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The possible occurence of a «negative viscosity effect» is studied for Rossby wave and drift
wave turbulence. It is assumed that (i) the space and time scales of the wave field are much smaller
than the scales of the mean field, and (ii) the small-scale field is sufficiently weak, stationary,
and maintained by an external source. Such a formulation is fruitful for studying the effects
(characterized by the effective viscosity) of smaller-scale motions upon larger-scale ones. The
criteria of large-scale instability due to the negative effective viscosity are derived for the coherent
wave motions as well as for small-scale isotropic wave turbulence.

1. INTRODUCTION

The processes of pattern formation have been extensively studied in various hydrodynamic
models. One of the aspects of this problem has been called «negative viscosity». This term was
introduced when analyzing large-scale geophysical experiments; see the monographs [1,2]. In
the modern literature this term implies two connected classes of phenomena. The first of these
is related to the description of anomalous flows of the turbulent kinetic energy through the
spectrum toward the region of small wavenumbers in two-dimensional (2D) hydrodynamics and
to the formation of stationary turbulent spectra. This problem has been studied in Ref. [3] for
2D homogeneous isotropic turbulence in a Navier-Stokes (NS) fluid with zero mean velocity,
and for 2D magnetohydrodynamics in Ref. [4]. Using the same closure techniques of the
direct-interaction family, the authors show that the negative eddy damping rate occurs for
both cases. Another class of phenomena, to which our paper is devoted, is related to pattern
formation when the turbulent spectrum is assumed known. Here the negative-viscosity effect
means the appearance of a negative dissipative factor in the equation for the mean flow. From
the theoretical viewpoint, generation of large-scale structures is understood as a manifestation of
long-wavelength instability in a system of small-scale vortices or waves, the energy of small-sca-
le motions being constant (it is mathematically convenient to treat the small-scale motions as
generated by an external source).

A number of analytical studies of the negative viscosity effect were initiated by two-di-
mensional flow of a viscous incompressible fluid, which is not damped due to existence of an
external force periodic along one of the coordinates. In this paper the instability criterion for a
sinusoidal velocity profile and the marginal stability curve were derived. Along with this paper,
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the problem has been considered in Ref. [6] and generalized to an arbitrary periodic velocity
profile in Ref. [7].

When studying linear stability and nonlinear regimes appearing, it is convenient to use the
two-scale expansion method. In this method it is assumed that the characteristic space and time
scales of the basic initial motions are smaller than the scales of the secondary flows. Therefore,
it is possible to introduce a small parameter characterizing the ratio of the characteristic scale of
small-scale motions to that of large-scale secondary motions. The solution of the hydrodynamic
equations is sought in the form of an expansion in the small parameter, while the equation
describing the evolution of the large-scale component is obtained from the solvability condition
of the initial equations in the corresponding approximation order. Two-scale expansions are
widely used in the other problems, which are connected with generation of large-scale fields and
structures by small-scale fields and motions. As examples, we mention the papers on the kinetic
a-effect [8] and on generation of large-scale convective patterns by helical turbulence [9].

Using the two-scale formalism, the equations of a weakly nonlinear theory for the lar-
ge-scale motions have been obtained and studied analytically and numerically for problems with
the Kolmogorov flows [10, 11]. In the case when the small-scale motions are describable as
homogeneous turbulence, negative viscosity effects have been studied in Ref. [12]. In particular,
it has been shown for 2D NS flows that a homogeneous isotropic small-scale turbulence
does not lead to the negative eddy viscosity. A general multiscale formalism for the study
of eddy viscosities for incompressible flows of arbitrary dimensionality has been developed in
Ref. [13]. In this paper explicit expressions for eddy viscosity in terms of correlation function
of the small-scale basic flow have been derived for the low Reynolds number isotropic case (in
accordance with Ref. [12], eddy viscosity enhances molecular viscosity), and for the parallel
time-independent flow, of which the Kolmogorov flow is an example. Such parallel flow
undergoes a negative viscosity instability with respect to large-scale perturbations transverse
to the basic flow. Among the papers close in spirit to this group we also mention [14], where
the negative viscosity effect during the excitation of a single drift wave (with wavelength greater
than the ion Larmor radius at electron temperature) in a magnetized inhomogeneous plasma has
been found, and special solutions of the weakly nonlinear equation for large-scale perturbations
have been studied.

