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We Ьауе calculated electric currents of various types of excitations iI). the Hubbard model. 
Both spin and charge excitations carry the electric current. Thе the electric charge is а continuous 
function of the band filling and the single-site repulsion potential. 

1. INTRODUCTION 

Electron-electron interactions have а great effect оп properties of one-dimensional systerns. 
This results in а critical behavior at Т = О with algebraic decay of correlation functions. 
The particIe momentum distribution differs from а Fermi-liquid step function. As distinct 
from а Fermi Iiquid, such systems are called Luttinger Iiquids. In the framework of the 
one-dimensional (ld) Hubbard model with attractive interaction we investigate the electrical 
conductivity properties of the excitations. Interest in this modeI arises because to that the 
Hubbard model with attraction is the simplest опе with dorninant superconductivity fluctuations. 

In contrast to Fermi systerns, where the eIectric charge of the quasiparticIes сап have 
integer values е or 2е, we will show that the value ofthe electron charge of one-particle states 
сап depend continuously оп the system parameters. The charge of the one-particle excitations 
is defined Ьу q = j / v, where j = - дЕ / д А is the electric current, defined as the derivative of 
the energy with respect to the magnetic vector-potential, and v = дЕ/др is the velocity ofthe 
excitation. We will find that the spin and particle-hole excitations near the Fermi surface саиу 
the electric current. This effect is absent for models with an exactly linear electron spectrum, 
so that in the weak coupling regime the current is proportional to the Fermi-velocity dispersion. 

Some time ago unusual eIectrical properties of excitations were found in ld electron
phonon Peierls systems. As а resuIt of the electron-phonon interactions а transition [roт а 
metal1ic to an insulating state with creation а charge density wave takes place. It was found 
that excitations in the Peierls system (solitons, poIarons) [1,2] тау have fractionaI charges 
depending continuously оп the band filling and the electron-phonon coupling constant. But it is 
obvious that after integrating the PeierIs model over the phonon degrees offreedom we will have 
ап electron model with some effective electron-electron interaction (attraction). For example, 
we get in the quantum Iirnit (the ion mass tends to zero) ап effective «g-ology» Hamiltonian 
with а backscattering term due to the electron-phonon interaction. Therefore excitations in the 
two systems тау have common properties. We have found indeed that both model excitations 
carry noninteger electric charges. 

The plan of the paper is as follows. In Section 2 we quote known resиlts that are needed. 
In Section 3 we calculate the currents and charges of excitations for the modeI with и < о 
and generalize some results to the и> о case. 

204 



ЖЭТФ, 1998, 113, выn. 1 E/eetrie currents 0/ excitations . .. 

2. PROPERTIES OF ТНЕ MODEL 

2.1 Attractive interaction 

ТЬе Hamiltonian for the Hubbard ring in а magnetic f1ux Ф is 

н = - L {cJ,.,. Cj+ 1,.,. exp(iv) + Н.с.} + 4U L nj,jnj,! -

j,(7 j 

(1) 

where N a is the number of sites, C~,.,., Сп,,, are the creation and annihilation operators for 
electrons with spins (J' =1,1, и < о is the onsite attraction amplitude ofparticles with opposite 
spins, h is the spin magnetic field, J.L is the сЬешiсаl potential, 

v = 21СФ/NаФо, Ф = ANa , Фа = hc/e 

is the magnetic unit f1ux, and А is the vector potential of the orbital magnetic field. 
ТЬе electric current Ьу definition is 

. дНI 
J = - дА А=О' (2) 

ТЬе ground state and excitations are described Ьу sets of quasimomenta k j and rapidities 
Л"' which are solutions of the Беthе ansatz (БА) equations [3] 

м 

Nak j - Nav- LB(2sinkj - 2\в) = 21Clj , 

,6=1 

х М 

j = 1, ... ,N, (3) 

NаРо(ла ) - 2Na v - L В(2л" - 2sinkj ) - L В(Л" - Л,6) = 21CJ", а = 1, ... , М, (4) 
j=1 fЗ=1 

where 

В(х) = 2arctg(x/2u), и = IUI, 

N = 2М + Х is the number ofparticles, М is the number ofpairs, Х is the number ofunpaired 
particles, and Ро(.Л",) = 2Re аrсsiп(л" - iu) is the bare momentum of а pair. We treat states 
with а number of singlet bound pairs and а number of electrons with uncompensated up-spins. 
In contrast to the сме И > О, where аН wavenumbers are real in the ground state, аН particles 
are paired and the wavenumbers are complex. If the external magnetic field exceeds some 
critical value hc unpaired electrons are formed. Equations (3) with real numbers kj describe 
electrons with uncompensated up-spins. Singlet bound pairs are characterized Ьу а pair of 
complex wavenumbers k; and а rapidity Л", connected through the relation 

. k± - \ ±. 
Sln '" - Л" zu, а= 1, ... ,М. 

