\tilde{n}'})(\mathbf{q}\mathbf{p}_{\tilde{n}m}) - (\mathbf{p}_{m'\tilde{n}'}\mathbf{p}_{\tilde{n}m})k^{2} \right] \frac{iP(\gamma)}{2\gamma} + p^{z}_{m'\tilde{n}'}p^{z}_{\tilde{n}m} \left[ Q + \frac{i}{2}\gamma P(\gamma) \right] \right\},$$
(7)

где  $\gamma = \sqrt{k^2 - q^2}$ , по-прежнему  $k^2 = (\omega/c)^2 \kappa_b$ , индекс || над двумерными векторами  $\mathbf{k}_e, \mathbf{k}_h$  опущен,  $\mathbf{q}$  — двумерный вектор с компонентами  $(k_{e,x} + k_{h,x}, k_{e,y} + k_{h,y})$ ,

$$P(\gamma) = \int dz' \int dz \varphi_e(z') \varphi_h(z') \varphi_e(z) \varphi_h(z) \exp\left(i\gamma |z-z'|\right), \quad Q = \int dz \, \varphi_e^2(z) \varphi_h^2(z) \, .$$

Отдельный вклад дальнодействующего обменного взаимодействия получается из (7) формальным переходом к пределу  $c \to \infty$ , т.е. при  $k \to 0$  или  $\gamma = \sqrt{k^2 - q^2} \to iq$ . В этом случае диагональные компоненты  $\Sigma$  становятся вещественными, так как их мнимые части связаны исключительно с процессом испускания фотона. Выражение для матричных элементов дальнодействующего обменного взаимодействия между электроном и дыркой в квантовой яме было получено ранее в [14] и представлено в более громоздкой форме, содержащей не огибающие  $\varphi_{e,h}(z)$ , а их фурье-компоненты

$$C(k_z) = \int dz \, \exp\left(-ik_z z\right)\varphi(z).$$

Пренебрегая межподзонным смешиванием, запишем огибающую волновой функции свободного экситона в идеальной квантовой яме в виде

$$\Psi_{exc}(\mathbf{r}_e, \mathbf{r}_h) = S^{-1/2} \exp\left(i\mathbf{q}\mathbf{R}_{\parallel}\right) f(\boldsymbol{\rho}) \varphi_e(z_e) \varphi_h(z_h) , \qquad (8)$$

где  $\rho = \rho_e - \rho_h$  и  $\mathbf{R}_{\parallel}$  — центр тяжести экситона в плоскости *xy*. Тонкая структура и дисперсия свободных квазидвумерных экситонов в квантовых ямах с учетом обменного взаимодействия и запаздывания (или поляритонного эффекта) рассчитывались в ряде

11\*

работ [14–17]. Используя (7), получаем в согласии с [14–17] для дисперсии 1*s*-экситона с тяжелой (*hh*1) или легкой (*lh*1) дыркой

$$E_{1} = -\frac{2\pi}{\kappa_{b}} i \left(\frac{e\hbar p_{0}}{m_{0}E_{g}}\right)^{2} \frac{k^{2}}{\sqrt{k^{2} - q^{2}}} P\left(\sqrt{k^{2} - q^{2}}\right) f^{2}(0) ,$$

$$E_{2} = -\frac{2\pi}{\kappa_{b}} i \left(\frac{e\hbar p_{0}}{m_{0}E_{g}}\right)^{2} \sqrt{k^{2} - q^{2}} P\left(\sqrt{k^{2} - q^{2}}\right) f^{2}(0) , \qquad (9)$$

$$E_{3} = \frac{2\pi}{\kappa_{b}} i \left(\frac{e\hbar p_{0}'}{m_{0}E_{g}}\right)^{2} \left[Q - \frac{i}{2}\sqrt{k^{2} - q^{2}} P\left(\sqrt{k^{2} - q^{2}}\right)\right] f^{2}(0) ,$$