In contrast to the papers on liquid hydrodynamics mentioned above, the present paper
deals with negative viscosity in Rossby wave turbulence and drift wave turbulence. Rossby
turbulence is a widespread type of wave motions in the ocean and atmosphere; see, for
example, Refs. [15, 16]. Drift turbulence is widespread in magnetized inhomogeneous plasmas
of numerous thermonuclear devices and the ionosphere; see, for example, Refs. [17, 18]. It
is well-known that, despite the quite different physical origin of these motions, their formal
description is very similar [19]. Moreover, Rossby wave turbulence and drift wave turbulence
obey identical nonlinear partial differential equation (in the simplest description). Therefore,
it is natural to discuss both them together. In order to clarify the discussion and the results, we
use the simplest method of analysis which allows us to elucidate in a uncomplicated way the
appearance of nontrivial effects and to find out how they differ from non-wave hydrodynamic
problems. We assume that it is possible to divide the fields into a large-scale slowly varying part
and a small-scale rapidly evolving part. The small-scale field is a wave field, whose level is kept
stationary due to the existence of an external source (external force) in the initial equation. The
evolution of the large-scale part is calculated by averaging over the small-scale part. In such a
formulation the effective (turbulent) viscosity determining the evolution of the large-scale field is
a functional of the given spectrum of waves. We use the simplest model spectra to demonstrate
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the difference from the hydrodynamic problems mentioned above. In particular, we show that
small-scale isotropic Rossby and drift wave turbulence can act as a negative effective viscosity
on large-scale perturbations. This points to a more substantial role of a nonlocal energy transfer
from small scales to larger ones in the case of the Rossby and drift wave turbulence than in
the case of 2D NS turbulence.

~ 2. EQUATION FOR THE LARGE-SCALE FIELD EVOLUTION

We start from the well-known model two-dimensional equation, which describes the space-
time evolution of the stream function in the Rossby wave theory [20]. In dimensionless units

oy 0 11) 2 _
B0~ 3~ g T VA — VU, Vayl. = F. 2.1)

Here V =e,0/0x +¢,/0/0y, A= 8%/ 8m2 +8?/8y?, and v is the (dimensionless) molecular
viscosity of the gas or liquid. Following the known method, used in the turbulence theory, we
introduce a source into the right hand side of Eq. (2.1). The role of this source is to maintain
the stationary level of the wave turbulence.

For the Rossby wave the z-axis denotes the latitude direction (from West to East), whereas
the y-axis denotes the meridional one (from South to North). We note that usually for drift
wavesthe z-axis denotes the radial direction in a thermonuclear device, or the direction in which
plasma density varies, whereas the y-axis denotes the azimuthal direction, and thus, one has
to replace dv/dx by —0y/dy in Eq. (2.1) in order to follow the conventional notation used
in drift wave theory. Then v is the dimensionless potential, and v is the (dimensionless) ion
viscosity for magnetized plasmas. However, in this paper, for definiteness, we use the «Rossby
wave coordinate frame», i.e., that in which Eq. (2.1) is written. Obviously, the final results
can be easily reproduced in a «drift-wave coordinate frame».

In the linear approximation Eq. (2.1) describes the wave propagation with the frequency

k
WR = —1—_{_1—]92, (2.2)
and the damping rate
vk?
VR = =R 2.3)

where k is the wave vector, k2 = k2 + k;.
Now we divide the field 9 into mean and fluctuating (turbulent) components:

=9 +97; (2.4)

the bar denotes statistical averaging and «I'» means «turbulent». After averaging Eq. (2.1) we
get

‘f;f 0 0 - ‘9_1/’ + VA% = [V, VAR + [w;T, vmpT] . (2.5)
z
To get a closed equation for E it is necessary to express

Q= [va,va]z (2.6)
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in terms of 9. The equation for 1T is obtained from Eqs. (2.1) and (2.5):

T 8 r aw
o et

- ([ViﬂT,VAwT]Z - [ wT,VAwTL)- @2.7)

+va%y — [V, VaypT] | — [T, VAg), -

Therefore, the closed equation for 1 implies the application of some closure procedure. Since
we are interested here in negative viscosity effects for the large-scale flows, we use the following
approach. Let us assume that the mean quantities vary on space and time scales which_ are
larger than the characteristic scales of the fluctuation fields. We introduce the characteristic
size [ of the small-scale field and the characteristic size L of the large-scale field. Then we
estimate the ratio of the quantities vA?T, [V, VAYT],, [VyT,VAY),, [VyT, VayT],.
They stand in the ratios

l &

1: I Rer : I3

where Re;, =~ VL /v is the Reynolds number of the large-scale motions and Re; = ~VT] Jv is

the Reynolds number of small-scale ones (V and V7T are characteristic velocities of large-scale

and small-scale motions, respectively). Therefore, for sufficiently small Re; we can neglect

terms in Eq. (2.7) which are quadratic in 7. Furthermore, in accordance with multiscale

expansion schemes, we introduce the «slow» variable X and the fast variable x. The average

quantities depend on the slow variable only, whereas the fluctuating components depend on
both the fast and slow variables. The following inequality holds:

e) o}

15). 4 ox
where K and k are large-scale and small-scale wave vectors, respectively.

