ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ФОТОИОНИЗАЦИИ РИДБЕРГОВСКИХ АТОМОВ ПОЛЕМ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ

Е. А. Волкова, А. М. Попов*, О. В. Тихонова

Научно-исследовательский институт ядерной физики им. Д. В. Скобельцина Московского государственного университета им. М. В. Ломоносова 119899, Москва, Россия

Поступила в редакцию 13 августа 1997 г.

Методом прямого численного интегрирования нестационарного уравнения Шредингера для квантовой системы в поле электромагнитной волны рассматривается процесс ионизации возбужденных водородоподобных атомов в лазерном импульсе фемтосекундной длительности. Получены зависимости вероятности ионизации системы от параметров лазерного импульса и начального состояния атома. Обнаружено явление подавления ионизации, подтверждающее основные положения теории интерференционной стабилизации ридберговских атомов.

1. ВВЕДЕНИЕ

Одним из наиболее интересных физических явлений в области физики взаимодействия интенсивных световых полей с атомными и молекулярными системами является эффект подавления ионизации в интенсивных электромагнитных полях [1–3]. Этот эффект проявляется в уменьшении вероятности ионизации системы с ростом интенсивности излучения при превышении напряженностью поля электромагнитной волны некоторого критического значения или в ее насыщении на уровне меньшем единицы и наблюдении остаточной атомной заселенности, не убывающей с увеличением интенсивности воздействующего импульса.

В настоящее время обычно различают два механизма стабилизации в поле электромагнитной волны: интерференционную стабилизацию, впервые рассмотренную в [4], и стабилизацию в режиме Крамерса–Хеннебергера [5].

Согласно [4], интерференционная стабилизация возникает как следствие когерентного перезаселения группы близколежащих ридберговских уровней атома в результате их связи через континуум рамановскими переходами Λ -типа и последующей деструктивной квантовой интерференцией амплитуд перехода в континуум из этих когерентно заселенных состояний. Порог возникновения режима определяется перекрытием ионизационных ширин соседних ридберговских состояний и легко может быть оценен в соответствии с золотым правилом Ферми. Используя найденные методом ВКБ в [6] выражения для матричных элементов V_{nE} , связывающих состояния дискретного спектра и континуума, получим следующую оценку порогового значения напряженности поля волны:

$$\varepsilon^* \propto \omega^{5/3},$$
 (1)

^{*}E-mail: popov@mics.msu.su

где ε , ω — напряженность и частота поля электромагнитной волны (использована атомная система единиц).

Основные обобщения и развитие теории интерференционной стабилизации содержатся в работах [7–9].

Альтернативный механизм стабилизации может реализовываться даже для системы с единственным состоянием в дискретном спектре, но требует, как правило, сверхатомных оптических полей. Динамику системы в этом случае удобно исследовать в неинерциальной системе координат Крамерса, осциллирующей как свободный электрон в поле электромагнитной волны. В этой системе координат электрон «видит» атомное ядро, осциллирующее с частотой и амплитудой колебаний свободного электрона. Усредненный по оптическому циклу потенциал, создаваемый ядром, представляет собой потенциал Крамерса-Хеннебергера и в сильных полях имеет характерную двуямную форму. При определенных условиях квантовая система демонстрирует свойства (структуру энергетического спектра), характерные для потенциала Крамерса-Хеннебергера, и хорошо описывается в терминах стационарных состояний этого потенциала, причем эти состояния обладают повышенной устойчивостью по отношению к ионизации. Многочисленные исследования [10-15] показывают физическую реальность существования потенциала Крамерса-Хеннебергера, описывающего систему «атом + внешнее электромагнитное поле», и понижение скорости ионизации из него в полях, превышающих некоторое пороговое значение.

В последние годы большую роль в изучении эффекта стабилизации атомных систем в интенсивных световых полях играют данные, полученные в результате прямого численного интегрирования нестационарного уравнения Шредингера для квантовой системы с учетом поля электромагнитной волны. Данные, полученные таким способом, могут рассматриваться как результаты численных экспериментов и являются надежной основой для оценки эффективности различных аналитических подходов.

