ДВУХЭЛЕКТРОННЫЕ ВОЗБУЖДЕНИЯ ГЕЛИЕПОДОБНЫХ ИОНОВ ПРИ НЕУПРУГОМ РАССЕЯНИИ ФОТОНОВ

М. Я. Амусья, А. И. Михайлов*, И. А. Михайлов

Петербургский институт ядерной физики им. Б. П. Константинова Российской академии наук 188350, Санкт-Петербург, Россия

Поступила в редакцию 28 апреля 1997 г.

В нерелятивистской области энергий $I \ll \omega \ll m$ (I — потенциал ионизации, ω — энергия фотона, m — масса электрона, $\hbar = c = 1$) рассмотрен процесс неупругого рассеяния фотонов на атомах гелия и гелиеподобных ионах с одновременным возбуждением двухэлектронного перехода $1s^2 \rightarrow 2s^2$. Электроны считаются движущимися в кулоновском поле ядра, а их взаимодействие учитывается в низшем порядке теории возмущений. Найдены дифференциальное и полное сечения процесса и автоионизационная ширина $2s^2$ -уровня. Последняя величина согласуется с более строгими расчетами других авторов.

1. ВВЕДЕНИЕ

Двухэлектронные переходы в атоме, индуцируемые в столкновениях с фотонами или заряженными частицами, интенсивно исследуются уже около 30 лет [1-8]. Важность таких исследований связана с возможностью эффективного получения информации о роли электронных корреляций в атоме. При столкновении с фотоном двухэлектронные переходы целиком определяются межэлектронным взаимодействием. К таким переходам относятся двойная ионизация, ионизация с возбуждением и двукратное возбуждение атома, которые могут наблюдаться как при рассеянии, так и при поглощении фотона. Двукратное возбуждение при фотопоглощении может происходить только на резонансных частотах падающего излучения, т.е. при малых энергиях фотона ($\omega \sim I$), которые мы здесь не рассматриваем. При энергиях фотона $\omega < \eta$ (η — средний импульс атомного электрона) доминируют процессы с фотопоглощением, а при энергии $\omega > \eta$ — с рассеянием фотона [6,7]. Простейшей двухэлектронной системой являются атом гелия и гелиеподобные ионы, повышенный интерес к которым в немалой степени обусловлен именно их простотой. Наиболее изученными процессами являются двойная фотоионизация — удаление двух электронов атома при поглощении одного фотона [1-4], [9-12] и двойной комптон-эффект — двукратная ионизация при рассеянии фотона на атомных электронах [13-19]. Ионизация с возбуждением при фотопоглощении рассматривалась в работах [4, 10, 20, 21], аналогичный двухэлектронный переход в комптоновском рассеянии исследован в [15, 21]. В последние годы значительно возрос интерес и к двукратному возбуждению атомов быстрыми заряженными частицами. Из многочисленных публикаций на эту тему укажем работы [5, 22–25].

В настоящей работе впервые рассматривается процесс двукратного возбуждения атома высокочастотными фотонами ($\omega \gg I$). Изучен двухэлектронный переход $1s^2 \rightarrow 2s^2$ в атоме гелия и в гелиеподобных ионах при неупругом рассеянии рентгеновских

^{*}E-mail: mikhailo@thd.pnpi.spb.ru

фотонов ($I \ll \omega \ll m$). Взаимодействие между электронами учтено в первом порядке теории возмущений. В качестве нулевого приближения для электронов используются кулоновские волновые функции и кулоновская функция Грина. Найдены угловое распределение рассеянных фотонов и полное сечение образования автоионизационного $2s^2(^1S)$ -состояния атома гелия. В рамках этой же модели рассчитана ширина $2s^2$ -уровня относительно оже-распада — автоионизационная ширина. Получено согласие с имеющимися в литературе данными для этой величины [26, 27], что говорит о достаточной разумности предлагаемого подхода. Оказалось, что в принятом приближении отсутствует рассеяние фотонов «вперед». Полное сечение изучаемого процесса имеет острый максимум при $\omega \sim \eta$. Значение сечения в максимуме составляет $\sigma_{max} \approx 4 \cdot 10^{-28} Z^{-2} \text{ см}^2$ (Z -заряд ядра). Интересно сравнить сечения двукратного и однократного возбуждений атома гелия при рассеянии фотонов одинаковой энергии. Формула для сечения одноэлектронного перехода $1s \rightarrow 2s$ получена в [28]. Расчет по этой формуле для $\omega = \eta$ дает¹⁾ $\sigma(1s^2 \rightarrow 1s2s) \approx 2 \cdot 10^{-26}$ см², что в 200 раз больше сечения соответствующего двухэлектронного перехода для Z = 2. Это означает, что межэлектронное взаимодействие в гелии относительно слабо.