Thus, we can find the solution for 1T as an expansion in powers of K, that is,

T = 9O, t) + D (x, X, t) + ... + 9%, X, t). (2.9)

Rer : Rey,

~ K| < |—| ~ [K|, (2.8)

The solution to order K* is presented in Appendix A. Then, the functional dependence of Q
through 1) is obtained there. So instead of Eq. (2.5) we get the following equation for the
large-scale part of v:

. (3 D — I D o
Ly = (ﬁ WAsw Y 53X — A 7,[) + emntik nmpkm—
L PAY o 9 (O 40 o'y +
Ymk 5X,0X, "X \9X,0X,0X;) ™PHX,0X,0X,0X,
d? oY 0P . oY Y
+ W , @ ' _
eralNmina x5 X. (GXT aX]) eraNemma 5, 9X,0X,0X,
%Y %y
)
Nk””q@X 0X; 0X,0X, (2.10)
where
. 9 8 o .
= — —_—t
L= - o8- 52 +val, @11
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o? 32
= —+ — -
A =ax2 T oy (2.12)
(J,1,m,n,p,q,7) = x,Y, Emn, is the unit antisymmetric tensor of the second rank,
en=€enp=0, ep=—-ey=1, (m,n)=1,2,
NMmpk = // dkdw Hl(k,w)kakpkkkz(w — WR),
v = // dk dw Ty (k, w)v gk ki k2,
Vo = / dk dw Ty (k, w)4kmkpkik*vR(w — wr), 2.13)
Vo = / dk dw y(k, w)8ky kikpkik? [vk? (vh — (W — wr)?) + wrr(w — wR)] ,
N, = / dk dw Ty (k, w)2kmkikgkek? [(w — wr)* — vE],
ND = / dk duw Ty (k, w)2kikpkmk k* (k2 + 1)1,
ok
I (K, w) = ) :
(1+ k) [(w ~ wr)? + vE]
(2.14)
ok
Mok, w) = LT ,

(1 + k2 [(w — wr)? + 3]

and ®(k,w) is the space-time spectral density for the small-scale field.

Let us discuss the meaning of the terms in Eqgs. (2.10), (2.13). The first term in @ gives
the correction to the frequency in the dispersion equation for the large-scale motions. The next
three terms in @ are the type terms which lead either to damping (positive effective viscosity) or
to growth (negative effective viscosity) of the large-scale motions. The last three terms describe
the nonlinear interaction of the large-scale motions. In this paper we are interested mainly in
terms of the viscous type. We consider the effects depending on the properties of small-scale
wave turbulence. However, in order to make the discussion simpler and to clarify the differences
between our paper and the papers mentioned above, in the next Section we demonstrate for
the case of the 2D flow of a viscous incompressible fluid what effect can be responsible for the
appearance of the negative effective (turbulent) viscosity.

3. THE ORIGIN OF THE NEGATIVE VISCOSITY TERM. QUALITATIVE CONSIDERATION

In order to simplify the discussion ag much as possible, we consider here the equation for
the stream function of a 2D mcomprcssllble viscous fluid [21]:

%Aw — vA% + [V, Vay], = F. 3.1
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Inserting % in the form (2.4), we get equations analogous to Egs. (2.5)-(2.7):

o 87 vA ~ (V9T VAYTT, = (.

%mﬂ — AT + [V, VayT], + [VyT,Vay], = F. (3.3)

It is noteworthy that the third and fourth terms on the left-hand side of Eq. (3.3) describe
the interaction between small- and large-scale fields. The term [V, VAyT], describes the
transport of the fluctuation vorticity W1 = AyT by the mean flow (V) = [e,, V3] while the
term [VyT, VAy], describes the transport of the mean vorticity by the fluctuation component.
As in Sec. 2, we introduce the natural physical assumption that the space and time scales of
the average quantities are larger than the scales of the fluctuations. Introducing fast and slow
variables (z and X, respectively), we use the Fourier transform over the fast variable:

PT(x, t)—/ o )31/; (k, w) exp(—iwt + ikx).

We note that in the Fourier representation the term [V, VA T], describes the Doppler shift
of the fluctuation frequency. From Eq. (3.3) we get

X F(k,w) 1 : N thkm Y
T ~ — i — —_ — — P .
P (k,w) k:"(iw — Vk‘z) {1 ; (anf‘:mn X, K2 Emn 6X73L ) (3.4)

where it is assumed for simplicity that the terms containing slow spatial derivatives are small. We
note once more that the interaction of the fluctuations 1T with the mean flow 9 (in Eq. (3.4) the
terms with the first and third slow derivatives are due to this interaction) causes 1T to depend on
the slow coordinate. This fact implies that among the terms entering into —([V47T, VAyT],)
the following term occures:

T 8
mn—— ———APT, 3.5
Emn Bom 9K, @-3)
where A, is the slow Laplacian, as before, and A has to be replaced by A, in the first two terms
in Eq. (3.2).
Inserting Eq. (3.4) into Eq. (3.5), we can see that Eq. (3.5) gives rise to the following terms
in the left-hand side of Eq. (3.2):

19; — ot —
“Emnejkys,_)k MAHP + EmnEjklm; m—X—iAsw, (3.6)
M) a £ vk’
Vink —/dkdw(F )k,wmkmkka 3.7
- VR
/ AR o (P o s (3.8)

The first term in Eq. (3.6) is due to the transport of the fluctuation vorticity by the mean
flow, while the second term is caused by the transport of the mean vorticity by the fluctuation
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velocity. The first term corresponds to Vf,ll)k, which is calculated for the Rossby wave turbulence

in Sec. 2; see Egs. (2.13). It can be seen that even for isotropic fluctuations the former effect
makes a negative contribution to the turbulent viscosity. Indeed, let (Fz)k,u be an isotropic
function of k. Then,

D _ . a — 1
V’En)k - V( )6mka Kmj = ,uémja V( ),/L >0

and Eq. (2.6) is rewritten in the form

() a2 N 64 N 64 _ 3
VUAY (W W) As. 3.9
Therefore, the term with »(V) gives a negative contribution to the turbulent viscosity. The term
with u describes the dissipation of the large-scale component and bounds the instability region
for small wavenumbers.

