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We have calculated electric currents of various types of excitations in the Hubbard model.
Both spin and charge excitations carry the electric current. The the electric charge is a continuous
function of the band filling and the single-site repulsion potential.

1. INTRODUCTION

Electron-electron interactions have a great effect on properties of one-dimensional systems.
This results in a critical behavior at T' = 0 with algebraic decay of correlation functions.
The particle momentum distribution differs from a Fermi-liquid step function. As distinct
from a Fermi liquid, such systems are called Luttinger liquids. In the framework of the
one-dimensional (1d) Hubbard model with attractive interaction we investigate the electrical
conductivity properties of the excitations. Interest in this model arises because to that the
Hubbard model with attraction is the simplest one with dominant superconductivity fluctuations.

In contrast to Fermi systems, where the electric charge of the quasiparticles can have
integer values e or 2e, we will show that the value of the electron charge of one-particle states
can depend continuously on the system parameters. The charge of the one-particle excitations
is defined by ¢ = j/v, where j = —de/OA is the electric current, defined as the derivative of
the energy with respect to the magnetic vector-potential, and v = 9¢/dp is the velocity of the
excitation. We will find that the spin and particle-hole excitations near the Fermi surface carry
the electric current. This effect is absent for models with an exactly linear electron spectrum,
so that in the weak coupling regime the current is proportional to the Fermi-velocity dispersion.

Some time ago unusual electrical properties of excitations were found in 1d electron-
phonon Peierls systems. As a result of the electron-phonon interactions a transition from a
metallic to an insulating state with creation a charge density wave takes place. It was found
that excitations in the Peierls system (solitons, polarons) [1,2] may have fractional charges
depending continuously on the band filling and the electron-phonon coupling constant. But it is
obvious that after integrating the Peierls model over the phonon degrees of freedom we will have
an electron model with some effective electron-electron interaction (attraction). For example,
we get in the quantum limit (the ion mass tends to zero) an effective «g-ology» Hamiltonian
with a backscattering term due to the electron-phonon interaction. Therefore excitations in the
two systems may have common properties. We have found indeed that both model excitations
carry noninteger electric charges.

The plan of the paper is as follows. In Section 2 we quote known results that are needed.
In Section 3 we calculate the currents and charges of excitations for the model with U < 0
and generalize some results to the U > 0 case.
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2. PROPERTIES OF THE MODEL

2.1 Attractive interaction

The Hamiltonian for the Hubbard ring in a magnetic flux @ is

= — Z{C;’,r,v%Hﬁ exp(iv) + H.C.} +4U E 51 Mj,| —
3,0 J
h
— 52 i =) = ne, M
] 1,0
where N, is the number of sites, cL,U,cn‘, are the creation and annihilation operators for

electrons with spins o =1, |, U < 0 is the onsite attraction amplitude of particles with opposite
spins, h is the spin magnetic field, u is the chemical potential,

v =21®/N,®), ®=AN,, @ =hc/e |

is the magnetic unit flux, and A is the vector potential of the orbital magnetic field.
The electric current by definition is

)

94 2

A=0

The ground state and excitations are described by sets of quasimomenta k; and rapidities
Ao, Which are solutions of the Bethe ansatz (BA) equations [3]

M
Nakj—Nau—Z()(Zsinkj—2)\g)=27rlj, j=1,...,N, 3)
B=1
X M
NoFPy(Ay) — 2N,v — 20(2)\0‘ — 2sink;) — 2«9(/\0 —dg)=2ndy, a=1,...,M, 4
j=1 g=1

where
0(z) = 2arctg(z/2u), v = |U]|,

N = 2M+ X is the number of particles, M is the number of pairs, X is the number of unpaired
particles, and Py(\,) = 2Rearcsin(\, — tu) is the bare momentum of a pair. We treat states
with a number of singlet bound pairs and a number of electrons with uncompensated up-spins.
In contrast to the case U > 0, where all wavenumbers are real in the ground state, all particles
are paired and the wavenumbers are complex. If the external magnetic field exceeds some
critical value h. unpaired electrons are formed. Equations (3) with real numbers k; describe
electrons with uncompensated up-spins. Singlet bound pairs are characterized by a pair of
complex wavenumbers ktf and a rapidity A, connected through the relation

sinkf =)\, £iu, a=1,...,M.