Следует иметь в виду, что конечными продуктами распада автоионизационного $2s^2$ -состояния являются однозарядный ион и электрон. Поэтому исследуемый процесс дает вклад (хотя и незначительный) в сечение образования однократно заряженных ионов He⁺ фотонным ударом.

2. ВЫВОД ВЫРАЖЕНИЯ ДЛЯ АМПЛИТУДЫ ПРОЦЕССА

Будем рассматривать фотоны с энергией ω в области $I \ll \omega \ll m$. Как показано в [16], определяющую роль в одно- и двухэлектронной ионизации в комптоновском рассеянии играет A^2 -член оператора взаимодействия электрона с фотоном. То же справедливо в случае ионизации с возбуждением при рассеянии фотона на атоме [21]. Поступая как в [16], можно показать, что и для двукратного возбуждения при фотонном рассеянии (ДВФР) в указанной выше области энергий A^2 -член является главным. В качестве примера рассмотрим двухэлектронный переход из основного в ближайшее возбужденное состояние атома Не или гелиеподобного иона — $2s^2$ -состояние. Учитывая сказанное, изобразим амплитуду ДВФР следующими диаграммами Фейнмана:

¹⁾ Сечение одноэлектронного перехода не зависит от заряда ядра Z, если энергия фотона выражена в единицах η [28].

Здесь пунктирными линиями изображены фотоны с импульсами \mathbf{k}_1 и \mathbf{k}_2 , сплошными — электроны. Волнистая линия изображает межэлектронное взаимодействие. Вершине с двумя фотонными линиями соответствует оператор $m^{-1}\mathbf{A}_2^*\mathbf{A}_1$ (A^2 -член). В импульсном представлении, которым мы пользуемся в расчетах, этому оператору отвечает множитель ($4\pi\alpha/\sqrt{4\omega_1\omega_2}$) $\cdot (\mathbf{e}_2^*\mathbf{e}_1)/m$, где $\alpha \cong 1/137$ — постоянная тонкой структуры, \mathbf{e}_1 , ω_1 (\mathbf{e}_2 , ω_2) — вектор поляризации и энергия фотона. В дальнейшем этот множитель и множитель $4\pi\alpha$ от межэлектронного взаимодействия вынесем из амплитуды, включив их в формулы для сечения. Диаграмма (1*a*) учитывает межэлектронное взаимодействие в начальном состоянии, а диаграмма (1*b*) — в конечном. Поскольку фотоны взаимодействуют с каждым электроном отдельно, полная амплитуда должна содержать еще две диаграммы, у которых фотонная вершина находится на нижней электронной линии. Вклад от этих диаграмм равен вкладу от (1). Поэтому полная амплитуда равна удвоенной амплитуде (1).

Ранее [16, 21] мы показали, что в процессах с ионизацией диаграмма, учитывающая межэлектронное взаимодействие в конечном состоянии, дает малый вклад по сравнению с диаграммой, учитывающей это взаимодействие в начальном состоянии. Как мы увидим ниже, в процессах ДВФР обе диаграммы важны. Это обусловлено тем, что в конечном состоянии оба электрона имеют энергию порядка *I*.

Итак, амплитуду рассматриваемого процесса можно представить в виде

$$M = 2(M_a + M_b), \tag{2}$$

$$M_{a(b)} = \int \frac{d\mathbf{f}}{(2\pi)^3} \, \frac{1}{f^2} \, F(\mathbf{f}) F_{a(b)}(\mathbf{f}),\tag{3}$$

$$F(\mathbf{f}) = \int \frac{d\mathbf{f}'}{(2\pi)^3} \langle 2s | \mathbf{f}' \rangle \langle \mathbf{f}' + \mathbf{f} | 1s \rangle, \tag{4}$$

$$F_{a}(\mathbf{f}) = \int \frac{d\mathbf{f}_{2}d\mathbf{f}_{1}}{(2\pi)^{6}} \langle 2s|\mathbf{k} + \mathbf{f}_{2}\rangle\langle \mathbf{f}_{2}|G_{a}|\mathbf{f}_{1}\rangle \langle \mathbf{f}_{1} - \mathbf{f}|1s\rangle,$$
(5)

$$F_b(\mathbf{f}) = \int \frac{d\mathbf{f}_2 d\mathbf{f}_1}{(2\pi)^6} \langle 2s | \mathbf{f} + \mathbf{f}_2 \rangle \langle \mathbf{f}_2 | G_b | \mathbf{f}_1 \rangle \langle \mathbf{f}_1 - \mathbf{k} | 1s \rangle, \tag{6}$$

 $\mathbf{k} = \mathbf{k}_1 - \mathbf{k}_2$ — переданный атому импульс, $G_a \equiv G_c(E_a)$ — кулоновская функция Грина для электрона на диаграмме (1*a*).