Thus, the interaction between the large-scale flow and small-scale velocity fluctuations,
which manifests itself mainly in the transport of the small-scale fluctuations by the mean flow,
gives rise to the viscous-type term with a negative viscosity coefficient in the equation for the
mean component. We stress that this conclusion is valid both for the 2D model of viscous
incompressible fluid, see Eq. (3.1), and for the wave model, see Eq. (2.1).

The above treatment is obviously incomplete: it only points to the mechanism for the
appearance of the viscous terms with negative viscosity coefficient in the equation for the mean
flow. A detailed consideration demands more accurate analysis of Egs. (3.2), (3.3) with the
two-scale dependence of fluctuations taken into account. The complementary viscous terms
can suppress the negative contribution, which is controlled by the transport of the turbulent
fluctuations by the large-scale flow. In order to compare our results with those of other authors
studying turbulent viscosity by means of the two-scale expansion, and to call attention to the
differences between the turbulent viscosity for the 2D NS flows and that for the Rossby and
drift waves, in Appendix B we obtain and analyze the equation for the average stream function
of 2D incompressible viscous fluid, see Eq. (B.1). It is a limiting case of Eq. (2.10), if we
neglect dispersion (1 + k* — k?) and the eigenfrequency (wgr = 0) of the waves. In Appendix
B we demonstrate that our results correspond to those of Refs. [12,13] for 2D NS flows. We
also demonstrate that isotropic small-scale fluctuations do not give rise to a negative viscosity
in the framework of 2D NS equations. The negative contribution to the eddy viscosity given
by v in Eq. (3.9) is compensated by the positive contribution. However, in the next Section
we demonstrate that this is not the case for the isotropic wave turbulence.

4. NEGATIVE VISCOSITY FOR MODEL SPECTRA OF THE WAVE TURBULENCE

Let us explore the consequences of the general expressions (2.10)-(2.14). We consider
the problems arising here, taking the tensor Vf,ll’k as the way of example; see Egs. (2.13). This
tensor is a functional of the space-time spectral function ®(k,w) of a given small-scale field.
The spectrum has a peak on w at w &~ wg and some characteristic width ~y,. The spectrum is

multiplied by the Lorentzian curve

VR
W —wr) + v}’
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and integrated over w and k. Obviously, the result of integration over w depends on the ratio
between the characteristic widths of the multiplied functions, that is, -y, and vg, whereas the
result of integration over k depends on the degree of the spectrum anisotropy in k. Under these
circumstances, it is natural to consider first the simplest model wave spectra leading to the
negative viscosity. Thus, we consider the following examples:

1. A small-scale coherent field, that is, the frequency and wavenumber spectra are narrower
than the other characteristic widths of the problem.

2. A small-scale isotropic turbulent field. Such a field can be formed in a small-scale
region (k > 1) due to mode coupling, which isotropizes the spectrum (see, e.g., Ref. [22]).

4.1. Coherent wave spectrum

We take the wave spectrum as follows:

2
ok, w) = @ [6(w — wo)d(k — ko) + (w + wo)d(k + ko)l 4.1
where (1?) is the variance of the fluctuations,
_ k'()a:

This case implies that the frequency spectrum is sufficiently narrow:
Yk, K VR(Ko)- 4.2)

Inserting Eq. (4.1) into Egs. (2.10)—(2.14), we get the following equation for :

Ly = (g;? a(zfA ¥ - g;ﬁ a(z(“\‘ w) b Sk [kgyggg 2’“““?*3)?%1/
— 2koz Koy agng + k? 5 )f:g’yz + kgxg4—)z +44%7 k| — ki, KD, g;ﬁ
+ 2k Koy (Ko, — kG, 5 )‘?_Z‘gy + 2 oy (K5, — ki) aﬁ:}ﬁx + (4t ke, — Koz — K3,)
T kéxkéy%] —Ah [mk% (3‘9—;—5%;—2) +<kéx—k%y)%] x
(k%g;f koy(?;?) +7 v 2%y [k()zkoy (gz—fz-%g) +(k§z—k§y)%] X
x (k()y ai( Koz a‘;) P+A 2k (koya%—k%aiy) [k%koy (giﬁ-%g) +
+ (kb — ko) af:“gy] (koyg—?( - kOmg—g) . 4.3)

For simplicity we consider the case when the small-scale field propagates along the z-axis,
ko = kge,. Taking v in the form

P = exp(—iQt + iKX),
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we get a linear dispersion equation for the large-scale perturbations:

_ . 2 2
= 1—% - T [qu + (l‘f_) + 2;/) KK - (ﬁ%—) - ,,) K;] L (44

It is worth noting that this equation describes not only the waves but also the large-scale
structures. Indeed, it follows from Eq. (4.4) that the most «dangerous» (that is, rapidly
growing) are those large-scale perturbations, which are perpendicular. to the direction of the
wave propagation, that is, K, = 0 and Re Q = 0. This implies that the negative viscosity effect
leads not only to nonlocai energy transfer frorn small-scale waves to large-scale waves, but
also to the generation of stationary structures highly elongated along one of the coordinates.
. We return once more to the discussion of these possibilities below. The growth rate of such

perturbations is
_ (&) Ky
ImQ—( ” —-v 1+K§' 4.5)

ImQ > 0 if (1?) > v2. We stress that in this case we can not take v — 0 because such a limit
is in contradiction with the inequality (4.2). For «the drift wave coordinate frame» one has to
replace K, by K, in Eq. (4.5).

The effect described is analogous to the Kolmogorov flow instability of a 2D viscous
incompressible fluid [5]. For a single drift wave with wavelength greater than the ion Larmor
radius at electron temperature in a magnetized plasma this effect has been studied in Ref. [14].
Nonlinear stationary structures formed due to the negative viscosity effect have been also studied
there.

4.2. Isotropic wave spectrum

We consider the case when the wave spectrum is isotropic in k. This case is close to that
considered in Appendix B, so below we compare the equations of the Appendix with those
obtained in this Section. Here the model Lorentzian time spectrum is used:

1 Vi
ok, w) PR 'Yﬁ (k). (4.6)
The width ;, is a complicated function of ®(k), but its explicit form is not discussed here. It
should be stressed that we choose the Lorentzian shape for convenience only. It can be easily
verified that the result is not changed qualitatively if one chooses other shapes, for example,
the Gaussian or in the form of a step; see Egs. (B.6) where w — w — wp.
Introducing Eq. (4.6) into Egs. (2.13), taking the integrals over w and using the subsidiary
integrals (B.7), we arrive at the Egs. (B.8) for the viscous terms, where instead of Egs. (B.9)
we get

I
v = /dkksq’(k)lwz v+’

E* 2k + oy
(3 — 3
= /‘””“ q’(’“)<1+k2)2 T

4.7)

It is worthwhile to note that if we set 1 + k* — k? (no dispersion), then, naturally, we get
Egs. (B.9) from Egs. (4.7). As before, vV and v+* give negative and positive contributions,
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respectively, to the effective viscosity. However, due to the wave character of the small-sca-
le perturbations the balance between the two contributions is changed. Indeed, instead of
Eq. (B.10) we get

0 a 0 op 8 — O 9  —
(a — aAs aX) w+ IleffA 'w = (1 P) (6_X WA_;’(/) — W ﬁAsw> ) (48)

where
° vk* — i
(1+k2)? (vg + )

v = v — 0+ = +7r/dk¢(k)
4.9)

T k5d>(k) [(1+ K2y + vk?(K? - 2)]
/ (1+ k(v + vr)?
0

For the case of 2D NS flows vess > 0 holds for any ratio between the spectral width and vk?;
see Eq. (B.11). In contrast, as we can see, two possibilities exist for the Rossby waves.

The first possibility is characterized by v, < vg (narrow isotropic spectrum). This case
corresponds to the one when the wave intensity is sufficiently low that the broadening of the
spectral lines 7y, is small in comparison not only with wg (a widely used definition of weak
turbulence), but also with vg, which, in turn, is less than wg (the damping rate is less than
the eigenfrequency). Then, setting vy, — 0, we get

2

Veff =yp+ ('léfy) (410)

This result coincides with Eq. (B.12) and points to the absence of nonlocal energy transfer to
the large-scale region.

The second possibility is realized when v, > vg (broad isotropic spectrum). This
inequality implies that the intensity of the waves is greater than in the previous case. However,
due to the smallness of the damping rate we may still retain the framework of weak turbulence.
In this case from Eq. (4.9) one gets

ki

ETEET (4.11)

Veff =V — W/dk‘(b(k)
0

and v can be negative for a sufficiently high Rossby wave level. We may roughly estimate
the criterion for the negative viscosity as

(¥?*) > vy, (4.12)

where -~y is some effective spectral line broadening. It resembles the analogous criterion for the
coherent waves; see Eq. (4.5).
The evolution equation for the large-scale perturbations has the form (4.8), where

[ee]

/ “’(k)u + k2)

0
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Looking for 1) in the form
P = exp(—iQt + iKX), (4.13)

and inserting Eq. (4.13) into Eq. (4.8), we get the following dispersion equation for the lar-
ge-scale perturbations:

Kl. ,VeffK4
1+ K2 T+RT

Q= 4.14)
Equation (4.14) describes two types of motion. The first one (K, # 0) is the large-scale
wave, while the second one (K, = 0) is the large-scale stationary structure, ReQ = 0.
Therefore, if ves < 0 holds, two possibilities exist for the energy flow from the small-scale
region. The first one is nonlocal energy transfer from the small-scale waves to the large-scale
ones. The large-scale waves grow, and it can happen, that the spectral gap between the two
wave regions disappears, the two-scale approximation is violated, and the turbulence becomes
nonstationary. We note, however, that this circumstance does not invalidate our treatment,
because we consider the initial stage of instability only. Another possibility is related to energy
flow from small-scale waves to the large-scale stationary structures highly elongated along one
of the coordinates. We remind that as in Sec. 4.1 for «the drift wave coordinate frame» one
has to replace K, by — K, in Eq. (4.14).