где  $E_{\alpha} = E'_{\alpha} - iE''_{\alpha}$  — комплексная энергия, вещественная часть которой равна  $E'_{\alpha} = \hbar(\omega - \omega_0)$  ( $\hbar\omega_0$  — энергия механического экситона при **q** = 0), а мнимая часть определяет радиационное время жизни экситона  $\tau = 2\hbar/E''_{\alpha}$ ; индекс  $\alpha = 1, 2, 3$  указывает поляризацию экситона: ось 1 перпендикулярна плоскости, содержащей ось z и волновой вектор **q**, ось 2 параллельна **q**, ось 3 параллельна оси z,  $p_0(e1-hh1) = p_{cv}$ ,  $p_0(e1-hh1) = 0$ ,  $p'_0(e1-hh1) = 2p_{cv}/\sqrt{3}$ ,  $p_{cv}$  — межзонный матричный элемент  $i\langle S|p_z|Z\rangle$  в прямозонных полупроводниках со структурой цинковой обманки.

Перейдем для экситонов с тяжелой дыркой к двум базисным состояниям  $|\nu, \mathbf{k}_e, \mathbf{k}_h\rangle$ , поляризованным вдоль фиксированных осей x, y, и двум оптически неактивным состояниям с полным спином  $m + n = \pm 2$ . В этом базисе формула (7) принимает вид

$$\Sigma(\nu', \mathbf{k}'_{e}, \mathbf{k}'_{h}; \nu, \mathbf{k}_{e}, \mathbf{k}_{h}; \omega) = \frac{1}{Sf^{2}(0)} \left[ E_{1} \left( \delta_{\nu'\nu} - \frac{q_{\nu'}q_{\nu}}{q^{2}} \right) + E_{2} \frac{q_{\nu'}q_{\nu}^{*}}{q^{2}} \right] \delta_{\mathbf{k}'_{e} + \mathbf{k}'_{h}, \mathbf{k}_{e} + \mathbf{k}_{h}} = \frac{2\pi}{S\kappa_{b}} i \left( \frac{e\hbar p_{0}}{m_{0}E_{g}} \right)^{2} \frac{q_{\nu'}q_{\nu} - k^{2}\delta_{\nu'\nu}}{\sqrt{k^{2} - q^{2}}} P\left( \sqrt{k^{2} - q^{2}} \right) \delta_{\mathbf{k}'_{e} + \mathbf{k}'_{h}, \mathbf{k}_{e} + \mathbf{k}_{h}}.$$
 (10)

### 4. ЛОКАЛИЗОВАННЫЕ СОСТОЯНИЯ ЭКСИТОНА В МОДЕЛИ БЕСКОНЕЧНО ВЫСОКИХ БАРЬЕРОВ

Рассчитаем энергию и обменное расщепление экситона, локализованного на флуктуации ширины квантовой ямы. За пределами островка квантовая яма состоит из Nмономолекулярных слоев (в GaAs ширина монослоя  $a_0/2 = 2.8$  Å), один из интерфейсов является плоским, а второй интерфейс в области островка сдвинут на монослой в глубь барьера, т. е. в этой области ширина ямы равна  $(N + 1)a_0/2$ . Островок выбран в форме прямоугольника, ориентированного вдоль осей x и y.

Вначале для оценки проведем рассмотрение в рамках простой модели бесконечно высоких барьеров и пренебрежем расплыванием экситона за пределы островка. Предполагая, что линейные размеры прямоугольника  $L_x, L_y$  превышают экситонный боровский радиус  $a_B$ , запишем огибающую волновой функции экситона в виде

$$\Psi_{exc}(\mathbf{r}_e, \mathbf{r}_h) = F(X, Y) f(\boldsymbol{\rho}) \varphi_e(z_e) \varphi_h(z_h) , \qquad (11)$$

где функции  $f, \varphi_e, \varphi_h$  введены в (8) и характеризуют состояние свободного экситона в идеальной яме шириной  $(N + 1)a_0/2$ , X и Y — компоненты вектора  $\mathbf{R}_{\parallel}$ , функция

