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The possible occurence о[ а «negative viscosity efТect. is studied [ог Rossby wave and drift 
wave tarbu!ence. It is assumed that (i) the space and time sca!es ofthe wave fie!d are mисЬ smaller 
than the sca!es of the mеап fie!d, and (н) the small-sca!e fie!d is sufficiently weak, stationary, 
and maintained Ьу ап externa! source. Such а [ormu!ation is [ruitful [ог studying the efТects 
(characterized Ьу the efТective viscosity) of smaller-scale motions ироп !arger-sca!e ones. The 
critel'ia of !arge-sca!e instability due to the negative efТective viscosity are derived [ог the coherent 
wave motions as well as [ог small-sca!e isotropic wave turbu!ence. 

1. INТRODUCTION 

Тhe processes of pattern [оrrпаНоп have Ьееп extensively studied in various hydrodynamic 
models. Опе ofthe aspects ofthis problem has Ьееп called «negative viscosity». This term was 
introduced when analyzing large-sca1e geophysical experiments; see the monographs [1,2]. In 
the modern literature this term implies two connected classes of phenomena. Тhe first of these 
is related to the description of anoma1ous flows of the turbulent kinetic energy through the 
spectrum toward the region of sma1l wavenumbers in two-dimensional (2D) hydrodynamics and 
to the [оrrпаНоп of stationary turbulent spectra. This problem has Ьееп studied in Ref. [3] for 
2D homogeneous isotropic turbulence in а Navier-Stokes (NS) fluid with zero теап velocity, 
and for 2D magnetohydrodynamics in Ref. [4]. Using the same closure techniques of the 
direct-interaction farnily, the authors show that the negative eddy damping rate occurs for 
both cases. Another class of phenomena, to which our paper is devoted, is related to pattern 
formation when the turbulent spectrum is assumed known. Here the negative-viscosity effect 
щеапs the appearance of а negative dissipative factor in the equation for the теап flow. From 
the theoretical viewpoint, generation oflarge-scale structures is understood as а manifestation of 
long-wavelength instability in а system ofsmall-scale vortices or waves, the energy ofsmall-sca­
le motions being constant (it is mathematica11y convenient to treat the small-sca1e motions as 
generated Ьу ап externa1 source). 

А number of analytical studies of the negative viscosity effect were initiated Ьу two-di­
mensiona1 flow of а viscous incompressible fluid, which is not damped due to existence of ап 
external force periodic along опе of the coordinates. In this paper the instability criterion for а 
sinusoidal velocity рroШе and the marginal stability curve were derived. Along with this paper, 
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the problem has Ьееп considered in Ref. [6] and generalized to ап arbitrary periodic velocity 
рroШе in Ref. [7]. 

When studying linear stability and nonlinear regimes appearing, it is convenient to use the 
two-scale expansion method. In this method it is assumed that the characteristic space and time 
scales ofthe basic initial motions are smaller than the scales ofthe secondary flows. Therefore, 
it is possible to introduce а small parameter characterizing the ratio of the characteristic scale of 
small-scale motions to that oflarge-scale secondary motions. The solution ofthe hydrodynamic 
equations is sought in the form of ап expansion in the small parameter, while the equation 
describing the evolution of the large-scale component is obtained from the solvability condition 
of the initial equations in the corresponding approximation order. Two-scale expansions are 
widely used in the other problems, which are connected with generation of large-scale fields and 
structиres Ьу small-scale fields and motions. As examples, we mention the papers оп the kinetic 
a-effect [8] and оп generation of large-scale convective patterns Ьу helical tиrbulence [9]. 

Using the two-scale formalism, the equations of а weakly nonlinear theory for the lar­
ge-scale motions have Ьееп obtained and studied analytically and numerically for problems with 
the Kolmogorov flows [10, 11]. In the case when the small-scale motions are describable as 
homogeneous tиrbulence, negative viscosity effects have Ьееп studied in Ref. [12]. In particular, 
it has Ьееп shown for 2D NS flows that а homogeneous isotropic small-scale tиrbulence 
does not lead to the negative eddy viscosity. А general multiscale formalism for the study 
of eddy viscosities for incompressible flows of arbitrary dimensionality has Ьееп developed in 
Ref. [13]. In this paper explicit expressions for eddy viscosity in terms of correlation function 
of the small-scale basic flow have Ьееп derived for the low Reynolds number isotropic case ОП 
accordance with Ref. [12], eddy viscosity enhances molecular viscosity), and for the parallel 
time-independent flow, of which the Kolmogorov flow is ап ехатрlе. Such parallel flow 
undergoes а negative viscosity instability with respect to large-scale pertиrbations transverse 
to the basic flow. Among the papers close in spirit to this group we also mention [14], where 
the negative viscosity effect during the excitation of а single drift wave (with wavelength greater 
than the ion Larmor radius at electron temperatиre) in а magnetized inhomogeneous plasma has 
Ьееп found, and special solutions ofthe weakly nonlinear equation for large-scale pertиrbations 
have Ьееп studied. 