In this theory there are no limits on the growth rate of the large scale instability as K
increases. Such restrictions can be obtained by taking into account the higher-order terms in
the expansion in powers of K; see Sec. 3. This procedure has been carried out for a single
drift wave in a magnetized plasma in Ref. [14]. It has been shown that the terms of order K°
in the growth rate of the large-scale instability lead to damping of perturbations in the range
K > K. and to the appearance of a maximum of the growth rate for small K.

Since the large-scale perturbations grow due to the negative viscosity effect, the nonlinear
term in Eq. (4.8) becomes important. For the subsequent investigation of large-scale structures
it is necessary to analyze the nonlinear equation.

5. RESULTS

Here we have studied new effects of generation of large-scale structures. These appear for
Rossby wave turbulence in atmosphere and ocean and for drift wave turbulence in magnetized
plasmas. The physical reason for their appearance is related to the change in the sign of
the effective (turbulent) viscosity in large-scale motions of the medium (negative viscosity).
Therefore, the damping of large-scale motions is replaced by growth, which has to be limited
due to nonlinear effects. The small-scale field is stationary and maintained by an external

,source. Such a formulation is fruitful for studying the effects (characterized by the effective
viscosity) of smaller-scale motions upon the larger-scale motion. The results obtained are as
follows:

1. With the use of the two-scale expansion, an equation is obtained which describes the
evolution of the mean stream function in the presence of the small-scale Rossby-wave field or
the evolution of the mean potential in the presence of the small-scale drift-wave field. General
expressions are obtained for the terms describing the influence of small-scale motion, namely,
the viscous terms, the dispersion term and the terms nonlinear in the large-scale field. These

656



XOTD, 1998, 113, ¢vin. 2 Negative viscosity for Rossby. . .

expressions allow one to study the evolution of large-scale motions, with the assumption that
the spectrum of the stationary small-scale field is known.

2. The results obtained admit a transition to the hydrodynamics of a viscous incompressible
fluid. The previously known results on the eddy viscosity of the small-scale fluid motions are
recovered.

3. The qualitative reason for the negative viscosity effect to appear is the transport of
small-scale vorticity by the mean flow. This effect leads to the negative viscosity contribution
to the effective viscosity governing the large-scale motions.

4. It is shown that the coherent wave motions lead to the negative effective viscosity. The
criterion of large-scale instability due to the negative viscosity effect is derived.

5. Opposite to the case of the small-scale isotropic motions of a viscous incompressible
fluid, small-scale isotropic Rossby wave and drift wave motions can lead to the negative effective
viscosity. It is demonstrated that the effective viscosity can be negative if the spectral line
broadening is greater than the linear damping rate.

This work has been done in the framework of the «Structure» Project, which is financed
by the National Academy of Sciences of the Ukraine.

APPENDIX A

Derivation of )

In this Appendix the term Q in Eq. (2.6) is derived. We introduce «slow» variables together
with the «fast» ones. The spatial operators are now written in the form:

0 o 0o

- 5+ =

0x Ox 00X’
EY

A Al +2——— +
T 5,0%,

As, (A.1)
, ) 52 52 , & 2
A2 5 A2 +2A A 4 — A FAh—— A A4 —— ) .
7oL T AR 0z,0X, - 01,0X, ° ° (ax,,ax,,)
Here

o? 0
Ay =———, A = —F.
*~T 8X,0X,” " 0z,0z,
Then, according to Egs. (2.9), the tem; Q) can be written in the form

Q(.’L‘,X, t) — q(()l) + q(02) + q(03) + q(04) + q(10) + q(20) + q(30) + q(40) +
+ q(ll) + q(IZ) +q(13) +q(21) + q(22) +q(31) + O(KS,KG, B .), (Az)

where

due to the homogeneity of the turbulence,
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0) 3 3 3 3
¢ =c, ok O 4, 9 A —
0z, \ 07,073 0r,0z,0X, 0x,0X 12, 6:1:12,3)("
o o
2 + ® :
82,0X,0X, ax;axn> v > ’ A3

0 15) 0
(10) — Yoy m_9 0)
q emn<<azm oX.. )w AL >

The remaining terms in Eq. (A.2) have similar structure. We retain in Eq. (A.2) only those
terms which are of order K'!,..., K*. As will be seen below it is just these terms which give
rise to the negative viscosity effect.