Аналогично определяется G_b. В силу закона сохранения энергии

$$E_a = 2E_{1s} - E_{2s} = -\frac{7}{4}I, \qquad E_b = 2E_{2s} - E_{1s} = \frac{1}{2}I.$$
 (7)

Для вычисления F, F_{a(b)} нам понадобятся кулоновские волновые функции в импульсном представлении:

$$\langle \mathbf{f}' - \mathbf{f} | 1s \rangle = N_1 \left(-\frac{\partial}{\partial \eta_1} \right) \langle \mathbf{f}' | V_{i\eta_1} | \mathbf{f} \rangle, \quad N_1^2 = \frac{\eta_1^3}{\pi}, \quad \eta_1 = \eta = m\alpha Z,$$

$$\langle \mathbf{f}' - \mathbf{f} | 2s \rangle = N_2 \Gamma_{\eta_2} \left(-\frac{\partial}{\partial \eta_2} \right) \langle \mathbf{f}' | V_{i\eta_2} | \mathbf{f} \rangle, \quad N_2^2 = \frac{\eta_2^3}{\pi}, \quad \eta_2 = \frac{\eta}{2},$$

$$\Gamma_{\eta_2} = 1 + \frac{\eta}{2} \frac{\partial}{\partial \eta_2}, \quad \langle \mathbf{f}' | V_\lambda | \mathbf{f} \rangle = \frac{4\pi}{(\mathbf{f}' - \mathbf{f})^2 - \lambda^2}.$$

$$(8)$$

После подстановки (8) в (4)-(6) и выполнения ряда интегрирований приходим к следующему результату:

$$M_a = \hat{D}\left(-\frac{\partial}{\partial\eta_2}\right) \frac{1}{\lambda^2} \langle \mathbf{k} | V_{i\eta_2} G_a V_{i\mu} | 0 \rangle, \quad \mu = \eta_1 + \lambda, \tag{9}$$

$$M_b = \hat{D}\left(-\frac{\partial}{\partial\eta_1}\right) \frac{1}{\lambda^2} \langle \mathbf{k} | V_{i\eta_1} G_b V_{i\nu} | 0 \rangle, \quad \nu = \eta_2 + \lambda, \tag{10}$$

$$\hat{D} = N^2 \Gamma_{\eta_2} \Gamma_{\lambda} \frac{\partial}{\partial \lambda}, \quad \Gamma_{\lambda} = 1 + \frac{\eta}{2} \frac{\partial}{\partial \lambda}, \quad N = N_1 N_2, \quad \lambda = \frac{3}{2} \eta.$$
(11)

Входящие в (9), (10) матричные элементы можно представить в виде однократных интегралов [29]. Приведем такое интегральное представление для матричного элемента из (10):

$$J_b = \langle \mathbf{k} | V_{i\eta_1} G_b V_{i\nu} | 0 \rangle = 16\pi i pm \int_0^1 \frac{t^{-i\xi} dt}{\alpha - 2\beta t + \gamma t^2},$$
(12)

$$p = p_b = \sqrt{2mE_b} = \frac{\eta}{\sqrt{2}}, \quad \xi = \frac{\eta}{p} = \sqrt{2},$$
 (13)

$$\begin{aligned} \alpha &= \alpha_1 \alpha_2, \quad \alpha_1 = (\nu - ip)^2, \quad \alpha_2 = k^2 + (\eta_1 - ip)^2, \\ \gamma &= \gamma_1 \gamma_2, \quad \gamma_1 = (\nu + ip)^2, \quad \gamma_2 = k^2 + (\eta_1 + ip)^2, \\ \beta &= \beta_1 \beta_2, \quad \beta_1 = \nu^2 + p^2, \quad \beta_2 = k^2 + \eta_1^2 + p^2. \end{aligned}$$
(14)

Интегральное представление для $J_a = \langle \mathbf{k} | V_{i\eta_2} G_a V_{i\mu} | 0 \rangle$ получается из (12) заменой $\eta_1 \to \eta_2, \nu \to \mu, p_b \to p_a$. Так как $p_a = \sqrt{2mE_a} = i\sqrt{2m|E_a|}$, последняя замена эквивалентна замене $p \to iq$, $i\xi \to \zeta = \eta/q$, где вследствие (7) $q = \sqrt{2m|E_a|} = \eta \sqrt{7/2}$. Нетрудно видеть, что после произведенной замены интеграл J_a становится вещественным, как и вся амплитуда M_a . Амплитуда M_b — комплексная.