In contrast to the papers оп liquid hydrodynamics mentioned аЬоуе, the present paper 
deals with negative viscosity in Rossby wave tиrbulence and drift wave tиrbulence. Rossby 
tиrbulence is а widespread type of wave motions in the осеап and atmosphere; see, for 
ехатрlе, Refs. [15,16]. Drift tиrbulence is widespread in magnetized inhomogeneous plasmas 
of numerous thermonuclear devices and the ionosphere; see, for example, Refs. [17, 18]. It 
is well-known that, despite the quite different physical origin of these motions, their formal 
description is very similar [19]. Moreover, Rossby wave tиrbulence and drift wave turbulence 
оЬеу identical nonlinear partial differential equation (in the simplest description). Therefore, 
it is natиral to discuss both them together. In order to clarify the discussion and the results, we 
use the simplest method of analysis which allows us to elucidate in а uncomplicated way the 
appearance of nontrivial effects and to find out how they differ from non-wave hydrodynamic 
problems. We assume that it is possible to divide the fields into а large-scale slowly varying part 
and а small-scale rapidly evolving part. The sma1l-scale field is а wave field, whose level is kept 
stationary due to the existence ofan external source (extemal force) in the initial equation. The 
evolution of the large-scale part is calculated Ьу averaging over the small-scale part. In such а 
formulation the effective (tиrbulent) viscosity determining the evolution ofthe large-scale field is 
а functional of the given spectrum of waves. We use the simplest model spectra to demonstrate 
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the ditТerence [roт the hydrodynamic problems mentioned аЬоуе. In particular, we show that 
small-scale isotropic Rossby and drift wave turbulence сап act as а negative etТective viscosity 
оп large-scale perturbations. This points to а more substantial role of а nonlocal energy transfer 
from small scales to larger ones in the case of the Rossby and drift wave turbulence than in 
the case of 2D NS turbulence. 

2. EQUATION FOR ТНЕ LARGE-SCALE FIELD EVOLUTION 

We start from the well-known model two-dimensiona1 equation, which describes the space­
time evolution of the stream fиnction in the Rossby wave theory [20]. In dimensionless units 

J'ij; д J'ij; 2 
- - -1'1.-1. - - + VД -1. - [V'_I. V' 1',.-1.] = F. Jt Jt 0/ дх 0/ 0/, 0/ z 

(2.1) 

Here V' = ех д / дх + еу / д / ду, д = д2 / дх2 + д2 / ду2, and v is the (dimensionless) molecular 
viscosity ofthe gas or liquid. Following the known method, used in the turbulence theory, we 
introduce а source into the right hand side of Eq. (2.1). The role of this source is to maintain 
the stationary level of the wave turbulence. 

For the Rossby wave the x-axis denotes the latitude direction (from West to East), whereas 
the y-axis denotes the meridional опе (from South to North). We note that usually for drift 
wavesthe x-axis denotes the radial direction in а thermonuclear device, or the direction in which 
plasma density varies, whereas the y-axis denotes the azimuthal direction, and thus, опе has 
to replace J'ij; / дх Ьу -J'ij; / ду in Eq. (2.1) in order to follow the conventional notation used 
in drift wave theory. Then'ij; is the dimensionless potential, and v is the (dimensionless) ion 
viscosity for magnetized plasmas. However, in this paper, for definiteness, we use the (,Rossby 
wave coordinate frame», i.e., that in which Eq. (2.1) is written. Obviously, the final results 
сап Ье easily reproduced in а (,drift-wave coordinate frame». 

In the linear approximation Eq. (2.1) describes the wave propagation with the frequency 

and the damping rate 

k x 
I..VR = -1 + k2' 

vk4 

VR = 1 + k2' 

where k is the wave vector, k 2 = k; + k~. 
Now we divide the field 'ij; into теап and f1uctuating (turbulent) components: 

(2.2) 

(2.3) 

(2.4) 

the bar denotes statistical averaging and (,Т» means «turbulent». After averaging Eq. (2.1) we 
get 

То get а closed equation for 7jj it is necessary to express 

Q = [V''ij;T, V' Д'ij;Т] z 
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in terms of ф. ТЬе equation [от фТ is obtained fюm Eqs. (2.1) and (2.5): 

дф Т д Т офТ 2 [- Т] [ Т :I.l 
дt - оt Аф - ОХ + vA Ф - "Vф, "VАф z - "Vф ,"VАфJ z -

- (["VфТ, "V АФТ] z - ["VфТ, "V АфТ ] J . (2.7) 

Therefore, the closed equation [от Ф implies the application of some closure procedure. Since 
we ате interested Ьете in negative viscosity effects [от the large-scale f1ows, we use the following 
аррюасh. Let us assume that the теап quantities уату оп space and time scales which.are 
larger than the characteristic scales of the f1uctuation fields. We iпtюduсе the characteristic 
size [ of the small-scale field and the characteristic size L of the large-scale field. ТЬеп we 
estimate the ratio of the quantities VА2фТ, ["Vф, "V АфТ]z, ["VфТ, "V .1ф]z, ["VфТ, "V АфТ]z. 
ТЬеу stand in the ratios 

[ [3 
1: "LReL: L3 ReL: Rez, 

where ReL ~ VL/v is the Reynolds питЬет ofthe large-scale motions and Rel ~ VT[/v is 
the Reynolds питЬет of small-scale ones (V and VT ате characteristic velocities oflarge-scale 
and small-scale motions, respectively). Therefoтe, [от sufficiently small Rel we сап neg!ect 
terms in Eq. (2.7) which ате quadratic in фТ. Furthermore, in accordance with multiscale 
expansion schemes, we iпtюduсе the «slow» variable Х and the fast variable х. Тhe average 
quantities depend оп the slow variable only, whereas the f1uctuating components depend оп 
both the fast and slow variables. ТЬе following inequality holds: 