Так, например, в [16] было получено численное решение трехмерного нестационарного уравнения Шредингера для атома водорода, находящегося в основном состоянии 1s, в линейно поляризованном поле электромагнитной волны в области параметров $\hbar\omega = 27.2$ эB, $P = 4 \cdot 10^{17}$ – $6.4 \cdot 10^{18}$ Вт/см², подтвердившее факт уменьшения скорости ионизации системы с ростом интенсивности излучения. Обнаруженная в этих расчетах дихотомическая структура волновой функции электрона является важной особенностью проявления волновых функций стационарных состояний потенциала Крамерса–Хеннебергера и доказывает эффективность использования метода Крамерса– Хеннебергера для описания стабилизации в указанном диапазоне параметров.

Отметим также работу [17], в которой получено численное решение трехмерного уравнения Шредингера, описывающее динамику ионизации атома водорода из состояния 2p для различных значений азимутального квантового числа m циркулярно поляризованным электромагнитным полем. Было показано, что устойчивость системы по отношению к ионизации определяется значением квантового числа m, и высказано предположение о возможности объяснения эффекта в рамках интерференционного механизма [4].

Число экспериментальных работ, посвященных изучению явления стабилизации, в настоящее время невелико. Так, исследование стабилизации в режиме Крамерса– Хеннебергера находится за пределами возможностей современной лазерной техники. Что касается интерференционной стабилизации, то некоторые данные, свидетельствующие о повышении устойчивости ридберговских атомов по отношению к процессу ионизации с ростом интенсивности излучения, были получены в [18-20].

Целью данной работы является исследование ионизации реального трехмерного водородоподобного атома в диапазоне параметров, при которых возможна реализация интерференционного механизма стабилизации. Возможность адекватного сопоставления численных расчетов с результатами аналитического рассмотрения явления интерференционной стабилизации связана прежде всего с работой [9], в которой в рамках метода ВКБ получено аналитическое решение нестационарного уравнения Шредингера с учетом начальных условий для ридберговского атома водорода, описывающее пространственно-временную эволюцию электронной волновой функции в сильном электромагнитном поле и динамику процесса ионизации.

В данной работе на основе алгоритма прямого численного интегрирования трехмерного нестационарного уравнения Шредингера для линейно поляризованного поля электромагнитной волны проведены расчеты динамики ионизации ридберговского атома водорода для различных значений интенсивности и частоты лазерного излучения а также квантовых чисел, характеризующих начальное состояние системы. Рассчитаны вероятности заселения различных состояний дискретного спектра и ионизации к концу лазерного воздействия. Обнаруженное в расчетах подавление ионизации системы объясняется в рамках интерференционного механизма стабилизации, предложенного в [4, 7–9].

2. МОДЕЛЬ ТРЕХМЕРНОЙ ВОДОРОДОПОДОБНОЙ СИСТЕМЫ

В данной работе гамильтониан квантовой системы выбирался в виде

$$H_0 = -\frac{1}{2}\nabla^2 - \frac{1}{\sqrt{\alpha^2 + r^2}},$$
(2)

где ∇^2 — оператор Лапласа, r— модуль радиуса-вектора, α — параметр сглаживания потенциала.

Стационарные состояния системы с гамильтонианом (2) в сферической системе координат (r, θ, φ) определяются выражением

$$\Phi_{nlm}(r,\theta,\varphi) = R_{nl}Y_{lm}(\theta,\varphi),$$

где $R_{nl}(r)$ — радиальная волновая функция, $Y_{lm}(\theta, \varphi)$ — сферическая функция, n, l, m — совокупность квантовых чисел, описывающих состояние электрона.

Радиальная волновая функция является решением задачи на собственные значения:

$$-\frac{1}{2}\frac{1}{r}\frac{\partial^2}{\partial r^2}rR_{nl} + V_{eff}(r)R_{nl} = E_{nl}R_{nl},$$
(3)

где

$$V_{eff} = \frac{l(l+1)}{2r^2} - \frac{1}{\sqrt{\alpha^2 + r^2}}$$

— эффективный потенциал, E_{nl} — уровни энергии системы.