Интеграл (12) может быть выражен через гипергеометрические функции, однако дальнейшее взятие четырех производных в (9), (10) приводит к громоздким выражениям. Более рациональным нам показался другой путь. Сначала мы взяли все производные, а затем выполнили численное интегрирование. Но и при таком способе действия выражение, получающееся после взятия производных, все еще довольно громоздкое, чтобы быть воспроизведенным здесь. Отметим лишь некоторые характерные черты этого выражения. Амплитуда M является безразмерной величиной. Если энергию фотонов выразить в единицах η , то зависимость амплитуды от Z будет очень простой: $M \propto Z^{-1}$. Угловая зависимость входит в амплитуду через квадрат переданного импульса:

$$k^{2} = \omega_{1}^{2} + \omega_{2}^{2} - 2\omega_{1}\omega_{2}\cos\theta.$$
 (15)

Поскольку

$$\omega_1 - \omega_2 = 2(E_{2s} - E_{1s}) = \frac{3}{2}I = \frac{3}{4}m\alpha^2 Z^2,$$

можно положить $\omega_2 = \omega_1$ и считать

$$k^2 = 2\omega_1^2(1 - \cos\theta).$$

Зависимость амплитуд M_a и M_b от угла рассеяния θ , рассчитанная по формулам (9), (10) для энергии фотона $\omega_1 = \eta$, приведена в таблице.

θ	$-\alpha Z M_a \cdot 10^3$	$\alpha Z \operatorname{Re} M_b \cdot 10^3$	$-lpha Z \operatorname{Im} M_b \cdot 10^3$
0	2.3287	2.3287	0.0000
18	2.5964	2.4123	0.1395
36	3.1085	2.5346	0.5711
54	3.3998	2.4102	1.1697
72	3.3460	1.9713	1.6092
90	3.0806	1.4548	1.7408
108	2.7602	1.0476	1.6735
126	2.4781	0.7813	1.5449
144	2.2700	0.6242	1.4295
162	2.1459	0.5434	1.3553
180	2.1049	0.5185	1.3301

Отметим два нетривиальных факта, которые следуют из таблицы:

1. Амплитуды M_a и Re M_b имеют близкие значения и противоположные знаки, что приводит к частичной компенсации их вклада.

2. При $\theta = 0$ (рассеяние «вперед») $M_a = -M_b$, т.е. диаграммы (1*a*) и (1*b*) полностью компенсируют друг друга.

Результат численного расчета желательно подтвердить аналитически. Это сделано в следующем разделе.

3. АМПЛИТУДА РАССЕЯНИЯ «ВПЕРЕД»

Оказывается, можно получить простые выражения для амплитуд M_a и M_b при $\theta = 0$ и с их помощью проверить точность численного расчета. Вернемся к общим формулам (9), (10) и посмотрим, во что они переходят при k = 0 (при $\theta = 0$ квадрат переданного импульса $k^2 \sim (\alpha Z)^2 \eta^2$ и на основании формул (12), (14) можно положить k = 0). Используя выражения (8) для 1s- и 2s-волновых функций и разложение кулоновской функции Грина в ряд по собственным функциям уравнения Шредингера

$$G_c(E) = \sum_n \frac{|\psi_n\rangle\langle\psi_n|}{E - E_n},$$
(16)

получим

$$M_{a} = \hat{A}N_{2}\Gamma_{\eta_{2}}\left(-\frac{\partial}{\partial\eta_{2}}\right)\langle 0|V_{i\eta_{2}}G_{a}V_{i\mu}|0\rangle = \hat{A}\langle 2s|G_{a}V_{i\mu}|0\rangle =$$

$$= (E_{a} - E_{2s})^{-1} \hat{A}\langle 2s|V_{i\mu}|0\rangle, \quad \hat{A} = N_{1}^{2}N_{2}\Gamma_{\lambda}\frac{\partial}{\partial\lambda}\frac{1}{\lambda^{2}}, \qquad (17)$$

$$M_{b} = \hat{B}N_{1}\left(-\frac{\partial}{\partial\eta_{1}}\right)\langle 0|V_{i\eta_{1}}G_{b}V_{i\nu}|0\rangle = \hat{B}\langle 1s|G_{b}V_{i\nu}|0\rangle =$$

$$= (E_{b} - E_{1s})^{-1}\hat{B}\langle 1s|V_{i\nu}|0\rangle, \quad \hat{B} = N_{1}N_{2}^{2}\Gamma_{\eta_{2}}\Gamma_{\lambda}\frac{\partial}{\partial\lambda}\frac{1}{\lambda^{2}}. \qquad (18)$$

Энергии E_a, E_b определены в (7).