I:xl ~ IKI« I:xl ~ Ikl, (2.8) 

where К and k ате large-scale and small-scale wave vectors, respectively. 
Thus, we сап find the solution [от фТ as ап expansion in powers of К, that is, 

фТ = ф(О)(х, t) + ф(l)(х, х, t) + ... + ф(4\х, х, t). (2.9) 

ТЬе solution to order К4 is presented in Appendix А. ТЬеп, the functional dependence of Q 
thюugh Ф is obtained there. So instead of Eq. (2.5) we get the following equation [от the 
large-scale part of ф: 

(2.10) 

where 

л О о о 2 
L = - - -А - - + vA ot ot s 0)( s' 

(2.11) 
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(j, l, т, n, р, q, г) = х, у, Етn is the unit antisymmetrie tensor of the seeond rank, 

Еl1 = Е22 = О, Е12 = -Е21 = 1, (т, n) = 1,2, 

17mpk = 11 dkdWП1(k,w)2kmkрkkk2(w - WR), 

V~)k = 11 dkdw П 1 (k, w)vRkmkkk2, 

V~pk = 11 dkdw П2(k,w)4kmkрkkk2VR(W - WR), 

V~)lpk = 11 dkdw П2(k, w)8kmklkpkkk2 [vk2 (vh - (w - WR)2) + WVR(W - WR)] , 

N~ikq = 11 dkdVJП2(k,w)2kmklkqkkk2 [(W - WR)2 - vh] , 

Nk~mq = 11 dkdVJП2(k,w)2kkkрkmkqk4(k2+ 1)-1, 

and Ф(k, W) is the spaee-time speetral density for the small-seale field. 

(2.12) 

(2.13) 

(2.14) 

Let us diseuss the meaning ofthe terms in Eqs. (2.10), (2.13). The first term in Q gives 
tl1e eorreetion to the frequeney in the dispersion equation for the large-seale motions. ТЬе l1ext 
three terms in Q are the type terms whieh lead either to damping (positive effeetive viseosity) or 
to growth (negative effeetive viseosity) ofthe large-seale motiol1s. ТЬе last three terms deseribe 
the nonlinear interaetiol1 of the large-seale motions. In this paper we are interested mainly in 
terms of the viseous type. We eonsider the effects depending оп the properties of small-scale 
wave turbulence. However, in order to make the discussion simpler and to elarify the differences 
between ош paper and the papers mentioned аЬоуе, in the next Seetion we demonstrate for 
the ease of the 2D f10w of а viscous incompressible f1uid what effect сап Ье responsible for the 
appearanee of the negative effective (turbulent) viscosity. 

3. ТНЕ ORIGIN OF ТНЕ NEGAТIVE VISCOSIТY TERM. QUALПАТIVЕ CONSIDERATION 

In order to simplify the diseussior\. as much as possible, we consider here the equation for 
tl1e stre~m funetion of а 2D incompres~ble viscous f1uid [21]: 

д 
дtд'IjJ - vд2'IjJ + [V'IjJ, Vд'IjJ]z = F. (3.1) 
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Inserting'lj; in the fonn (2.4), we get equations analogous to Eqs. (2.5)-(2.7): 

д- г 
BtIJ.'lj; - vIJ. 'lj; - [V''lj;T, V'IJ.'lj;T)z = О, 

:t IJ.фТ - VIJ.2'lj;T + [V'ф, V' IJ.'lj;T)z + [V''lj;T, V' IJ.ф)z = Р. 

(3.2) 

(3.3) 

lt is noteworthy that the third and fourth tenns оп the left-hand side of Eq. (3.3) describe 
the interaction between srnall- and large-sca1e fie1ds. The tenn [V'ф, V' IJ.'lj;T)z describes the 
transport of the fluctuation vorticity W; = IJ.фТ Ьу the mean flow (V) = [ez, V'ф] whi1e the 
term [V''lj;T, V' IJ.Ф)z describes the transport ofthe mean vorticity Ьу the fluctuation component. 
As in Sec. 2, we introduce the natural physica1 assumption that the space and time sca1es of 
the average quantities are 1arger than the scales of the fluctuations. Introducing fast and slow 
variables (х and Х, respectively), we use the Fourier transfonn over the fast variable: 

We note that in the Fourier representation the tenn [V'ф, V' IJ.'lj;T)z describes the Doppler ~hift 
of the fluctuation frequency. From Eq. (3.3) we get 

лт F(k,w) { 1 (. дф ikm дЗф )} 
'lj; (k, ""') ~ P(iw _ vP) 1 + iw _ vk2 zknE:mn дХт - k'2E:mn дX~ , (3.4) 

where it is assumed for simplicity that the terms containing slow spatial deriv;ltives are srnall. We 
note once more that the interaction ofthe fluctuations фт with the mean flow Ф (in Eq. (3.4) the 
terms with the first and third slow derivatives are due to this interaction) causes фт to depend оп 
the sIow coordinat.e. This fact implies that among the tenns entering into _([V'фт, V'IJ.фт)z) 
the following term occures: 

(3.5) 

where IJ.s is the sIow Laplacian, as before, and IJ. has to Ье rep1aced Ьу IJ.• in the first two tenns 
in Eq. (3.2). 