В случае $\alpha = 0$ уравнение (3) имеет аналитическое решение, причем $E_{nl} = -1/2n^2$; при $\alpha \neq 0$ задача (3) должна быть решена численно, а вырождение по орбитальному моменту снимается.

Рис. 1. Распределение плотности вероятности $|\Phi_{nl}(\rho, z)|^2$ (где $z = r \cos \theta$, $\rho = r \sin \theta$) для стационарных состояний модельного водородоподобного атома в состояниях 5s (a), 5p (b), 5d (b). Линии уровня: $1 - 10^{-2}$, $2 - 10^{-3}$, $3 - 10^{-4}$, $4 - 10^{-5}$, $5 - 10^{-6}$

В наших расчетах полагалось $\alpha = 1/2$ (в атомных единицах). Такой выбор величины α , с одной стороны, сохраняет структуру спектра реального атома водорода, а с другой стороны, существенно упрощает проведение численных расчетов в окрестности точки r = 0. Результаты численных расчетов волновых функций нескольких стационарных состояний представлены на рис. 1. В таблице приведены значения уровней энергии модельной системы, а также реального атома водорода. Как видно, наиболее существенное различие наблюдается для основного состояния 1s и нижних возбужденных состояний 2s, 2p. Для состояний с $n \ge 3$ уровни энергии оказываются вырожденными по орбитальному моменту и их энергии с точностью $\le 2\%$ совпадают с энергиями состояний реального атома водорода.

		_								
l	n = 1	n = 2	n = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6	n = 7	n = 8	<i>n</i> = 9	<i>n</i> = 10
0	-12.53	-3.319	-1.494	-0.843	-0.540	-0.376	-0.276	-0.211	-0.167	-0.134
1	_	-3.429	-1.530	-0.858	-0.548	-0.380	-0.279	-0.213	-0.168	-0.135
2	—	—	-1.525	-0.852	-0.545	-0.378	-0.278	-0.213	-0.168	-0.135
3	—	-	_	-0.848	-0.543	-0.377	-0.277	-0.212	-0.168	-0.135
4	-	_		_	-0.542	-0.377	-0.277	-0.212	-0.167	-0.135
5	_	_	_	_	_	-0.377	-0.277	-0.212	-0.167	-0.136
6	_	—	_		_	_	-0.277	-0.212	-0.167	-0.136
7	_	_	_	_	-	_	_	-0.212	-0.167	-0.136
8	—	—	_		-	-	-		-0.167	-0.136
9	—	—		—	—	_	-	_	_	-0.136
H	-13.61	-3.402	-1.512	-0.851	-0.544	-0.378	-0.277	-0.213	-0.168	-0.136

Уровни энергии (эВ) модельной водородоподобной системы

3. ВЗАИМОДЕЙСТВИЕ С ПОЛЕМ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ

В дипольном приближении взаимодействие квантовой системы с полем электромагнитной волны описывается оператором

$$W = -\mathbf{d}\boldsymbol{\varepsilon},\tag{4}$$

где $\varepsilon(t)$ — вектор напряженности электрического поля волны, **d** — оператор дипольного момента.

Будем считать, что электромагнитная волна является линейно поляризованной, и направим ось z вдоль вектора ϵ . Тогда

$$W = -z\varepsilon(t) = -r\varepsilon(t)\cos\theta.$$
⁽⁵⁾

Пусть также начальное состояние атома характеризуется нулевой проекцией орбитального момента на ось z (m = 0). Поскольку линейно поляризованное поле электромагнитной волны будет вызывать только переходы без изменения магнитного квантового числа m ($\Delta m = 0$), то волновая функция электрона окажется не зависящей от координаты φ для любого момента времени, а эволюция состояния атома в поле электромагнитной волны будет описываться двумерным нестационарным уравнением Шредингера:

$$i\frac{\partial\Psi}{\partial t} = -\frac{1}{2} \left[\frac{1}{r} \frac{\partial^2}{\partial r^2} r\Psi + \frac{1}{r^2} \frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial\Psi}{\partial\theta} \right) \right] - \frac{1}{\sqrt{\alpha^2 + r^2}} \Psi(r, \theta, t) - \varepsilon(t)\Psi(r, \theta, t)r\cos\theta.$$
(6)