F(X, Y) описывает локализацию 1*s*-экситона как целого в плоскости интерфейсов. Используя в качестве граничных условий обращение в нуль этой функции на периметре прямоугольника, получаем набор решений в форме

$$F(X,Y) = F_x(X)F_y(Y), \qquad (12)$$

где  $F_{\alpha}(x_{\alpha})$  ( $\alpha = x, y$ ) — одномерные функции размерного квантования

$$\sqrt{\frac{2}{L_{\alpha}}} \begin{cases} \cos\left(\pi j x_{\alpha}/L_{\alpha}\right) & \text{при нечетном } j, \\ \sin\left(\pi j x_{\alpha}/L_{\alpha}\right) & \text{при четном } j. \end{cases}$$
(13)

Энергия локализованного экситона, отсчитанная от дна экситонной зоны в (N + 1)монослойной яме, характеризуется двумя индексами j, j':

$$E_{jj'} = \frac{\hbar^2}{2M} \left[ \left( \frac{j}{L_x} \right)^2 + \left( \frac{j'}{L_y} \right)^2 \right] , \qquad (14)$$

где M — трансляционная масса экситона при его движении в плоскости xy. Каждый уровень  $E_{jj'}$  состоит из четырех подуровней, которые для тяжелого экситона в квантовых ямах типа GaAs/AlGaAs характеризуются проекцией суммарного спина  $m + n = \pm 1, \pm 2$ . Выберем базисные состояния в виде  $|j, j', x\rangle$ ,  $|j, j', y\rangle$ ,  $|j, j', \pm 2\rangle$ , где  $|j, j', x\rangle = (|j, j', 1\rangle + |j, j', -1\rangle)/\sqrt{2}$ ,  $|j, j', y\rangle = (|j, j', 1\rangle - |j, j', -1\rangle)/\sqrt{2}$ . При нормальном падении света матричный элемент оптического возбуждения экситона пропорционален интегралу  $\int dXdY F(X, Y)$ . Поэтому подуровни  $E_{jj',x}, E_{jj',y}$  с нечетными j, j'оптически активны в поляризациях  $\mathbf{e} \parallel x$  и  $\mathbf{e} \parallel y$  соответственно, а все остальные экситонные состояния —  $|j, j', \pm 2\rangle$  с любыми j, j' и  $|j, j', x\rangle, |j, j', y\rangle$  при хотя бы одном четном индексе j или j' — оптически неактивны. Однако дальнодействующее обменное взаимодействие (10) приводит к расщеплению между подуровнями  $E_{jj',x}, E_{jj',y}$  при произвольных j и j'. Действительно, переходя от функций F(x) к фурье-компонентам

$$F(q) = \int dx \ F(x) e^{-iqx}$$

и используя выражение (10) для собственно-энергетической функции  $\Sigma$ , находим перенормировку энергии локализованного экситона  $|j, j', \nu\rangle$  ( $\nu = x, y$ ):

$$\Delta E_{\nu} = \frac{2\pi}{S\kappa_{b}} \left(\frac{e\hbar p_{0}}{m_{0}E_{g}}\right)^{2} \sum_{\mathbf{q}} \frac{q_{\nu}^{2} - k^{2}}{\sqrt{q^{2} - k^{2}}} F_{x}^{2}(q_{x}) F_{y}^{2}(q_{y}) \times \\ \times \left[\theta(q-k) P\left(\sqrt{k^{2} - q^{2}}\right) - i \theta(k-q) \operatorname{Im} P\left(\sqrt{k^{2} - q^{2}}\right)\right],$$
(15)

где  $\theta(t) = 1$  при t > 0 и  $\theta(t) = 0$  при t < 0,  $k = \sqrt{\kappa_b} \omega_{jj'}/c$ ,  $\hbar \omega_{jj'} = E_{1s}(N+1) + E_{jj'}$ ,  $E_{1s}(N+1)$  — энергия возбуждения свободного экситона 1s с  $q_x = q_y = 0$  в (N+1)-монослойной квантовой яме<sup>1)</sup>. Так как в сумму (15) входят квадраты фурье-компонент  $F_{\alpha}(q_{\alpha})$ , то эта сумма отлична от нуля для состояний как с нечетным, так и с четным

<sup>&</sup>lt;sup>1)</sup> В пределах точности метода эффективной массы частоту  $\omega_{jj'}$  в выражении для k и величину  $E_g/\hbar$  в (15) можно заменить на резонансную частоту возбуждения локализованного экситона.