Inserting Eq. (3.4) into Eq. (3.5), we сап see that Eq. (3.5) gives rise to the foIIowing terms 
in the left-hand side of Eq. (3.2): 

(3.6) 

(3.7) 

-J '2 vk2 
J.tmj - dkdw(F k", k6(W 2 + v2k4)2kmkj. (3.8) 

The first term in Eq. (3.6) is due to the transport of the fluctuation vorticity Ьу the mean 
flow, while the second tenn is caused Ьу the transport of the mean vorticity Ьу the fluctuation 
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ve!ocity. The first term corresponds to V~k' which is calculated for the Rossby wave tиrbulence 
in Sec. 2; see Eqs. (2.13). It сап Ье seen that еуеп for isotropic fluctuations the former effect 
makes а negative contribution to the tиrbulent viscosity. Indeed, !et (F2)k,w Ье ап isotropic 
function of k. Then, 

and Eq. (2.6) is rewritten in the [опn 

(3.9) 

Therefore, the term with v(1) gives а negative contribution to the tиrbulent viscosity. The term 
with J.L describes the dissipation of the large-scale component and bounds the instabi1ity region 
for small wavenumbers. 

Thus, the interaction between the large-scale flow and small-scale velocity fluctuations, 
which manifests itself mainly in the transport of the small-sca!e fluctuations Ьу the mеап flow, 
gives rise to the viscous-type term with а negative viscosity coefficient in the equation for the 
mеап component. We stress that this conclusion is valid both for the 2D model of viscous 
incompressible fluid, see Eq. (3.1), and for the wave model, see Eq. (2.1). 

The аЬоуе treatment is obviously incomplete: it only points to the mechanism for the 
appearance of the viscous terms with negative viscosity coefficient in the equation for the mеап 
flow. А detailed consideration demands more accurate analysis of Eqs. (3.2), (3.3) with the 
two-scale dependence of fluctuations taken into account. The complementary viscous terms 
сап suppress the negative contribution, which is controlled Ьу the transport of the tиrbulent 
fluctuations Ьу the large-scale flow. In order to compare oиr results with those of other authors 
studying turbu!ent viscosity Ьу means of the two-scale expansion, and to саП attention to the 
differences between the turbulent viscosity for the 2D NS flows and that for the Rossby and 
drift waves, in Appendix В we obtain and analyze the equation for the average stream function 
of 2D incompressible viscous fluid, see Eq. (В.l). It is а limiting case of Eq. (2.1 О), if we 
пеglесt dispersion (1 + k 2 .-.., k 2) and the еigепfrеquепсу (u.JR = О) of the waves. Iп Appendix 
В we demonstrate that our resu!ts correspond to those of Refs. [12,13] for 2D NS flows. We 
also demonstrate that isotropic small-scale fluctuations do not give rise to а negative viscosity 
in the framework of 2D NS equations. ТЬе negative сопtriЬutiоп to the eddy viscosity givеп 
Ьу v(1) in Eq. (3.9) is compensated Ьу the positive contribution. However, in the next Section 
we dеmопstrаtе that this is not the case for the isotropic wave turbulence. 

4. NEGAТIVE VISCOSIТY FOR MODEL SPECТRA OF ТНЕ WAVE TURBULENCE 

Let us explore the consequences of the general expressions (2.10)-(2.14). We consider 
the problems аrisiпg here, tаkiпg the tensor V~~)k as the way of ехаmр!е; see Eqs. (2.13). This 
tепsоr is а fuпсtiопаl of the space-time spectra! fuпсtiоп Ф(k, ш) of а given small-scale field. 
The spectrum has а peak оп w at w ~ w R and some characteristic width '"Yk. ТЬе spectrum is 
multip!ied Ьу the Lorentzian curve 
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and integrated оуег UJ and k. Obviously, the result of integration оуег UJ depends оп the ratio 
between the characteristic widths of the multiplied functions, that is, 'Yk and 1/R, whereas the 
result ofintegration оуег k depends оп the degree ofthe spectrum anisotropy in k. Under these 
circumstances, it is natural to consider first the simplest model wave spectra leading to the 
negative viscosity. Thus, we consider the following examples: 

1. А smal1-scale coherent field, that is, the frequency and wavenumber spectra аге папоwег 
than the other characteristic widths of the problem. 

2. А small-scale isotropic turbulent field. Such а field сап Ье formed in а small-scale 
region (k ~ 1) due to mode coupling, which isotropizes the spectrum (see, e.g., Ref. [22]). 

4.1. Coherent wave spectrum 

We take the wave spectrum as follows: 

Ф(k, UJ) = (~2) [8(UJ - UJo)8(k - ko) + 8(UJ + UJo)8(k + ko)], 

where ('I/}) is the variance of the f1uctuations, 

kox 
UJo(ko) = - 1 + k2 ' 

О 

This case implies that the frequency spectrum is sufficiently папоw: 

'Yko « 1/R(ko). 

Insertil1g Eq. (4.1) into Eqs. (2.10)-(2.14), we get the fol1owing equation [ог 1fJ: 

(4.1) 

(4.2) 

For simplicity we cOl1sider the case when the small-scale field propagates along the x-axis, 
ko = koex • Taking 1fJ in the form 

1fJ = ехр( -iШ + iКX), 
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we get а !inear dispersion equation for the !arge-sca!e perturbations: 

Q = _-КХ __ i _ [VK4 + (7('Ij}) + 2V) к2 к2 _ (('ljJ2) _ v) К4] (4.4) 
1 + К2 1 + К2 х V х у V у . 