В качестве начального состояния выберем одно из стационарных состояний квантовой системы:

$$\Psi(r,\theta,t=0) = \Phi_{nl}(r,\theta) = R_{nl}(r)Y_{l0}(\theta,\varphi) = R_{nl}(r)P_l(\cos\theta).$$
(7)

Здесь $P_l(\cos \theta)$ — полином Лежандра.

Расчеты проводились для импульсов трапецеидальной и прямоугольной формы:

$$\varepsilon(t) = \begin{cases} \varepsilon_0 \cos(\omega t)t/\tau_f, & 0 < t \le \tau_f, \\ \varepsilon_0 \cos(\omega t), & \tau_f < t \le \tau + \tau_f, \\ \varepsilon_0 \cos(\omega t) \left[1 - \frac{t - (\tau + \tau_f)}{\tau_f}\right], & \tau + \tau_f < t \le \tau + 2\tau_f, \end{cases}$$

$$\varepsilon(t) = \begin{cases} \varepsilon_0 \cos(\omega t), & 0 \le t \le \tau, \\ 0, & t > \tau. \end{cases}$$
(8)
$$\varepsilon(t) = \begin{cases} \varepsilon_0 \cos(\omega t), & 0 \le t \le \tau, \\ 0, & t > \tau. \end{cases}$$

Здесь τ_f , τ — длительности переднего и заднего фронтов и «полки», ε_0 — амплитудное значение напряженности электрического поля волны.

В расчетах энергия кванта изменялась в диапазоне $\hbar\omega = 1-5$ эВ, а интенсивность в диапазоне $P = 3 \cdot 10^{12}$ -3 · 10¹⁵ Вт/см². Как правило, длительности τ и τ_f составляли $\tau_f = 2T$, $\tau = 10T$, где $T = 2\pi/\omega$ — длительность оптического цикла.

4. МЕТОДИКА ПРОВЕДЕНИЯ РАСЧЕТОВ

Численное интегрирование уравнения (6) проводилось в цилиндрической системе координат

$$z = r \cos \theta, \quad \rho = r \sin \theta$$

методом конечных элементов по методике, описанной в [21]. Для этого волновая функция начального состояния, определяемая в сферических координатах с помощью (7), пересчитывалась на сетку с координатами (ρ , z).

Размер области счета выбирался так, чтобы можно было учитывать не менее десяти состояний с различными значениями главного квантового числа $n = 1 \div n_{max}$ $(n_{max} = 10)$ и все состояния по угловому моменту, соответствующие данному n: $l = 0 \div (n - 1)$. Таким образом, полное число состояний дискретного спектра, которое может быть учтено в расчетах, составляет $N = n_{max}(n_{max} + 1)/2 = 55$. Контрольные расчеты показали, что в указанных условиях размер пространственной области счета должен быть не менее $r_{max} = 180$ Å. Поэтому уравнение Шредингера дискретизировалось на прямоугольной сетке (ρ, z) в области

$$|z| \leq z_{max} = 180$$
 Å,

$$0 \le \rho \le \rho_{max} = 180$$
 Å.