Eguations (4) are obtained from the equations of Lieb and Wu [4] by eliminating the
complex wavenumbers k2.
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In the ground state the numbers I;, J, are distributed symmetrically about zero. They

satisfy

L=z(1-N+2M)+j—-1, J,==z(1-M)+a-1.

N~

In the case of moderate fields A < h. all spins are paired (X = 0).
The system energy is

W =" [eolk;) — ] + > [E(Aa) — 2u],
j a

where

Ey(Aa) = —4Rey/1 — (g — 1u)?, eq(k;) = —2cosk; — %

are the bare energies of pairs and unpaired electrons.
The momentum is

P=3 (ki =0+ [PQa) — 201
7 [0

The density functions of the k£ and A distributions are usually introduced as

_ 1 dp(k) _ 1 dp(»)
T T
where
| XM

a

pk) =k — A 2 8(2sink — 2Xg),

X M
! , !
PO = Poida) = 5+ ;wzxa —2sink;) - 3= ﬁ;wa - Xg).

In the thermodynamic limit Egs. (3), (4) can be written in the matrix form [3]
p(k,A) = po(k, X) + K @ p(k', \'),
where

T
ok, \) = (p(k), o), po(k,A)=(i ldPO(”) :

2’2 dA
A 0 —2coskK (2(sink — X))
Kk, MK, X0 ( “2K QA — sink") —K( - X) ’

1) 1 4w
21 dx 27 4u? + g2’
206

®)

(©)



XKITD, 1998, 113, euin. 1 Electric currents of excitations. . .

The product ® indicates the usual matrix product and integration over the common variables,
from —Q to @ over k and from —A to A over ), respectively; the superscript «I'» means matrix
transposition.

Equation (5) acquires the form

W=¢ @p=p; ®c,
where
e=e+KT Qe, )

e = (e(k),e(\)T are the excitation energies of unpaired electrons and of the pairs, € =
= (eo(k) — s Eo(V) = 2p)7.
It is known that for magnetic fields less than the critical value h < h. the spectrum of
paired excitations is gapless (e(+A) = 0), while unpaired electron states have a gap e(k = 0) # 0.
The matrix of dressed charges is defined by [3, 5]

- (4 g
= () 6 ) ®
where
(10 T
een=(g7) Ko )

For the case h < h. only the function £&(\) = Z()) is relevant, and it satisfies the
equation [6]

+A
Z+ /K(/\ - M)Z\)dXN =1, (10)
—A
1 07z 0Z(X)
~ < < = = >0
5<ZM <L, G2<0, 250

The solution of this equation is known in some limits

R y=1-— o= 3
p— 1 227 =1 2In[C/(1 - p)]’ ¢ 7reIO(2u>’

p=1 2Z*Aa) =1,

P 2, 1 p |/ 1
-0, =—-0 2 =—[1+Z4/1+ = |.
P T u » 225N 2(1 2 ! u?

For magnetic fields h > h,; the gap in the spectrum of unpaired excitations closes
(e(0) = 0) and for h = h., the system undergoes a transition into the saturated ferromagnetic
ground state. In the region h.; > h > h.; the dressed charge matrix has been found in [7] as

1+/~sz0 0
&Q,N = ,
L I A
0 27T)\0 \/5
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where

n2 h—h, T tdtay(t 2
_mn ko = ,7:1_2/—1() 0 )\0=_u1n ¢

1 + exput) ’ T l—p
0

2.2. Repulsive interaction

Similar equations are valid for the model with U > 0. The matrix K differs from (6)
only in the signs of the nondiagonal terms. A density function p(k) describes the distribution
of particle quasimomenta and the function o()\) describes the rapidities of spin-down particles.
The energy and the momentum are

=-> 2coskj, p=) (kj—v).

The dressed charge matrix is [5]

_ (&) &(k)/2
where £(k) satisfies the equation
Q
Ek)y=1+ / dk' cos k’IE'(sink —sink’)é(k"), (12)
-Q
-~ 1 7 e v
K= 3;/ hww) cos(wA)dA.

The solution 1 < £(Q) < /2 is known in some limiting cases {5]

sinQ/u < 1, Q) =1+sinQ1n2/(ru);
p=1,Q=76Q)=1,0<u<oco;

p— 1L EQ)=1+In2(1 — p)f(uw)/u, flu)=1— /dacJo(x)cxp(—ux)/ chzu;
0

P Liu, &Q)=1+pIn2/u;
> 1, §Q) = 1 +sinmpIn2/(ru);
u < sinQ, £Q) = V2 [1 —u/QrsinQ)].