It is worth noting that this equation describes not оп!у the waves but a!so the !arge-sca!e 
strиctures. Indeed, it follows [roт Eq. (4.4) that the rnost «dangerous» (that is, rapid!y 
growing) are those !arge-sca!e perturbations, which are perpendicu!ar to the direction of the 
wave propagation, that is, КХ = О and ReQ = о. This irnp!ies that the negative viscosity effect 
!eads not only to nonlocal energy transfer frorn. srnall-scale waves to large-scale waves, but 
a!so to the generation of stationary structures higbly e!ongated a!ong опе of the coordinates. 
We retum опсе rnore to the discussion of these possibilities be!ow. The growth rate of such 
perturbations is 

IrnQ = (('ljJ2) _ v) K~ 
v 1 + K~· 

(4.5) 

IrnQ > О if ('ljJ2) > v2. We stress that in this case we сап not take v -+ О because such а !imit 
is in contradiction with the inequality (4.2). For «the drift wave coordinate frarne» опе has to 
rep!ace Ку Ьу КХ in Eq. (4.5). 

The effect described is ana!ogous to the Kolrnogorov flow instability of а 2D viscous 
incornpressible fluid [5]. For а single drift wave with wavelength greater than the ion Lannor 
radius at e!ectron ternperature in а rnagnetized plasrna this effect has Ьееп studied in Ref. [14]. 
Non!inear stationary strиctures fonned due to the negative viscosity effect have Ьееп a!so studied 
there. 

4.2. Isotropic wave spectrum 

We consider the case when the wave spectrиrn is isotropic in k. This case is close to that 
considered in Appendix В, 80 below w.e cornpare the equations of the Appendix with those 
obtained in this Section. Here the rnode! Lorentzian tirne spectrиrn is used: 

1 /k 
Ф(k, w) = - ( )2 2 Ф(k). 

7г W-WR +/k 
(4.6) 

The width /k is а cornplicated function of Ф(k), but its explicit [оnn is not discussed here. It 
shou!d Ье stressed that we c!lOose the Lorentzian shape for convenience оп!у. It сап Ье easily 
verified that the resu!t is not changed qua!itative!y if one chooses other shapes, for ехатр!е, 
t!le Gaussian or in the forrn of а step; see Eqs. (В.6) where W -+ W - WR. 

Introducing Eq. (4.6) into Eqs. (2.13), taking the integra!s over W and using the subsidiary 
integra!s (В.7), we arrive at the Eqs. (В.8) for the viscous terrns, where instead of Eqs. (В.9) 
we get 

v(l) = 7г J dk k3Ф(k)~ 1 
1 + k2 VR + /k' 

(3) _ J 3 k4 2vk2 + /k 
V - 7г dk k Ф(k) (1 + k2)2 (VR + /k)2· 

(4.7) 

It is worthwl1ile to note that if we set 1 + k2 -+ k2 (по dispersion), then, naturally, we get 
Eqs. (В.9) frorn Eqs. (4.7). As before, v(l) and v(3) give negative and positive contributions, 

654 



ЖЭТФ, 1998, НЗ, выn. 2 Negative viscosity for Rossby . .. 

respectively, to tl1e effective viscosity. However, due to the wave character of the small-sca­
le perturbations the Ьаlапсе between the two contributions is changed. Indeed, instead of 
Eq. (В.I0) we get 

(4.8) 

where 

(4.9) 

For the case of 2D NS f10ws Veff > О holds for апу ratio between the spectral width and vk2; 

see Eq. (В.ll). In contrast, as we сап see, two possibilities exist for the Rossby waves. 
The first possibility is characterized Ьу "Yk « vR (narrow isotropic spectrum). This case 

corresponds to the опе when the wave intensity is sufficiently 10w that the broadening of the 
spectral lines "Yk is small in comparison not опlу with i.<JR (а widely used definition of weak 
turbulence), but also with vR, which, in turn, is less than wR (the damping rate is less than 
tl1e eigenfrequency). Then, setting "Yk -+ О, we get 

(4.10) 

Tllis resu!t coincides with Eq. (В.12) and points to the absence of поn10саl energy transfer to 
the large-scale region. 

The second possibility is realized when "Yk ~ vR (broad isotropic spectrum). This 
inequality implies that the intensity ofthe waves is greater than in the previous case. However, 
due to the smallness ofthe damping rate we тау still retain the framework ofweak turbulence. 
In this case from Eq. (4.9) опе gets 

(4.11) 

and veff сап Ье negative for а sufficiently high Rossby wave level. We тау roughly estimate 
the criterion for the negative viscosity as 

(4.12) 

where "У is some effective spectra! line broadening. It resembles the analogous criterion for the 
coherent waves; see Eq. (4.5). 

The evolution equation for the large-scale perturbations has the form (4.8), where 

/

00 k5 
Р = 7r dk Ф(k) (1 + P)"Yk . 

О 
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Looking for 7f in the [олn 

7jj = ехр( -iШ + iКX), (4.13) 

and inserting Eq. (4.13) into Eq. (4.8), we get the folIowing dispersion equation for the lar­
ge-scale perturbations: 

_ КХ .VeffK4 

Q - - 1 + К2 - Z 1 + К2 . (4.14) 

Equation (4.14) describes two types of motion. The first опе (КХ =j О) is the large-scale 
wave, while the second опе (КХ = О) is the large-scale stationary structure, ReQ = о. 