Сетка строилась с неравномерным шагом так, чтобы обеспечить требуемую точность вычислений вблизи точки r = 0 в области быстро меняющегося потенциала. Общее число точек пространственной сетки составляло $\rho \times z = 480 \times 960$. Вблизи границ области счета ρ_{max} , z_{max} в потенциал вводилась мнимая добавка, обеспечивающая «съедание» волновой функции и отсутствие отражения от границ. Заселенности различных состояний дискретного спектра находились путем проектирования рассчитанной волновой функции $\Psi(r, \theta, t)$ на базис атомных состояний, невозмущенных полем электромагнитной волны $\{R_{nl}(r)P_l(\cos \theta)\}$:

$$W_{nl}(t) = |C_{nl}(t)|^2 = \left| \int \Psi^*(r,\theta,t) R_{nl}(r) P_l(\cos\theta) r^2 dr \, d\Omega \right|^2.$$
(10)

Вероятность ионизации вычислялась по формуле

$$W_i = 1 - \sum_{n=1}^{n_{max}} \sum_{l=0}^{n-1} |C_{nl}(t)|^2.$$
(11)

При этом расчеты проводились в области интенсивностей, при которых заселенности состояний с $n > n_{max}$ пренебрежимо малы.

Альтернативный подход к вычислению вероятности ионизации заключается в вычислении доли электронной плотности вероятности, «съедаемой» вблизи границ пространственной области счета на достаточно больших временах после окончания лазерного воздействия. Такой подход был реализован в [16, 22]. Следует, однако, иметь в виду, что выбор достаточно малой пространственной области с целью сокращения времени счета и экономии памяти (в [16] ее размер не превышал 75×20 Å²) неизбежно приведет к потере информации о заселении возбужденных состояний и к автоматическому завышению вероятности ионизации, особенно в области сильных полей.

Рис. 2. Распределение электронной плотности $|\Phi_{nl}(\rho, z)|^2$ к концу лазерного импульса при $\hbar\omega = 5$ эВ, $\tau_f = 2T$, $\tau = 10T$ для начального состояния 5s и интенсивности излучения $P = 10^{13}$ BT/cm² (a), $3 \cdot 10^{14}$ BT/cm² (b). Линии уровня соответствуют рис. 1

5. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

Основная часть расчетов была выполнена для трапецеидальной формы лазерного импульса с параметрами $\tau_f = 2T$, $\tau = 10T$ для значения $\hbar\omega = 5$ эВ. В этом случае область сильных полей $\varepsilon/\omega^{5/3} > 1$ соответствует интенсивности излучения $P > 2.5 \times \times 10^{-3}$ ат.ед. (~ 10^{14} BT/см²). В качестве начальных состояний выбирались стационарные состояния с квантовыми числами n = 1-7, $l = 0 \div (n - 1)$. При этом для всех состояний с $n \ge 2$ ионизация была однофотонной.

На рис. 2 приведены типичные распределения электронной плотности $|\Psi(\rho, z)|^2$ к концу лазерного импульса генерации для различных значений интенсивности излучения и начального состояния 5*s*. На рис. 3 приведены распределения электронной плотности в континууме $\rho_c = |\Psi_c(\rho, z)|^2$ для тех же условий, что и данные на рис. 2. Эти распределения вычислялись следующим образом:

$$\rho_{c}(\rho, z, t) = |\Psi_{c}(\rho, z, t)|^{2} = \left|\Psi(\rho, z, t) - \sum_{n,l} C_{nl}(t)\Phi_{nl}(\rho, z)\exp(-iE_{nl}t)\right|^{2}, \quad (12)$$

где $|C_{nl}|^2$ — вероятность обнаружить систему в состоянии дискретного спектра nl, определяемая с помощью соотношения (10). Отметим, что возрастание интенсивности излучения приводит к увеличению степени сферической симметрии волнового пакета в

Рис. 3. Распределение электронной плотности в континууме для параметров, соответствующих рис. 2

Рис. 4. Зависимость вероятности ионизации атома водорода в состоянии 5s за импульс от интенсивности излучения для $\hbar\omega$ = 5 эB, τ_f = 2T, τ = 10T

Рис. 5. Зависимость вероятности ионизации атома водорода в *s*-состоянии за импульс от начального значения главного квантового числа при $P = 3 \cdot 10^{14} \text{ BT/cm}^2$, $\hbar \omega = 5 \text{ >B}$, $\tau_f = 2T$, $\tau = 10T$. Штриховая кривая — зависимость $W_i \propto n^{-3}$

континууме, что может быть связано с возрастанием роли многофотонных процессов и заселением в континууме состояний с различными значениями *l*.