Рис. 3. Расщепление радиационного дублета в экситоне (1,1), рассчитанное в модели бесконечно высоких барьеров (штриховые кривые) и в приближении факторизованных огибающих (сплошные кривые) для трех значений длины  $L_x = 950$  Å (1), 700 Å (2) и 450 Å (3)

индексом *j* или *j'*. Заметим, что мнимая единица в квадратных скобках под знаком суммы компенсируется мнимостью корня  $\sqrt{q^2 - k^2}$  при k > q, а при k < q величина  $P\left(\sqrt{k^2 - q^2}\right)$  вещественна. Оценки показывают, что для типичных квантовых ям вклад в сумму от области k > q пренебрежимо мал, и этот вклад учтен в (15) для общности. На рис. 3 штриховыми линиями показана зависимость от  $L_y$  расщепления  $E_x - E_y$ между радиационными состояниями  $|1, 1, x\rangle$  и  $|1, 1, y\rangle$ , рассчитанная при трех различных значениях  $L_x$  для 10-монослойной квантовой ямы GaAs/AlGaAs и 11-монослойного островка. Из рис. 3 видно, что в рассматриваемом диапазоне размеров островка расщепление лежит в пределах ±50 мкэВ (микроэлектронвольт). Это намного меньше энергетического расстояния между уровнями локализованных состояний (порядка мэВ или больше), что позволяет при расчете обменных поправок ограничиться первым порядком теории возмущений.

## 5. ЛОКАЛИЗОВАННЫЕ СОСТОЯНИЯ ЭКСИТОНА В ПРИБЛИЖЕНИИ ФАКТОРИЗОВАННЫХ ОГИБАЮЩИХ

Разность  $E_{1s}(N) - E_{1s}(N+1) \equiv U$  энергий возбуждения свободных 1s-экситонов в N- и (N+1)-монослойных квантовых ямах определяет высоту барьера, локализующего экситон в островке. В структуре GaAs/Al<sub>0.3</sub>Ga<sub>0.7</sub>As величина U при N = 10 составляет 11 мэВ. В данном разделе мы проанализируем влияние конечности барьера U на экситонные уровни  $E_{jj'}$  и их обменное расшепление. При  $L_x, L_y > a_B$  огибающую  $\Psi_{exc}(\mathbf{r}_e, \mathbf{r}_h)$  можно приближенно представить в виде (11), имея в виду, что в качестве  $f(\rho), \varphi_e(z_e), \varphi_h(z_h)$  фигурируют функции, рассчитанные для (N+1)-монослойной ямы, если координаты X, Y лежат внутри островка, или для N-монослойной ямы в области вне островка. Тогда огибающая F(X, Y) удовлетворяет двумерному уравнению Шредингера

$$\left[-\frac{\hbar^2}{2M}\left(\frac{\partial^2}{\partial X^2} + \frac{\partial^2}{\partial Y^2}\right) - U\theta\left(\frac{L_x}{2} - |X|\right)\theta\left(\frac{L_y}{2} - |Y|\right)\right]F(X,Y) = -\varepsilon F(X,Y), \quad (16)$$

где  $\varepsilon$  — энергия локализации экситона ( $\varepsilon > 0$ ), связанная с энергией  $E_{jj'}$  соотношением  $E_{jj'} = U - \varepsilon_{jj'}$ . Предполагается, что огибающая F(X, Y) и ее производная в направлении перпендикулярном стороне прямоугольника непрерывны на периметре островка. Эффективный приближенный метод решения такого рода уравнений был предложен в работе [18]. Функция F(X, Y) ищется в виде произведения функций  $F_x(X)$  и  $F_y(Y)$ , удовлетворяющих системе уравнений

$$\left[-\frac{\hbar^2}{2M}\frac{d^2}{dX^2} - UP_y \theta\left(\frac{L_x}{2} - |X|\right)\right]F_x(X) = -\varepsilon_x F_x(X),$$

$$\left[-\frac{\hbar^2}{2M}\frac{d^2}{dY^2} - UP_x \theta\left(\frac{L_y}{2} - |Y|\right)\right]F_y(Y) = -\varepsilon_y F_y(Y),$$
(17)