Введем обозначение $\omega = \omega_1 - \omega_2$. Тогда

$$E_{a} - E_{2s} = 2(E_{1s} - E_{2s}) = -\omega,$$

$$E_{b} - E_{1s} = 2(E_{2s} - E_{1s}) = \omega.$$
(19)

Действуя операторами \hat{A} и \hat{B} на стоящие за ними матричные элементы, приходим к равенству

$$\hat{A}\langle 2s|V_{i\mu}|0\rangle = \hat{B}\langle 1s|V_{i\nu}|0\rangle = \frac{\pi}{3\lambda^5} N^2.$$
(20)

После подстановки (19), (20) в (17), (18) с учетом соотношений

$$\omega = \frac{3}{4} \alpha Z \eta, \quad \lambda = \frac{3}{2} \eta, \quad N^2 = \frac{\eta^6}{8\pi^2}$$
 (21)

находим

$$M_b(0) = -M_a(0) = \frac{1}{\alpha Z} \frac{1}{8\pi} \left(\frac{2}{3}\right)^7 = \frac{1}{\alpha Z} \cdot 2.3287 \cdot 10^{-3},$$
(22)

что в точности равно табличному результату ($M_{a(b)}(0)$ означает $M_{a(b)}$ при $\theta = 0$).

Так как амплитуда процесса $M = 2(M_a + M_b)$, рассеяния фотонов «вперед» не происходит.

4. УГЛОВОЕ РАСПРЕДЕЛЕНИЕ ФОТОНОВ И ПОЛНОЕ СЕЧЕНИЕ

Дифференциальное сечение исследуемого процесса

$$d\sigma = (4\pi\alpha)^2 (4\pi r_e)^2 \frac{|\mathbf{e}_2^* \mathbf{e}_1|^2}{4\omega_1 \omega_2} |M|^2 \frac{d^3 k_2}{(2\pi)^3} 2\pi \delta (2E_{2s} + \omega_2 - \omega_1 - 2E_{1s}),$$
(23)

 $r_e = \alpha/m$ — классический радиус электрона, $r_e^2 = 7.95 \cdot 10^{-26}$ см². После суммирования и усреднения по фотонным поляризациям и интегрирования по ω_2 получим угловое распределение рассеянных фотонов:

$$\frac{d\sigma}{d\Omega} = r_e^2 \frac{32\pi^2}{Z^2} (1 + \cos^2\theta) |\alpha Z(M_a + M_b)|^2, \qquad (24)$$

 θ — угол между импульсами фотонов k₂ и k₁. Как видно из (22), умноженная на αZ амплитуда перестает зависеть от Z, если энергия фотонов выражена в единицах $\eta = m\alpha Z$. От распределения (24) по углу рассеяния фотона можно перейти к распределению по переданному импульсу, если заменить $\cos \theta$ на $(1 - k^2/2\omega_1^2)$ и $d\Omega$ на $\pi d(k^2/\omega_1^2)$.

Полное сечение запишем в виде

$$\sigma = r_e^2 \frac{(4\pi)^3}{Z^2} \int_{-1}^{+1} (1+x^2) |\alpha Z(M_a+M_b)|^2 dx, \qquad (25)$$

 $x = \cos \theta$.

Угловые распределения рассеянных фотонов, рассчитанные по (24), приведены на рис. 1 для различных значений ω_1/η . Эти значения указаны на кривых. Интересно, что при

Рис. 2. Полное сечение двукратного возбуждения $2s^2$ -состояния гелиеподобного иона как функция энергии налетающего фотона

 $\omega_1 < \eta$ угловые распределения имеют широкий максимум при $\theta = 180^\circ$. При значениях ω_1 , немногим больших η , максимум переходит в область углов меньших 90°. При дальнейшем увеличении энергии максимум распределения смещается к малым углам, становясь все более узким.

Зависимость полного сечения от энергии падающего фотона показана на рис. 2. При энергии $\omega_1 \simeq 0.9\eta$ сечение имеет пик со значением $\sigma \approx 4 \cdot 10^{-28} Z^{-2}$ см². Приведем значения сечения еще в двух краевых точках:

$$ω_1 = 0.1 \eta$$
: $σ = 4.55 \cdot 10^{-31} Z^{-2} \text{ cm}^2$,
 $ω_1 = 10 \eta$: $σ = 4.26 \cdot 10^{-29} Z^{-2} \text{ cm}^2$

(такие значения ω_1 попадают в рассматриваемый интервал $I \ll \omega_1 \ll m$ только в случае малых Z). Падение сечения с уменьшением $\omega_1 < \eta$ объясняется тем, что k^2 становится малым при всех углах, вследствие чего происходит существенная компенсация вкладов от диаграмм (1*a*) и (1*b*). С ростом $\omega_1 > \eta$ сечение также уменьшается. Это есть следствие концентрации процесса вблизи $k \sim \eta$ или $\theta \sim \eta/\omega_1$, см. формулы (12)–(15).