На рис. 4 приведена зависимость вероятности ионизации W_i атома водорода из начального состояния 5s от интенсивности излучения в диапазоне $P = 3 \cdot 10^{12} - 3 \cdot 10^{15}$ Вт/см² для $\hbar \omega = 5$ эВ, $\tau_f = 2T$, $\tau = 10T$. Как видно, в области слабых полей W_i возрастает линейно с интенсивностью волны, а при превышении критического значения, соответствующего выполнению условия (1), выходит на плато, т.е. имеет место стабилизация системы. Аналогичная зависимость $W_i(P)$ предсказывается в последних моделях теории интерференционной стабилизации [8,9].

Для выяснения природы механизма стабилизации нами были исследованы зависимости вероятности ионизации от квантовых чисел n и l, характеризующих начальное состояние атома. Была получена зависимость вероятности ионизации за импульс от значения главного квантового числа начального *s*-состояния для интенсивности излучения $P = 3 \cdot 10^{14}$ BT/см² ($\varepsilon/\omega^{5/3} = 1.57$). Данные соответствующих расчетов приведены на рис. 5. Как видно, в области $n \ge 4$ зависимость $W_i(n)$ хорошо аппроксимируется выражением

$$W_i(n) \propto n^{-3}. \tag{13}$$

Такая зависимость $W_i(n)$ согласуется с теорией интерференционной стабилизации ридберговских атомов (см., например, [9]). Результаты расчетов позволяют также утверждать, что зависимость (13), полученная для ридберговских состояний $n \gg 1$, реально оказывается справедливой уже для состояний с относительно небольшими значениями главного квантового числа. Следует, однако, отметить, что аналогичная зависимость

Рис. 6. Зависимость вероятности ионизации атома водорода за импульс от значения орбитального квантового числа для начального состояния с n = 5. Параметры лазерного импульса те же, что для рис. 5

 $W_i(n)$ получается и для слабых полей в рамках золотого правила Ферми, поскольку в этом случае [6]

$$\dot{W}_i \propto |V_{nE}|^2 \propto 1/n^3. \tag{14}$$

Здесь W_i — вероятность ионизации в единицу времени.

Была исследована также зависимость вероятности ионизации от значения орбитального квантового числа начального состояния электрона при значении n = 5 (см. рис. 6). Оказалось, что устойчивость системы по отношению к ионизации возрастает с ростом l. Причина этого связана с возрастанием центробежного потенциального барьера, «отжимающего» электрон от ядра в область бо́льших r, и с уменьшением вследствие этого вероятности поглощения квантов поля. Ранее повышение устойчивости по отношению к ионизации состояний с большим орбитальным моментом обсуждалось в [23]. Отметим также, что в квазиклассической теории [9] центробежный потенциал считается малым по сравнению с взаимодействием электрона с ядром для значений l, удовлетворяющих условию

$$l < \omega^{-1/3}.\tag{15}$$

Для значения $\hbar\omega = 5 \Rightarrow B$ ($\omega \approx 0.18$ ат.ед.) условие (15) выполнено для *s*-и *p*-состояний. Как видно из данных, представленных на рис. 6, вероятности ионизации состояний 5*s* и 5*p* действительно близки друг к другу, а влияние центробежного потенциала сказывается в уменьшении вероятности ионизации состояний со значениями $l \geq 2$.