связанных друг с другом через величины

$$P_x = \int_{-L_x/2}^{L_x/2} F_x^2(X) \, dX, \quad P_y = \int_{-L_y/2}^{L_y/2} F_y^2(Y) \, dY.$$

Последние отличны от единицы в меру проникновения функций  $F_x(X), F_y(Y)$  под потенциальные барьеры. Энергия локализации экситона выражается через вспомогательные энергии  $\varepsilon_x, \varepsilon_y$  в виде  $\varepsilon = \varepsilon_x + \varepsilon_y - UP_x P_y$ . Локализованные состояния по-прежнему характеризуются парой индексов j, j', где j - 1 и j' - 1 определяют число нулей функций  $F_x(X)$  и  $F_y(Y)$  соответственно. На рис. 4 сплошными линиями показана энергия локализации основного состояния экситона, связанного на островке в квантовой яме GaAs/AlGaAs(001), ширина которой флуктуирует в пределах от 10 до 11 монослоев. Для сравнения на том же рисунке приведена также зависимость  $E_{11}(L_y)$ , рассчитанная при  $L_x$  = 450 Å в модели бесконечно высоких барьеров  $U \to \infty$  (штриховая кривая). При этом  $P_x = P_y = 1, \varepsilon \to \infty$ , а  $U - \varepsilon$  остается конечной величиной. Сопоставление штриховой кривой со сплошной кривой 3 показывает, что модель бесконечно высоких барьеров довольно сильно завышает значения энергии локализованных экситонов. Для возбужденных уровней  $E_{jj'}$  с j + j' > 2 расхождение между результатами двух расчетов еще более возрастает. В то же время замена в системе уравнений (17)  $P_x$  и  $P_y$ на единицу, вследствие чего эта система расцепляется на два несвязанных одномерных уравнения Шредингера, приводит к результатам, практически совпадающим с расчетом в приближении факторизованной огибающей.

#### 6. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Сплошные кривые на рис. З рассчитаны по формуле (15) в приближении факторизованной огибающей F(X, Y), т. е. при подстановке в (15) функций, удовлетворяющих уравнениям (17). Видно, что в отличие от энергии  $E_{11}$  расщепление  $E_x - E_y$  мало чувствительно к способу расчета. На рис. 5 представлены зависимости энергии  $E_{jj'}$  и расщепления  $E_{jj',x} - E_{jj',y}$  от длины одной из сторон прямоугольника при фиксированной длине  $L_x = 950$  Å другой стороны. Наблюдавшаяся в [6] последовательность знаков расщепления воспроизводится в области  $L_y = 420$ -480 Å. Согласно (15), знак расщепления  $E_x - E_y \equiv \Delta E_x - \Delta E_y$  в основном определяется знаком разности средних квадратов  $\langle q_x^2 \rangle$  и  $\langle q_y^2 \rangle$ . Используя (17), можно показать, что  $\langle q_x^2 \rangle - \langle q_y^2 \rangle = (\varepsilon_y - \varepsilon_x) \cdot 2M/\hbar^2$ . Очевидно, при j = j' расщепление уровней  $E_{jj',x}$  и  $E_{jj',y}$  отрицательно, если  $L_y < L_x$ , и положительно, если  $L_y > L_x$ , что согласуется с кривыми 11 и 22 на рис. 5. С ростом квантового числа *j* дисперсия  $\langle q_{\nu}^2 \rangle$  возрастает, а энергия  $\varepsilon_{\nu}$  соответственно уменьшается. Поэтому при близких  $L_x$  и  $L_y$  знаки разностей  $E_{jj',x} - E_{jj',y}$  и j - j' совпадают.