Therefore, if veff < О holds, two possibilities exist for the energy f10w [roт the smalI-sсаlе 
region. The first опе is nonlocal energy transfer [roт the small-scale waves to the large-scale 
ones. The large-scale waves grow, and it сап happen, that the spectral gap between the two 
wave regions disappears, the two-scale approximation is violated, and the turbulence becomes 
nonstationary. We note, however, that this circumstance does not invalidate оur treatment, 
because we consider the initial stage of instability only. Another possibility is related to energy 
f10w [roт small-scale waves to the large-scale stationary structures higbly elongated along опе 
of the coordinates. We remind that as in Sec. 4.1 for «the drift wave coordinate frame» опе 
has to replace КХ Ьу -Ку in Eq. (4.14). 

In this theory there are по limits оп the growth rate of the large scale instability as К 
increases. Such restrictions сап Ье obtained Ьу taking into account the higher-order terms in 
the expansion in powers of К; see Sec. 3. This procedure has Ьееп carried out for а single 
drift wave in а magnetized plasma in Ref. [14]. It has Ьееп shown that the terms of order Кб 
in the growth rate of the large-scale instability lead to damping of perturbations in the range 
К > К тах and to the appearance of а maximum of the growth rate for small К. 

Since the large-scale perturbations grow due to the negative viscosity effect, the nonlinear 
term in Eq. ·(4.8) becomes important. For the subsequent investigation of large-scale structures 
it is necessary to analyze the nonlinear equation. 

5. RESULTS 

Here we have studied new effects of generation of large-scale structures. These appear for 
Rossby wave turbulence in atmosphere and осеап and for drift wave turbulence in magnetized 
plasmas. The physical reason for their appearance is related to the change in the sign of 
the effective (turbulent) viscosity in large-scale motions of the medium (negative viscosity). 
Therefore, the damping of large-scale motions is replaced Ьу growth, which has to Ье limited 
due to nonlinear effects. The small-scale field is stationary and maintained Ьу ап external 
source. Such а formulation is fruitful for studying the effects (characterized Ьу the effective 
viscosity) of smaller-scale motions uроп the larger-scale motion. The results obtained are as 
folIows: 

1. With the use of the two-scale expansion, ап equation is obtained which describes the 
evolution of the теап stream function in the presence of the small-scale Rossby-wave field or 
the evolution ofthe теап potential in the presence ofthe small-scale drift-wave field. Genera1 
expressions are obtained for the terms describing the inf1uence of small-scale motion, namely, 
the viscous terms, the dispersion term and the terms nonlinear in the large-scale field. These 
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expressions allow опе to study the evolution of large-scale motions, with the assumption that 
the spectrum of the stationary srnall-scale field is known. 

2. The results obtained adlllit а tmnsition to the hydrodynamics of а viscous incompressible 
fluid. The previously known results оп the eddy viscosity of the small-scale fluid motions асе 
recovered. 

3. The qualitative reason [or the negative viscosity effect to арреас is the transport of 
small-scale vorticity Ьу the mеап flow. This effect leads to the negative viscosity contribution 
to the effective viscosity goveming the large-scale motions. 

4. It is shown that the coherent wave motions lead to the negative effective viscosity. The 
criterion of large-sca1e instability due to the negative viscosity effect is derived. 

5. Opposite to the case of the small-scale isotropic motions of а viscous incompressible 
fluid, small-scale isotropic Rossby wave and drift wave motions сап lead to the negative effective 
viscosity. It is demonstrated that the effective viscosity сап ье negative if the spectral line 
broadening is greater than the linear damping rate. 

This work has Ьееп done in the framework of the «Structure» Project, which is financed 
Ьу the National Academy of Sciences of the Ukraine. 

APPENDIXA 

Derivation оС Q 

In this Appendix the term Q in Eq. (2.6) is derived. We introduce «slow» variables together 
with the «fast» ones. The spatial operators асе now written in the form: 

д д д 
--+-+-
ах дх дХ' 

д2 
Д -+ д.J.. + 2 + д., 

дХрдХр 
(A.l) 

д2 -+ дl + 2д.J..д. + 4 дХ:;Хр д.J.. + 4 дХ:;Хр дв + д~ + 4 (дХ:;Хр ) 2 

Несе 

,. 
Then, according to Eqs. (2.9), the term Q сап ье written in the form 

Q(x, Х, t) = q(Ol) + q(02) + q(03) + q(04) + q(lO) + q(20) + q(30) + q(40) + 
+ q(ll) + q(12) + q(lЗ) + q(21) + q(22) + q(31) + о(к5 , Кб, ... ), (А.2) 

where 

due to the homogeneity of the turbulence, 
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q(OI) = с -- + 2 + + + ( 
дФ(О) ( дЗ дЗ дЗ дЗ 

тn дХт дxnдx~ дхnдХрдХр дxnдX~ дx~дXn 

+ 2 д3 + д3 
) ф(I») (АЗ) 

дХрдХрдХn дX~дXn ' 

q(lO) = Стn ((~ + _д_) ф(I)~ДJ..ф(О»)' 
дХт дХт дхn 

Tlle remaining terms in Eq. (А2) have similar structure. We retain in Eq. (А2) only those 
terms which are of order К 1, ... , к4 . As will Ье seen below it is just these terms which give 
rise to the negative viscosity effect. 