Особый интерес представляет распределение вероятностей заселения различных состояний дискретного спектра к концу лазерного воздействия. Результаты соответствующих расчетов для начального состояния 5s и параметров лазерного излучения $P = 3 \cdot 10^{14} \text{ Bt/cm}^2$, $\hbar\omega = 5$ эВ приведены на рис. 7. Полученные данные свидетельствуют о преимущественном заселении s-состояний и, прежде всего, 4s и 6s, связанных с начальным 5s-состоянием двухфотонными переходами Λ -типа. Кроме того, существует ненулевая вероятность нерезонансного однофотонного заселения состояния 5p. При малых длительностях воздействия ($\tau = 5T$) она составляет к концу лазерного импульса 2.7%, однако превышает вероятность резонансного двухфотонного Λ -перехода 5s \rightarrow 5d

Рис. 7. Распределения вероятностей заселения различных состояний дискретного спектра к концу лазерного воздействия. Длительность «полки» $\tau = 5T$ (*a*), $\tau = 20T$ (*б*). Интенсивность излучения $P = 3 \cdot 10^{14}$ Вт/см², $\hbar\omega = 5$ эВ

Рис. 8. Зависимость вероятности ионизации от частоты излучения в прямоугольном импульсе длительностью 12.4 фс при фиксированном значении параметра $\varepsilon/\omega^{5/3} = 1.57$

(см. рис. 7*a*). С увеличением длительности воздействия до $\tau = 20T$ (см. рис. 7*b*) происходит существенное возрастание вероятности перехода $5s \rightarrow 5d$, в то время как вероятности нерезонансных переходов вида $5s \rightarrow np$ остаются на уровне 1–2%.

Проведенные расчеты показали, что для начального состояния 5*s* в условиях, когда резонансные двухфотонные Λ -переходы доминируют над нерезонансными однофотонными, наиболее существенными во всем исследуемом диапазоне интенсивностей ока-, зываются переходы $5s \rightarrow 4s, 6s, 5d$.

Роль состояний с ненулевым значением орбитального момента в динамике процесса ионизации ридберговского атома и связь заселенности этих состояний с явлением стабилизации и видом зависимости $W_i(P)$, однако, до конца не ясны. Так, например, остается непонятным, связано ли отсутствие «долины смерти», предсказанное в [4], с учетом различных состояний по орбитальному моменту [8] или с отказом от ряда приближений, таких как полюсное приближение и приближение вращающейся волны [9], использовавшихся в [4,7]. Все эти вопросы требуют дополнительного изучения.

Представляет интерес также исследовать частотную зависимость вероятности ионизации возбужденного атома водорода. Следует ожидать, что в условиях применимости метода, развитого в [9], вероятность ионизации за лазерный импульс фиксированной длительности будет оставаться неизменной в случае, если частота и интенсивность излучения выбираются так, что

$$V = \varepsilon / \omega^{5/3} = \text{const.}$$
(16)

Расчеты для различных значений частоты излучения в диапазоне $\hbar\omega = 1-5$ эВ (соответствующие интенсивности излучения менялись в диапазоне $1.41 \cdot 10^{12} - 3 \cdot 10^{14}$ BT/см²) были проведены для импульса прямоугольной формы длительностью 12.4 фс (что соответствует пятнадцати оптическим циклам при $\hbar\omega = 5$ эВ). При этом для $\hbar\omega = 1$ эВ длительность импульса составляла всего три оптических цикла. Результаты расчетов $W_i(\omega, \varepsilon/\omega^{5/3} = \text{const})$ приведены на рис. 8 и показывают, что критерий подобия по параметру (16) выполняется с достаточно высокой степенью точности. Этот факт также свидетельствует в пользу интерференционного механизма стабилизации в рассматриваемом нами диапазоне параметров.

6. ЗАКЛЮЧЕНИЕ

Проведенные расчеты динамики ионизации возбужденного водородоподобного атома показали наличие стабилизации в области интенсивностей $P \ge 2 \cdot 10^{14}$ Вт/см² при $\hbar\omega = 5$ эВ. На основе исследования зависимостей вероятности ионизации от значений квантовых чисел начального состояния атома, параметра $\varepsilon/\omega^{5/3}$, а также полученных данных по заселению различных состояний дискретного спектра к концу импульса доказано, что наблюдаемая стабилизация имеет интерференционную природу. Следует отметить, что в рассматриваемом случае под ридберговским атомом водорода можно понимать атом в возбужденном состоянии с относительно небольшим значением главного квантового числа n > 4.