На качественном уровне такое поведение сечений (дифференциального и полного) можно понять, если обратиться к комптоновскому рассеянию на свободном электроне, где потерянная фотоном энергия Δ определяется углом рассеяния θ [30]:

$$\Delta = \frac{\omega_1^2}{m} (1 - \cos \theta).$$

Жесткая связь между этими кинематическими величинами обусловлена законами сохранения энергии и импульса. При рассеянии на связанном электроне корреляция между фотонными и электронными переменными определяется только законом сохранения энергии, так как в процессе участвует третье тело — ядро, которое в силу своей массивности может принять любой импульс. В результате возможен процесс с передачей атому фиксированной энергии и рассеянием фотона на любой угол. Однако наибольший вклад в сечение даст та область углов, которая ближе всего к свободной кинематике (кинематика рассеяния на свободном электроне). При $\omega_1 \ll \eta$ (мягкие фотоны) даже максимальная энергия, переданная свободному электрону ($\Delta_{max} = 2\omega_1^2/m$), меньше энергии $\omega = 3I/2$, передаваемой атому в изучаемом процессе. Так как при рассеянии на углы $\theta \sim 180^\circ$ отклонения от свободной кинематики наименьшие, в рассеянии мягких фотонов на атоме доминируют большие углы. Само же сечение мало, поскольку процесс протекает в области, кинематически недоступной для рассеяния на свободном электроне. При $\omega_1 \gg \eta$ (жесткие фотоны) значения $\Delta \sim \omega \sim I$ возможны только при малых углах рассеяния $\theta \sim \eta/\omega_1$. Такие же углы превалируют в неупругом рассеянии жестких фотонов на атомах. С ростом энергии фотона область малых углов и ее вклад в полное сечение сокращаются.

Фотоны с энергией $\omega_1 \sim \eta$ наиболее интенсивно рассеиваются на атоме. В этом случае энергия, переданная атому, близка к энергии $\Delta \sim (\eta^2/m)(1-\cos\theta)$, передаваемой свободному электрону в широкой области углов рассеяния.

К сожалению, сравнить наши расчеты сегодня не с чем. Авторам не известно ни одной работы по двукратному возбуждению в фотонном рассеянии. Поэтому для выяснения степени точности нашего подхода мы вычислили скорость оже-распада $2s^2$ -состояния атома Не с теми же допущениями, какие делались при расчете сечения возбуждения этого состояния (т. е. использовали кулоновские волновые функции для электронов и первый порядок теории возмущений по межэлектронному взаимодействию) и сравнили полученный результат с расчетами других авторов.

5. РАСЧЕТ АВТОИОНИЗАЦИОННОЙ ШИРИНЫ 2s²-уровня гелия

Автоионизационная ширина Γ_A и скорость w_A оже-распада в системе единиц $\hbar = c = 1$ совпадают:

$$\Gamma_A = w_A. \tag{26}$$

Амплитуду M_A оже-распада можно изобразить диаграммой Фейнмана (27)

и аналитически представить формулой

$$M_A = \sqrt{2} \int \frac{d\mathbf{f} d\mathbf{f}_1 d\mathbf{f}_2}{(2\pi)^9} \langle \psi_p | \mathbf{f}_1 \rangle \langle \mathbf{f}_1 + \mathbf{f} | 2s \rangle \frac{1}{f^2} \langle 1s | \mathbf{f}_2 \rangle \langle \mathbf{f}_2 - \mathbf{f} | 2s \rangle.$$
(28)

Множитель $\sqrt{2}$ появляется вследствие свойств симметрии волновой функции нашей системы. Покажем, как он возникает. Мы используем нерелятивистское приближение, где межэлектронное взаимодействие не зависит от спинов, а полная волновая функция есть произведение пространственной и спиновой функций. Из-за ортогональности спиновая часть волновой функции при атомном переходе не меняется, оставаясь синглетной, т.е. антисимметричной, и выпадает из расчета. Пространственная часть волновой функции в начальном и конечном состояниях симметрична:

$$\Psi_i(1,2) = \psi_{2s}(1)\psi_{2s}(2), \qquad \Psi_f(1,2) = \frac{1}{\sqrt{2}} \left\{ \psi_p(1)\psi_{1s}(2) + \psi_p(2)\psi_{1s}(1) \right\}.$$
(29)