To calculate the terms in Eq. (A.2) it is necessary to get expressions for 1@, M, . @,
Using Egs. (A.1), (2.7) one finds the the following equations:

WO 8 31/)

O(K") =~ 589 + A2 PO = (A.4)

O(K"): a¢t1 6 Ay — W +vA2 I — a%'é’—ai/s Y@ =0, (A.5)
O(K?): ¢(2 % ALp® — ‘9‘/’ +uaty® - Of;() _

_2atg:i;)xp +4”azf(;XpA“/’“ 'efkaa;(p aa Ay =o0. A6)

We calculate only the terms ¢, 4, and ¢®@, since the terms ¢®, 1™ do not contribute
to @, as it will be seen below. Egs. (A.4), (A.5) and (A.6) can be solved using the Fourier
transform over the fast variable z, that is, e.g.,

v O(z,t) = / dk PO (k, t)et=. (A7)
Then, Eq. (A.4) can be transformed to
oo o Fk, 1)
+ + 0 =\
at (”'wR VR)¢ 1+ k2 ) (A8)
where
 ky vkt
YRTTTE R TR TR
The solution of Eq. (A.8) is
t
- F(k,t'
POk, t) = / dt’ 1(+”:2) exp (iQ(t' — 1)) . (A.9)

Here Qi = wgr — tvg. The solutions of Egs. (A.5), (A.6) can be obtained in a similar way.

t
~ ) 2 ) ~
DOX K, t) = — ikik” 09 / dt'p Ok, t') exp (iQ (' — 1)) , (A.10)

ST k2 0X,
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t,
/ dt! e =1 / dt" POk, t") exp (iQu(t" 1)) +

—00

ik k2
(1+k?)? BX 0X;

12;(2)(X’ ka t) = =&k T 0

kikpk?

+
2 EANEY DY aX aX

/ dt' POk, ') exp (:Qi(t' — 1)) —

t

kpkik? O i}
_2E]k (1+k2)2 2% aX 6‘X /dt exp 'LQk(t _t))/ t" vk, t") exp (’I,Qk(t —1 ))
kokek® 0% y
k
e Ry 8X,9X, / di’ exp (i (t' — ¢) / dt" POk, ") exp (iQ (t" —t')) —

— o0

kikk? 09 69
TRl T2y B, OX,

/ dt’ exp (iQc(t' 1)) / dt" Ok, t") exp (iQx(t" 1)) . (A.11)

Now calculate the sum 0 = 40D 4 (10). Using the Fourier transform over the fast
q q
variables we get

& )
(01) = 1: st 12 ’ ! _ 2 +
¢ X t) 5mn/ dk dk'ik,, [ ik, k 2knkan +1ik,, 5‘X2 k ax.
+ 2k’ i > <1,Z3(°’(k VX, K t)> exp (i(k + K)x). (Al2)
" 9X,0X, | X20X, ! YA S

It can be easily seen that some terms cancel due to

Emnkmkn =0,
Using Eq. (A.10) we get
) T 1! ikkklz 8@
(0609 K, X 00) = e 5

\ t,

x / dt, <1/3(°)(k,t)1z3(°)(k’,t1)> exp (1Qu (' —t)).  (Al3)

— o0

Here the assumption about the slow time evolution of % in comparison with the turbulent
term 3 is used. This allows us to take the term 9v/0X; out of the integral.
For homogeneous turbulence we have

<1/3(o>(k’ PO, t1)> = ok, t — )6k + k). (A14)
Then we use the Fourier transform over time,
ok, t—1) = /dw(b(k, w) exp (—iw(t — t1)). (A.15)
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Inserting Egs. (A.15), (A.14) into Eq. (A.13) and then into Eq. (A.12), we can calculate
(01)
(X, ).
Analogous calculations are employed for ¢'9(X, t) which is equal to

"X, 1) = emn / dk dk’ (zk + 5—;—?—) (—ikik"?) x
. x <1/3<1>(x, k, ) OK, t)> exp (i(k + K')x) . (A.16)

Then, Q" has the form

i i) 8.9
M) = 40D 4 (10 = W _Z T A.17
Q q q Emn€jk (77mpk 8X oX, aX ~ VUmk 8Xn8X,) ’ ( )

where N pk, uﬁl)k are determined according to Egs. (2.13). For Q‘® one gets

2) — (02 20
QP = ¢ 4 40

72X, 1) = emn x

0w (0 I 2 \,e
Brm \ 3z M 2o amiax, ozt + A
X <azm (axn Ay 26:1:,,3xn6Xp Er Aq aXnAJ_ 2axanann) ), (A.18)

dO(X, 1) =emn<(% * )w‘” i w“”> (A.19)

Carrying out a Fourier transform over the fast variable and inserting the solution for d‘)(z)
into Egs. (A.18), (A.19) we get

9 G2 Y
) - ) @ Y (_“¥Y \_ (3)
QU (X, 1) = emnejik {”mpk oX (aXannan) mivk 5 X,0X,0X,0X
& % P
+ (1 ) .
eralVmira 5x,5x,, <8XT aXJ-) } (420

It is easily seen that the sums ¢ + ¢©®%, (12 + @D and ¢ + ¢“O vanish by symmetry.
Then the sum ¢'¥ + ¢GY is equal to zero to fourth order in K. Therefore, only an expression
for ¢!V should be obtained:

oy 9 aw(l) 33¢(1) 3¢(1) o
an = M 4 + A D+
&0 5”"<<azn 3%, Yt 2on, GendX, 0K, | 9X, dan LY

oD &y oy 9 m
+ A . A2l
5%, 07,05,0X, O0Xn, 0X, ¥ >> A21)
Inserting ¥ (see Eq. (A.10)) into Eq. (A.21) we get
o 8% o o
an - , ¢) @
@D = emncirerg (N’Wax 9X,0X,0%, | kma5X, 0%, 0X,0%, ) A