Мы полагаем, что было бы крайне важно и интересно исследовать возможность наблюдения интерференционной стабилизации в трехмерной квантовой системе с короткодействующим потенциалом, когда число состояний в дискретном спектре оказывается конечным, а их вырождение по орбитальному моменту снимается.

Остается нерешенным также вопрос о связи интерференционной стабилизации атома со стабилизацией в режиме Крамерса–Хеннебергера. В [24] было показано, что стабилизация в режиме Крамерса–Хеннебергера может возникать и в ситуации, когда имеется единственное состояние в дискретном спектре. Это обстоятельство убедительно свидетельствует о том, что физические механизмы обоих явлений различны и не сводятся один к другому. Вместе с тем возникает вопрос о возможности одновременного существования обоих механизмов стабилизации в сверхсильных полях в условиях формирования двуямного потенциала, описывающего «одетый» атом, а также о конкуренции этих механизмов.

Авторы выражают благодарность М. В. Федорову за обсуждение постановки задачи и полученных результатов.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 96-02-19286).

Литература

- 1. М. В. Федоров, Электрон в сильном световом поле, Наука, Москва (1991).
- 2. N. B. Delone and V. P. Krainov, Multiphoton processes in atoms, Springer, Heidelberg (1993).
- 3. Н. Б. Делоне, В. П. Крайнов, УФН 165, 1295 (1995).
- 4. M. V. Fedorov and A. M. Movsesian, J. Phys. B 21, L155 (1988).
- 5. M. Gavrila and J. Kaminski, Phys. Rev. Lett. 52, 613 (1984).
- 6. С. П. Гореславский, Н. Б. Делоне, В. П. Крайнов, ЖЭТФ 82, 1789 (1982).
- 7. M. V. Fedorov, J. Phys. B 27, 4145 (1994).
- 8. M. V. Fedorov, M.-M. Tehranchi, and S. M. Fedorov, J. Phys. B 29, 2907 (1996).
- 9. O. V. Tikhonova and M. V. Fedorov, Laser Phys. 7, 574 (1997).
- 10. Q. Su, J. Eberly, and J. Javanainen, Phys. Rev. Lett. 64, 861 (1990).
- 11. R. Grobe and M. V. Fedorov, Laser Phys. 3, 265 (1993).
- 12. Q. Su, A. Sanpera, and L. Roso-Franco, Int. J. Modern. Phys. 8, 1655 (1994).
- 13. A. M. Popov, O. V. Tikhonova, and E. A. Volkova, Laser Phys. 5, 1184 (1995).
- 14. Е. А. Волкова, А. М. Попов, О. В. Тихонова, ЖЭТФ 109, 1586 (1996).
- 15. A. M. Popov, O. V. Tikhonova, and E. A. Volkova, Laser Phys. 7, 329 (1997).
- 16. K. C. Kulander, K. J. Shafer, and J. L. Krause, Phys. Rev. Lett. 20, 2601 (1991).
- 17. M. Gajda, B. Piraux, and K. Rzazewski, Phys. Rev. A 50, 2528 (1994).
- 18. R. R. Jones and P. H. Bucksbaum, Phys. Rev. Lett. 67, 3215 (1991).
- 19. R. R. Jones, D. Schumacher, and P. Bucksbaum, Phys. Rev. A 47, R49 (1993).
- 20. J. Hoogenraad, R. Vrijen, and L. Noordam, Phys. Rev. A 50, 4133 (1994).
- 21. Е. А. Волкова, А. М. Попов, О. В. Тихонова, ЖЭТФ 108, 436 (1995).
- 22. K. C. Kulander, Phys. Rev. A 35, 445 (1987).
- 23. H. G. Muller and H. B. van Linden van den Heuvell, Laser Phys. 3, 694 (1993).
- 24. Е. А. Волкова, А. М. Попов, О. В. Тихонова, О. В. Смирнова, ЖЭТФ 111, 1194 (1997).