Короткодействующее обменное взаимодействие также приводит к расщеплению состояний  $|jj', x\rangle$ ,  $|jj', y\rangle$ . При расчете короткодействующего вклада нужно учесть индуцированное островком подмешивание к состояниям тяжелой дырки с проекцией момента  $\pm 3/2$  состояний легкой дырки  $\pm 1/2$ . Оценки показывают, что этим вкладом в  $E_x - E_y$  можно пренебречь по сравнению с аналогичным вкладом дальнодействующего обменного взаимодействия в меру малости ширины квантовой ямы по сравнению с размерами островка в плоскости интерфейсов.

Как уже отмечалось, вследствие прямоугольной симметрии локализующего потенциала, состояния  $|j, j', \nu\rangle$  с четным j или j' не взаимодействуют с фотонами, распространяющимися вдоль оси z. Оптические переходы в возбужденные состояния локализованного экситона с нечетными j, j' разрешены, но вероятности таких переходов  $w_{jj',\nu}$  $B \sim (jj')^2$  раз меньше по сравнению с возбуждением основного состояния с j = j' = 1. Наблюдение в спектре возбуждения фотолюминесценции [6] набора дублетов, компоненты которых поляризованы вдоль осей [110] и [110], можно объяснить, предполагая, что локализующий анизотропный островок вытянут вдоль одной из этих осей, но его форма не вполне инвариантна к отражению в плоскостях (110) и (110). Иными словами, при расчете обменного расщепления можно считать, что эти элементы симметрии в системе имеются, и для определенности выбрать островок в форме прямоугольника, а при расчете вероятностей переходов  $w_{ij',\nu}$  учесть искажение формы островка, приводящее к подмешиванию к возбужденным состояниям  $|j, j', \nu\rangle$  основного состояния  $|1, 1, \nu\rangle$ . Тогда вероятности  $w_{ij',\nu}$  для всех возбужденных уровней будут отличны от нуля, но малы по сравнению с  $w_{11,\nu}$ . В качестве альтернативы можно предположить, что линии, наблюдавшиеся в спектре возбуждения фотолюминесценции, отвечают основным



Рис. 4. Энергия основного состояния (1,1) локализованного экситона в зависимости от длины  $L_y$  при фиксированном значении  $L_x = 950$  Å (кривая 1), 700 Å (кривая 2) и 450 Å (кривая 3). Штриховая кривая рассчитана при  $L_x = 450$  Å в модели бесконечно высоких барьеров



Рис. 5. Уровни энергии  $E_{jj'}$  локализованного экситона (a) и расщепление  $E_x - E_y$  между локализованными состояниями  $|j, j', x\rangle$  и  $|j, j', y\rangle$  (b) в зависимости от длины  $L_y$  при фиксированном значении  $L_x = 950$  Å (см. вставку) в квантовой яме GaAs/Al<sub>0.3</sub>Ga<sub>0.7</sub>As шириной 28 Å (N = 10). У кривых приведены пары индексов jj', обозначающие экситонные состояния. Сплошные и штриховые участки кривых соответствуют положительным и отрицательным значения расщепления

состояниям экситонов, которые локализованы на различных островках, расположенных на малом расстоянии друг относительно друга, так что возможны индуцированные акустическими фононами туннельные переходы с одного островка на другой. В этом случае чередование знаков расщепления  $E_{1\bar{1}0} - E_{110}$  означало бы, что одни островки ориентированы вдоль оси [110], а другие — вдоль оси [110], это находится в противоречии с рис. 1 из статьи [6], на котором представлена фотография поверхности GaAs, полученная сканирующим электронным микроскопом.