3. ELECTRIC CURRENTS

3.1. Attractive interaction
3.1.1. Gapless paired excitations (h < h;)

In the ground state all particles are bound into singlet pairs. The lowest excitations are
gapless excitations of bound pairs. For a sufficiently strong magnetic field (h > h.) unpaired
electron excitations are gapless too.
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The particle-hole excitations of pairs are described by a set of numbers J, = J+0(a~ay)
(for hole type excitations), where {J0} and {)\} are the ground-state sets. Here ©(z) is the
usual step-function.

From (3) we find an equation for the function G(A\,) = Nyo(Ay)6A,:

a(A) + /K(/\ = M)e(\)dN =0\ — \) + ?, (13)
0

where 6\ = A, — A is the shift of a number ), due to the excitation and () is the ground-
state solution.
Taking the derivative with respect to v we have 35 /v = N,&(A\)/n. The energy is

W =Y E0)+) B )6,\ + % ZEQ(A?,)(&AV =

/ ELG )N + / B 5y (14)
Then the current j = —9W /9 A equals
E(')'U(/\)ﬁz(r\)
“a | e ()

The momentum is p = [ Pj(A\)a(A)d)\, where & is the solution of Eq. (13) for ® = 0.

For excitations with small momenta p o« (A — \y) we can easily see that the current
J o pE{(A) is proportional to the dispersion of the Fermi velocity. In the limit v — 0 we find
that

=0(A—X)/2, o(N=1/2, Z=1/2, j=(x/P)Es(pa)p.

As we showed in the case of repulsion [8-10], the current would be absent in the linear spectrum
approximation.

3.1.2. States with added particles

We calculate now the currents of states obtained by adding an electron pair or unpaired
electron. The simplest way to calculate the current is to include the magnetic vector-potential
in the 1/N, corrections of the energy, found in [11]:

_2n -1 2 T2 - '
6W——7V——Zvn{(Z AN),, +(Z D)n+I;+In}, (16)

% n=1,2

where v; = 9¢(Q)/Ip(Q) and v, = Oe(A)/Ip(A) are the Fermi velocities of unpaired and
pair excitations, respectively, and Z,; = fj (Q, A). Note that for h < h. unpaired excitations
have a gap, so for this case v; = 0. In the case h > h. both singlet and pair excitations are
gapless, that is, v;,v, # 0. Here ANT = (AN},AN,), AN}, AN, are the numbers of added
unpaired electrons and bound pairs, respectively; DT = (D, D,), 2D1, 2D, are differences in
the numbers of positive and negative I;, J, numbers, respectively; I~ =>"1T ?':, =3 JE
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are sums of quantum numbers of particle-hole states near to the right (+) and left (=) Fermi
points of the £ and A seas. To include the vector-potential we substitute

Na a
V, D2—>D2+NV.
27 T

By varying (16) over the vector-potential A we obtain for the electric current

D1—>D1+

§=2 valZinD\ + ZonD))(Zin + 2Z21,). (17

n=1,2
For pair excitations we have 2D, =1, D, =0,
J =2vZ35(A). (18)
Therefore the charge is equal to
q=2Z5(A). (19)

As follows from (10) the charge may acquire any value in the interval 1/2 < ¢ < 2. In the
case p — 1 we have from (10)
1
= 1 -
2In [C/(1 - p)]
p=1q¢=10<u<o0.
In the limit p — 0, p/u — 0
p 12

1+ 541+ -
2 U

IS
I
N[ =

In the limit u € 1, A > v K(z) = 6(x), Z — 1/\/5 and ¢ — 1. In the limit © — oo,
A < u we have Z ~ 1, ¢ = 2. In strong magnetic fields h > h, we obtain

” 2
=1+ .
q ( 271')\0)

For unpaired added particles the current and charge are found substituting 2D, =1, D, =0
to Eq. (16):

j=wvg, ¢=2Zu@Q)[Zu(@)+22:(Q)]=1- 4/K Q@sink — A)) E2(M)dA.