Амплитуда оже-перехода дается выражением

$$M_A = \langle \Psi_f(1,2) | V(1,2) | \Psi_i(1,2) \rangle.$$
(30)

Поскольку оператор межэлектронного взаимодействия V(1,2) тоже симметричен относительно перестановки электронов 1 \leftrightarrow 2, оба члена $\Psi_f(1,2)$ дают одинаковый вклад, и мы получаем

$$M_{A} = \sqrt{2} \int \psi_{p}^{*}(\mathbf{r}_{1})\psi_{1s}(\mathbf{r}_{2})V(\mathbf{r}_{1},\mathbf{r}_{2})\psi_{2s}(\mathbf{r}_{1})\psi_{2s}(\mathbf{r}_{2})d\mathbf{r}_{1}d\mathbf{r}_{2}.$$
 (31)

Осуществляя в (31) фурье-преобразования, приходим к (28), где $\langle \mathbf{f} | 2s \rangle = \psi_{2s}(\mathbf{f})$ и т. д. После подстановки волновых функций (8) в (28) все интегралы вычисляются и амплитуда приобретает простой вид:

$$M_A = \sqrt{2} \hat{B} \langle \psi_p | V_{i\nu} - V_{i\eta_2} | 0 \rangle.$$
 (32)

Оператор \hat{B} определен в (18), $\nu = \eta_2 + \lambda$, $\eta_2 = \eta/2$, $\lambda = 3\eta/2$. Матричные элементы, входящие в (32), вычислены в [21] с использованием для ψ_p как замкнутого выражения [31], так и разложения по парциальным волнам. В последнем случае отличный от нуля вклад дает только *s*-волна ($\ell = 0$). Таким образом, вылетающий электрон находится в *s*-состоянии с энергией

$$E = 2E_{2s} - E_{1s} = \frac{1}{2}I$$

и импульсом

$$p = \sqrt{2mE} = \eta/\sqrt{2}.$$

Для такого электрона

$$\langle \psi_p | V_{i\mu} | 0 \rangle = 4\pi N_p \varphi(\mu), \quad N_p^2 = 2\pi \xi, \tag{33}$$

$$\varphi(\mu) = \frac{(\mu + ip)^{i\xi - 1}}{(\mu - ip)^{i\xi + 1}}, \quad \xi = \frac{\eta}{p} = \sqrt{2},$$
(34)

$$M_A = \sqrt{2} \, 4\pi N_p \hat{B} \left[\varphi(\nu) - \varphi(\eta_2)\right]. \tag{35}$$

После вычисления всех производных, включенных в оператор \hat{B} , остаются только члены, зависящие от $\varphi(\nu)$. Используя равенство

$$\left(\frac{\nu+ip}{\nu-ip}\right)^{i\xi} = \exp\left(-2\xi \arctan \frac{p}{\nu}\right) = \exp\left(-2\sqrt{2} \arctan \frac{1}{2\sqrt{2}}\right) \equiv (\exp), \quad (36)$$

представим окончательное выражение для M_A в виде

6*

$$M_A = 4\pi\sqrt{2} N \left(\frac{2}{3}\right)^9 \frac{(\exp)}{\eta^5}, \quad N = N_p N_1 N_2^2, \tag{37}$$

$$M_A^2 = \frac{\sqrt{2}}{\eta} \, (\exp)^2 \left(\frac{4}{9}\right)^9.$$
(38)

Дифференциальная и полная скорости оже-распада принимают вид

$$dw_A = (4\pi\alpha)^2 M_A^2 \frac{d^3p}{(2\pi)^3} \ 2\pi\delta(E + E_{1s} - 2E_{2s}) = 4m\alpha^2 (\exp)^2 \left(\frac{4}{9}\right)^9 d\Omega_p \tag{39}$$

 $(d\Omega_p$ — телесный угол, в который попадает конечный электрон),

$$w_A = 16\pi m \alpha^2 (\exp)^2 \left(\frac{4}{9}\right)^9$$
 (40)