То ca1culate the terms in Eq. (А2) it is necessary to get expressions for ф(О), ф(I), ... ф(4). 
Using Eqs. (А1), (2.7) one finds the the following equations: 

a-I,(O) д a_I)(O) 
О(КО): _0/ __ -ДJ..ф(О) _ _ Ч __ + vдiф(О) = F (А4) 

at at дх ' 

дф(l) д дф(l) дф д 
O(K 1): -- - _ДJ..ф(l) - -- + vдiф(l) - Ck-- --ДJ..ф(О) = О, (А5) 

at at дх J aXj дхк 

a_I,(2) д a_I,(2) a_I,(I) 
о(к2) : _0/ __ -dJ.. ф(2) __ 0/_ + vд2ф(2) ___ 0/ _ 

at at дх дХ 

дЗф(l) д2 (1) дф д (1) _ 

-2 at дХрдХр + 4v дХрдХр dJ.. Ф - cjk aXj aXk dJ.. Ф - О. (А6) 

We ca1culate only the terms ф(О), ф(l), and ф(2), since the terms ф(3), ф(4) do not contribute 
to Q, as it will Ье seen below. Eqs. (А4), (А5) and (А6) сап Ье solved using the Fourier 
transform over the fast variable х, that is, e.g., 

ф(О)(х, t) = J dk ф(О)(k, t)eikx . 

Then, Eq. (А4) сап Ье transformed to 

where 

The solution of Eq. (А8) is 

дф(О) + (' + )_7,(0) _ F(k, t) 
дt ZUJR VR 0/ - 1 + k2 ' 

kx 
UJR = ---

1 + k2 ' 

t J F(k t') 
ф(О)(k, t) = dt' 1 +'k2 ехр (Юk(t' - t») . 

-00 

(А7) 

(А8) 

(А9) 

Here Qk = UJR - iVR. The solutions of Eqs. (А5), (А6) сап Ье obtained in а similar way. 

2 - t 

'(1) - ikkk дф J "(О) , (. , ) ф (X,k,t)--Cjk1+k2 aX
j 

dtф (k,t)exp zQk(t -t) , (А 10) 

-00 
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-ею -СХ) 

-00 

-00 -00 

t ~ 

k k k4 а2Уо J J +4ve· р k 'f/ dt' ехр (iO (t' - t») dt" .i.(O)(k t") ехр (iO (t" -t'») -Jk (1 +k2)2 axpaxj k <р, k 
-00 -00 

-00 -00 

Now calculate the sum Q(1) = q(OI) + q(10). Using the Fourier transform over the fast 
variables we get 

(01)( ) - J/ dk dk' ·k [ ·k' k,2 2k' k' а + ·k' а2 k,2 а + q X,t-emn zm-zn - прах Znax2- ах 
• р р n 

+ 2ik~ ах а;х + ax~;x ] (~(O)(k, t)~(1)(X, k', t») e~p (i(k + k')X) . (А12) 
р n р n 

It сап Ье easily seen that some terms cancel due to 

Using Eq. (АI0) we get 

( .i.(O)(k t).7,(1)(k' Х t'») = -е. ik~k'2 a1jj х 
'f/ ,'f/ " Jk 1 + k'2 ах. 

J 

t' 

х J dt1(Ф(О)(k,t)Ф(О)(k',t1»)еХР(iOk,(t'-t1»). 
-00 

(А 13) 

Here the assumption about the slow time evolution of 1jj in comparison with the turbulent 
term ~(O) is used. This allows us to tak.e the term a1jj/axj out ofthe integral. 

For homogeneous turbulence we have 

Then we use the Fourier transform over time, 

Ф(k, t - t1) = J dw Ф(k, "-') ехр (-iw(t - t1». 
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Inserting Eqs. (А15), (А 14) into Eq. (А13) and then into Eq. (А12), we сап ca1culate 
q(OI)(X, t). 

Analogous ca1culations are employed for q(lO)(X, t) which is equal to 

q(lO)(X,t)=crnn!! dkdk' (ikrn + д;т) (-ik~k'2) х 
Х \ ф(l)(х, k, t)ф(О) (k', t») ехр (i(k + k')x) . 

Then, Q(l) has the form 

Q(l) = q(OI) + q(IO) = с С'. 1) 0/ (1) so/ ( a3-:J: д2д -:J: ) 
тn Jk rnpk aXpaXnaXj - vmk aXnaXj , 

where 1)mpk, V~)k are determined according to Eqs. (2.13). For Q(2) опе gets 

Q(2) = q(02) + q(20), 

(А16) 

(А.17) 

(А18) 

(А 19) 

Carrying out а Fourier transform over the fast variable and inserting the solution for ф(2) 
il1to Eqs. (А18), (А19) we get 

(2) _ {(2) д ( д3ф ) (3) Cf1jj 
Q (Х, t) - CmnCjk Vmpk дХ aXpaXnaXj - Vm1pk aX1aXnaXpaXj + 

(1) д2 (дФ дФ )} + crqNmlkq aX1aXn дХт aXj . (А.20) 

It is easily seen that the sums q(03) + q(30), q(l2) + q(21) and q(04) + q(40) vanish Ьу symmetry. 
Then the sum q(l3) + q(31) is equal to zero to fourth order in К. Therefore, on1yan expression 
for q(ll) should Ье obtained: 

(II)(X t) - / (дф(l) д д 0/,(1) + 2 дф(1) д3ф(l) + дф(1) д д 0/,(1)+ 
q ,- Стn \ дхn дХn 1-0/ дХт дхтдХрдХn дХт дхn 1-0/ 