In the case u — 0 we have ¢ — 0, that is, the excitations do not carry an electric current. By
using the Wiener-Hopf technique we find in the limit A/u > 1, v < 1 that

/8 ( A7r>
g~/ —exp|——].
e 2u

In the opposite limit 4 — 0o, A < u we obtain ¢ = 1 — 4A/(7u).
Note that in this linear-spectrum approximation we find that particle-hole excitations do
not carry current (j = 0}, in accordance with previous results.
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3.2. Repulsive interaction
3.2.1. Hole and particle states

A similar expressions can be derived for the case U > 0. For spin singlet-triplet excitations
or particle-hole states we derived [8]

Q
pk) = ]\2’“” + f(k)+ / (k') cos k'K (sink — sin k')dk’, (20)
T
-Q

where f(k) = > (1/7)tg~ {exp[2n(sink — \;)/u]} for spin excitations and f(k) = ©(k — k;)
for hole states, p(k;) = Nap(k;)6k;, p(k) is a known function for the ground state, and 6k;
is the shift of a number k; due to the excitation. For the energy, momentum and current we
find

1 1 6// ~2
W = Z 60(/6]') = Ze()(k_(;) + Zf(l)(kj)ékj + 5 Zeé’(kj)(ﬁkj)z — 5 ———N;pp(k)dk,

where € = —2cosk;, and 6k = p(k)/N,p(k), and
p= [ b

PRRLIN70)
Dy J_g plk)
where £(k) is the solution of Eq. (12). In accordance with the results [8-10], we have j
pey (pr). In the limit w — 0 we again find j = 2pcos(wp/2). Equation (21) supplements the
results of [8,9].

21

3.2.2. States with added particles

A similar treatment can be carried out for the repulsive model v > 0. In this case the
subscripts 1,2 in Eq. (16) correspond to charge and spin degrees of freedom, respectively, so
v, and v, are the charge and spin excitation velocities. In contrast to the u < 0 case both types
of excitations are gapless. To include the orbital magnetic field we substitute

D1 - D1 + Nal/ .
27
By varying with respect to the vector potential we obtain for the electric current
7 =201(Z1uDi + ZuDy)Z1 = vi(2D; + D)EX(Q). (22)

Here 2D; (2D,) denotes the difference in the numbers of positive and negative I; (J,),
respectively, Changing the number of spin-up and spin-down electrons by ANy and AN, i.e.,
changing the total number of particles by AN, = AN + AN, and the number of spin-down
particles by AN, = AN, is equivalent to adding (removing) AN extra I; and AN, extra J,
values. The values I;, J, may be integer or half-integer, depending on the parity of the numbers
N1, N,. Therefore the numbers D, D, depend on AN;, AN, nontrivially, so that

AN + AN, AN,

D1 = 3 (mod 1), D2 = T(mod 1)
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Adding a spin-up particle to the system AN, = 1, AN; = 0 we obtain D, = +1/2, D, = £1/2.
Similarly, adding a spin-down particle corresponds to AN; = AN, =1, D; =0, D, = £1/2.
In both cases we find for the electric current

i=qu, q=8(Q)/2 (23)

Substituting solutions of Eq. (12) into (23) we find 1/2 < ¢ <1 and
sinQ/u <k 1, ¢g=1/2+sinQ In2/(ru);
p=1,Q=74¢g=1/2,0<u< o0;

p—1,¢=1/2+In2(1 - p)/uf(u);

p<Llu;g=1/2+pIn2/uy;

u> 1, qg=1/2+sinmpln2/(wu);

uLsin@, ¢g=1—u/(4rsinQ).

These results complement our earlier results [8-10].

4. CONCLUSIONS .

We have considered the electron currents of excitations in the one-dimensional Hubbard
model. We found that for particle-hole excitations with a small momentum the current is
proportional to the momentum and to the dispersion of the Fermi velocity. Therefore this
current is absent in the linear spectrum approximation. We have calculated the currents and
charges of states with added particles (unpaired or paired bound electrons in the case u < 0 ).
We found that the charge is noninteger and continuously depends on the band filling and the
onsite potential u. Note that a spin-charge decoupling has no place in the case of the Hubbard
model in the magnetic field. The contributions of spin- and charge-density waves cannot be
described by two independent effective Hamiltonians. Charge- and spin-density waves interact.
The physical values (the spectrum of conformal operator dimensions, the electric charges in
question, etc.) are determined by the 2 x 2 dressed charge matrix rather than two scalar coupling
constants. As a result both spin and charge excitations cary the electron current.

I am very grateful to S. A. Brazovskii for a stimulated discussions. This work was supported
by the Russia Fund of Fundamental Research under grant Ne 960217791, and partially by the
program «Statphysics» of Ministry of Science.
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