Из (39) видно, что ионизационные электроны распределены изотропно, как и должно быть для *s*-волны. Если мы хотим получить скорость распада в обычных единицах (c^{-1}), надо подставить в (40) значение $m\alpha^2 = 4.134 \cdot 10^{16} c^{-1}$. Тогда

$$w_A = 2.06 \cdot 10^{14} \,\mathrm{c}^{-1}. \tag{41}$$

Оже-ширина рассматриваемого уровня в эВ ($m\alpha^2 = 27.212$ эВ) есть

$$\Gamma_A = 0.135 \ \mathfrak{sB} \ . \tag{42}$$

Автоионизационная ширина $2s^2$ -уровня была вычислена ранее в работе [26], где для нее получено значение 0.140 эВ. Другое очень близкое значение приведено в [27] и [5]: $\Gamma_A = 0.138$ эВ. Однако столь хорошее согласие наблюдается только для Не. Результат (42) не зависит от Z, тогда как ширины, полученные в диагонализационном приближении [26], растут вместе с Z, достигая своего асимптотического значения 0.226 эВ фактически при Z = 6. Таким образом, расхождение (42) с более аккуратными расчетами не превосходит 50% для всех Z. По-видимому, такую же точность можно гарантировать и расчету сечения возбуждения $2s^2$ -состояний гелиеподобных ионов, выполненному в настоящей работе.

В заключение авторы хотели бы выразить благодарность В. Г. Горшкову за обсуждения.

Литература

- 1. T. A. Carlson, Phys. Rev. 156, 142 (1967).
- 2. F. W. Byron, Jr. and C. J. Joachain, Phys. Rev. 164, 1 (1967).
- 3. T. Aberg, Phys. Rev. A 2, 2 (1970); 2, 1726 (1970).
- 4. M. Ya. Amusia, E. G. Drukarev, V. G. Gorshkov, and M. P. Kazachkov, J. Phys. B 8, 1248 (1975).
- 5. J. P. Giese, M. Schulz, J. K. Swenson et al., Phys. Rev. A 42, 1231 (1990).
- 6. J. A. R. Samson, C. H. Greene, and R. J. Bartlett, Phys. Rev. Lett. 71, 201 (1993).
- 7. L. R. Andersson and J. Burgdörfer, Phys. Rev. Lett. 71, 50 (1993).

- 8. J. H. McGuire, N. Berah, R. J. Bartlett et al., J. Phys. B 28, 913 (1995).
- 9. T. Ishihara, K. Hino, and J. H. McGuire, Phys. Rev. A 44, R698 (1991).
- 10. A. Dalgarno and H. R. Sadeghpour, Phys. Rev. A 46, R3591 (1992).
- 11. J. C. Levin, D. W. Lindle, N. Keller et al., Phys. Rev. Lett. 67, 968 (1991).
- 12. J. C. Levin, I. A. Sellin, B. M. Johnson et al., Phys. Rev. A 47, R16 (1993).
- 13. L. R. Andersson and J. Burgdörfer, Phys. Rev. A 50, 2810 (1994).
- 14. K. Hino, P. M. Bergstrom, Jr., and J. H. Macek, Phys. Rev. Lett. 72, 1620 (1994); Phys. Rev. A 51, 3044 (1995).
- 15. T. Surić, K. Pisk, B. A. Logan, and R. H. Pratt, Phys. Rev. Lett. 73, 790 (1994).
- 16. M. Ya. Amusia and A. I. Mikhailov, Phys. Lett. A 199, 209 (1995); J. Phys. B 28, 1723 (1995).
- 17. J. C. Levin, G. B. Armen, and I. A. Sellin, Phys. Rev. Lett. 76, 1220 (1996).
- 18. L. Spielberger, O. Jagutzki, B. Krässig et al., Phys. Rev. Lett. 76, 4685 (1996).
- 19. T. Surić, K. Pisk, and R. H. Pratt, Phys. Lett. A 211, 289 (1996).
- 20. R. L. Brown, Phys. Rev. A 1, 341 (1970).
- 21. М. Я. Амусья, А. И. Михайлов, ЖЭТФ 111, 862 (1997).
- 22. J. O. P. Pedersen and P. Hvelplund, Phys. Rev. Lett. 62, 2373 (1989).
- 23. J. C. Straton, J. H. McGuire, and Z. Chen, Phys. Rev. A 46, 5514 (1992).
- 24. В. А. Сидорович, ЖЭТФ 103, 806 (1993).
- 25. V. A. Sidorovich, Physica Scripta 50, 119 (1994).
- 26. У. И. Сафронова, В. С. Сенашенко, Опт. и спектр. 45, 9 (1978).
- 27. W. Shearer-Izumi, At. Data Nucl. Data Tables 20, 531 (1977).
- 28. В. Г. Горшков, А. И. Михайлов, С. Г. Шерман, ЖЭТФ 66, 2020 (1974).
- 29. В. Г. Горшков, В. С. Поликанов, Письма в ЖЭТФ 9, 484 (1969).
- 30. А. И. Ахиезер, В. Б. Берестецкий, Квантовая электродинамика, Наука, Москва (1969).
- 31. V. G. Gorshkov, A. I. Mikhailov, and V. S. Polikanov, Nucl. Phys. 55, 273 (1964).