Таким образом, в рамках развитой теории удается объяснить наблюдавшиеся в [6] порядок величины и чередование знака расщепления основного и возбужденных состояний экситона, локализованного на анизотропном островке в структуре с квантовой ямой. Мы считаем, что расщепление радиационных экситонных состояний, обнаруженное в [19] в квантовых ямах GaAs/AlGaAs, также связано с анизотропией локализующих островков. В структурах с квантовыми ямами, исследованных Хеллером и Бокельманом [20], оптическая ориентация локализованных экситонов наблюдалась только при приложении внешнего магнитного поля, что естественно объясняется в предположении расщепления радиационного дублета. В заключение заметим, что характер ориентации анизотропных островков должен сильно зависеть от выбора гетеропары и технологии выращивания структуры. В частности, возможно и хаотическое распределение островков по направлениям, при котором в среднем структура изотропна в плоскости интерфейса. Тем не менее подавляющее большинство островков анизотропно, и эта локальная анизотропия, приводящая к расщеплению радиационных состояний локализованных экситонов, может эффективно исследоваться методом оптической ориентации и выстраивания экситонов в магнитном поле.

Работа поддержана Российским фондом фундаментальных исследований (грант 95-02-06038), INTAS (грант 93-3657-Ext), а также Фондом Volkswagen.

# Литература

- 1. T. Takagahara, J. Lumin. 44, 347 (1989).
- 2. H. Kalt, J. Collet, S. D. Baranovskii, R. Saleh, P. Thomas, Le Si Dang, and J. Cibert, Phys. Rev. B 45, 4253 (1992).
- 3. L. E. Golub, E. L. Ivchenko, and A. A. Kiselev, J. Opt. Soc. Amer. B 13, 1199 (1996).
- 4. G. Bastard, C. Delalande, M. H. Meynadier, P. M. Frijlink, and M. Voos, Phys. Rev. B 29, 7042 (1984).
- 5. L. E. Golub and A. A. Kiselev, in *Proc. 23rd Int. Symposium on Compound Semiconductors* (St. Petersburg, 1996), Inst. Phys. Conf. Ser. № 155: Chapter 9, р. 687; Л. Е. Голуб, ФТТ **39**, 167 (1997).
- 6. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Phys. Rev. Lett. 76, 3005 (1996).
- S. V. Goupalov, E. L. Ivchenko, and A. V. Kavokin, in Proc. Int. Symp. «Nanostructures: Physics and Technology» (St. Petersburg, 1996), p. 322; in Abstract Workbook of 9-th Int. Conf. on Superlattices, Microstructures and Microdevices (Liege, Belgium, 1996), p. MoPPT-14.
- 8. Г. Е. Пикус, Г. Л. Бир, ЖЭТФ 60, 195 (1971); 62, 324 (1972).
- 9. Г. Л. Бир, Г. Е. Пикус, Симметрия и деформационные эффекты в полупроводниках, Наука, Москва (1972).
- 10. V. A. Kiselev, B. S. Razbirin, and I. N. Uraltsev, Phys. Stat. Sol.(b) 72, 161 (1975).
- 11. Е. М. Гамарц, Е. Л. Ивченко, Г. Е. Пикус, Б. С. Разбирин, А. Н. Старухин, ФТТ 22, 3620 (1980).
- Е. М. Гамарц, Е. Л. Ивченко, Г. Е. Пикус, Б. С. Разбирин, В. И. Сафаров, А. Н. Старухин, ФТТ 24, 2325 (1982).
- В. М. Агранович, В. Л. Гинзбург, Кристаллооптика с учетом пространственной дисперсии и теория экситонов, Наука, Москва (1979).
- 14. S. Jorda, U. Rössler, and D. Broido, Phys. Rev. B 48, 1669 (1993).
- 15. L. C. Andreani and F. Bassani, Phys. Rev. B 41, 7536 (1990).
- 16. Е. Л. Ивченко, ФТТ 33, 2388 (1991).
- 17. F. Tassone, F. Bassani, and L. C. Andreani, Phys. Rev. B 45, 6023 (1992).
- 18. G. Bastard and J. Y. Marzin, Solid State Commun. 91, 39 (1994).
- E. Blackwood, M. J. Snelling, R. T. Harley, S. R. Andrews, and C. B. T. Foxon, Phys. Rev. B 50, 14246 (1994).
- 20. W. Heller and U. Bockelmann, Phys. Rev. B 55, 4871 (1997).