Now, summing up expressions for QV, Q@ and ¢! we get the final expression for Q to
order K*; see Eq. (2.10).
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APPENDIX B

Eddy viscosity of 2D NS flows: a comparison with previous results

In this Appendix we demonstrate a transition from the formulae of Sec. 2 and Appendix A to
those describing the turbulent viscosity of a 2D viscous incompressible fluid. It allows us, firstly,
to compare our results with those of other authors studying turbulent viscosity in hydrodynamics
in the framework of two-scale expansion, and, secondly, to point out the differences arising
between calculations of the turbulent viscosity in 2D NS flows and in Rossby waves; see Sec. 4.

The coefficients in the equation for the mean stream function of viscous incompressible
fluid are obtained from Egs. (2.13) by setting 1 + k* — k? (no dispersion) and wg = 0 (zero
eigenfrequency). We do not discuss effects nonlinear in ¥ and, therefore, neglect all nonlinear
terms. Further, we have V:rzr,)pk = 0 because this term is determined by that with §/8z in
Eq. (2.1) Therefore, we have the following equation for -

o — _
—AYp — I/Azw t Emnéjn X

gL " 4
("””kmaq)%é’x—j ~Vnk 3, oX,0%," D Vi aXlaXi;poan) =0 ®BD
where
Mgk = / k=) oy
v = / dk de q)(k “2’;& U ko ki, (B.2)

Ok, w
vy, = / dkdw 2i 124)2 80k ki ik p k.

Naturally, these results can be obtained if we start from Eq. (3.1) and use the method
described in Appendix A.

Thus, the sign and the value of the turbulent viscosity are determined by the terms with
yg)k ufi)l ok As is shown in Sec. 3, the term with ’/Sl)k is due to the transport of turbulent
vorticity fluctuations by the mean flow. Even for the isotropic small-scale fluctuations this
term makes a negative contribution to the turbulent viscosity. However, the term with v0) ok
can, of course, compensate the negative contribution.

At first, we note that the results which stem from Egs. (B.1), (B.2) are in accord with
the results of [12]. Indeed, let an external source in Eq. (3.1) be homogeneous in space and
delta-correlated in time. Then, instead of Egs. (B.2) we have

(1) /dkk mkr (W0>

2wk
) (B.3)
km kk ki, 3(W2)
(3) 1 k 0/k
Vinlpk /dk vk’

where (W) is the spatial spectrum of the zeroth-order aproximation of the small-scale field
vorticity. Equation (B.1) leads to the equation for the Fourier transform of the large-scale
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vorticity W(K, t)

%W(K, t) = v(K)W(K, t) — vKW (K, t), (B.4)

where

wm=/ﬂmmk (B.5)

(KK (| 60Kk
2vkS kK2

Equation (B.5) coincides with the main term of the expansion in powers of K/k of
Eq. (2.15) of Ref. [12].

The case of isotropic’ small-scale turbulence is the simplest, so we start just from this one.
We also use the Lorentzian shape for the spectral line broadening:

1 Yk
ok, w) = — ————d(k).
(w) = = i ®(E)
The Lorentzian shape is generally used; however, one may convince oneself that the result

is not changed qualitatively by using another shape instead of Lorentzian one, for example,
Gaussian,

W2
ok, w) = exp ( ) @(k), (B.6)
V2 i
or the «step-like» shape,
— ®(k), |w| <
ok, w) = 27 (k), | | <7k .
07 le Z Yk

For the isotropic spectrum we have 7, = 0. When calculating ufrll)k ¢ ) pi the following

subsidiary integrals over the asimuthal angle ¢ of the wavenumber k are used

/ dg kpmkn = 7k*6 i,

2 (B.7)
/d(p kmklkpkk = %k“(émlapk + 6mp61k + 6mk,61p)‘
0
Then,
V'E‘rlz)lc =106,.x,
3) B)y (BS)
VT;'LIC =v (6ml6pk + 6mp6lk + 6mk61p),
where
= [an 20 o)
vk? +
(B.9)

0k? +
3) — 3(I> .
v w/dkk (’”)(uk“vk)f
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Equation (B.1) has the form

0 — _
aAsw = Vs A2T, (B.10)

where

vk?

T (B.11)

Vepf =V — O+, =y +7 / dk B o(k)

It follows from the expressions obtained that the isotropic small-scale fluctuations do not give
rise to a negative viscosity in the framework of the 2D NS equations for viscous incompressible
fluid. The negative contribution —? is compensated by the positive contribution ¥ arising
in an accurate calculation of all the viscous terms in the framework of our scheme.

If we set v, — 0 in Eq. (B.11), then instead of Eq. (B.10) we get

qu (W’) 1/) A%, (B.12)

where (1?) is the variance of small-scale fluctuations. This result has been obtained by another
method in Ref. [13].
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