+ 2-- + -- --д1-ф(l) . (А21) 
./ дф(1) д3 ф(1) дф(l) д ) ) 

дХт дХрдхnдХр дХт дХn 

Inserting ф(l) (see Eq. (АI0» into Eq. (А21) we get 

q(1I)(X, t) = CmnCjkCrq (Nk~mq:I дXp:~дXT + Nk~nq a::~Xj a:;fXr) . (А.22) 
Now, summil1g ир expressions for Q(l), Q(2) and q(lI) we get the final expression for Q to 

order К4 ; see Eq. (2.10). 
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APPENDIX В 

Eddy viscosity of 2D NS flows: а comparison with previous results 

In this Appendix we demonstrate а transition from the formulae of Sec. 2 and Appendix А to 
those describing the turbulent viscosity of а 2D viscous incompressible fluid. It allows us, firstly, 
to compare ош results with those of other authors studying turbulent viscosity in hydrodynamics 
in the framework of two-scale expansion, and, secondly, to point out the differences arising 
between calculations ofthe turbulent viscosity in 2D NS flows and in Rossby waves; see Sec. 4. 

The coefficients in the equation for the теап stream function of viscous incompressible 
fluid are obtained from Eqs. (2.13) Ьу setting 1 + k2 -+ k2 (по dispersion) and VJ R = О (zero 
eigenfrequency). We do not discuss effects nonlinear in 7jj and, therefore, neglect аll nonlinear 
terms. Further, we have V~~k = О because this term is determined Ьу that with д / дх in 

Eq. (2.1) Therefore, we have the following equation for ф: 

д- г 
at д'Ф - v!;,. 'Ф + CmnCjk Х 

( 
д3ф 

Х rympk aXpaXnaXj 
(В.l) 

where 

(l) - J ф(k, "-') 2 
Vrnk - dkdr» ,,-,2 + v 2k 4 vk kmkk, (В.2) 

(3) _ J Ф(k, "-') 3 4 
Vmk - dkdVJ (VJ2 + v 2k 4 )2 8v k kmk1kpkk' 

Naturally, these results сап Ье obtained if we start from Eq. (3.1) and use the method 
described in Appendix А. 

Thus, the sign and the value of the turbulent viscosity are determined Ьу the terms with 
v~k' V~lpk' As is shown in Sec. 3, the term with V~k is due to the transport of turbulent 
vorticity fluctuations Ьу the теап flow. Еуеп for the isotropic small-scale fluctuations this 
term makes а negative contribution to the turbulent viscosity. However, the term with V~)lpk 
сап, of course, compensate the negative contribution. 

At first, we note that the results which stem from Eqs. (В.1), (В.2) are in accord with 
the results of [12]. Indeed, let ап extemal source in Eq. (3.1) Ье homogeneous in space and 
dеltа-сопеlаtеd in time. Then, instead of Eqs. (В.2) we have 

(В.3) 

where (WJ) k is the spatial spectrum of the zeroth-order aproximation of the small-scale field 
vorticity. Equation (B.l) leads to the equation [ог the Fourier transform of the large-scale 
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vorticity W(K, t): 

(В.4) 

where 

(К) = J dk(ж2 ) [К, k]; (1 _ 6(Кk)2) 
/ о k 2v k6 k2 К2 . 

(В.5) 

Equation (В.5) coincides with the main term of the expansion in powers of К / k of 
Eq. (2.15) of Ref. [12]. 

Tlle case of isotropic small-scale turbulence is the simplest, so we start just from this опе. 
We also use the Lorentzian shape for the spectral line broadening: 

1 /k 
Ф(k, U) = - 2 2 ф(k). 

7r U) + /k 

The Lorentzian shape is generally used; however, опе тау convince oneselfthat the result 
is not changed qualitatively Ьу using another shape instead of Lorentzian опе, for example, 
Gaussian, 

1 ('.1;2) Ф(k,U) = r:c ехр --2 2 Ф(k), 
у 27r/k /k 

(В.6) 

or the «step-like» shape, 

(k ) = { -f- Ф(k), IU)I ~ /k 
Ф ,U) /k . . 

о, IU)I ;::: /k 

For the isotropic spectrum we have 7]mpk = О. When calculating V~k' V~~Pk the following 
subsidiary integrals over the asimuthal angle r.p of the wavenumber k are used: 

Then, 

where 

271' • J dr.p kmkn = 7rk2бmn , 
О 

271' 

J dr.p kmklkpkk = ~k\бmlбРk + бmрб1k + бmkбlр)' 
() 

(3) _ (3)' J: J: + J: J: J: J:) 
Vmk - V (UmlUpk UmpUlk + UmkUlp , 
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Equation (B.l) has the form 

(B.lO) 

where 

(B.l1) 

lt follows from the expressions obtained that the isotropic smaH-sсаlе fluctuations do not give 
rise to а negative viscosity in the framework ofthe 2D NS equations for viscous incompressible 
fluid. The negative contribution -v(l) is compensated Ьу the positive contribution v(з) arising 
in ап accurate calculation of аН the viscous terms in th{: framework of оur scheme. 

Ifwe set 'Yk -. О in Eq. (В.11), then instead ofEq. (В.10) we get 

~Ll"X = (('ljJ2) + v) Ll2y' 
8t ''!-' 2v ''!-'' 

(В.12) 

where ('ljJ2) is the уапапсе ofsmaH-sсаlе f1uctuations. This result has Ьееп obtained Ьу another 
method in Ref. [13]. 
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