Eguations (4) are obtained [roт the equations of Lieb and Wu [4] Ьу eliminating the 
complex wavenumbers k;. 
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In the ground state the numbers I j , J сх are distributed symmetrically about zero. They 
satisfy 

1 . 
I j = 2 (1 - N + 2М) + J - 1, 

1 
Jcx = 2(1 - М) + а - 1. 

In the case of moderate fields h < hc аН spins are paired (Х = О). 
The system energy is 

j 

where 

сх 

h 
eo(kj ) = -2coskj - '2 

are the bare energies of pairs and unpaired electrons. 
The momentum is 

The density functions of the k and л distributions are usually introduced as 

(k) = ~ dp(k) 
р 21г dk ' 

(л) = ~ dр(л) 
(J 27Г dл ' 

where 

1 м 
p(k) = k - N LB(2sink - 2л,в), 

а ,в~] 

In the thermodynamic limit Eqs. (3), (4) сап Ье written in the matrix form [3] 

p(k, л) = Po(k, л) + К ® p(k', л'), 

where 

( 1 1 dРо(л»)Т 
p(k, л) = (p(k), (J(Л»Т, Po(k, л) = 27Г' 27Г -----;к- , 

K(k, лlk', л') = ( 
о -2соskК (2(sink - .\'») ) 

-2К(2(л - sink'» -К(л - л') , 

К(х) = ~ dB(x) = ~ 4u . 
27Г dx 27Г 4u2 + х2 
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The product 0 indicates the usual matrix product and integration over the common variables, 
from -Q to Q over k and from -л to Л over Л, respectively; the superscript «Т» means matrix 
transposition. 

Equation (5) acquires the [оrш 

W = Ef 0 Р = рТ; 0 Е, 

where 

Е = Ео + кТ 0 Е, (7) 

Е = (e(k), Е(Л»Т are the excitation energies of unpaired electrons and of the pairs, Ео = 
= (eo(k) - fl, Ео(Л) - 2fl)T. 

It is known that for magnetic fields less than the critical value h < hc the spectrum of 
paired excitations is gapless (Е(±Л) = О), while unpaired electron states have а gap e(k = О) "f О. 

The matrix of dressed charges is defined Ьу [3,5] 

_ (~f(k) ~f(k») 
~(k, Л) - ~i(Л) ~i(Л) , (8) 

where 

_(10) Т ~(k, Л) - О 1 + К 0~. (9) 

For the case h < hc only the function ~i(Л) = Z(Л) is relevant, and it satisfies the 
equation [6] 

+л 

Z + J К(Л - Л')Z(Л')dЛ' = 1, 

-л 

~ ::; Z(Л) ::; 1, ~~ < О, д~~Л) > О. 
The solution of this equation is known in some limits 

р ----> 1, 
1 

2z2(л) = 1- 21n [С/(1 _ р)]' с = (810 (~), 
у ~ 21t 

р ----> О, 

р = 1, 

(i 
- ----> О, 
и 

2 1 ( p~) 2Z (Л) = 2: 1 + 2: У 1 +:;? . 

(10) 

For magnetic fields h > hc1 the gap in the spectrum of unpaired excitations closes 
(е(О) = О) and for h = h c2 the system undergoes а transition into the saturated ferromagnetic 
ground state. In the region hc2 > h > hc1 the dressed charge matrix has Ьееп found in [7] as 

~(Q, Л) = ( 1 + к,~o О ) 

_! _ ",ko (1 + _u_) _1_ ' 
2 27г,\о v2 
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where 

lп2 
к,= -

2и' 
ko = J h -., hc , = 1 - 2 Joo tdtJ1 (t) > о 

,,'ГJ 1 + exp(2ut) , 
о 

2.2. Repulsive interaction 

ЖЭТФ, 1998, 113, выn. 1 

2и С 
).0 = -ln--. 

7r 1 - р 

Similar еqШltiопs аге valid for the model with и > О. The matrix К differs from (6) 
only in the signs of the nondiagonal terms. А density [ипсНоп p(k) describes the distribution 
of particle quasimomenta and the function 0'(.\) describes the rapidities of spin-down particles. 
The energy and the momentum are 

w = - L 2coskj , Р = L(kj - v). 

The dressed charge matrix is [5] 

~ = (~(k) ~(k)/2) 
О ../2/2 ' 

where ~(k) satisfies the еqШltiоп 

Q 

~(k) = 1 + J dk' cosk'K(sink - sink')~(k'), 
-Q 

00 

1 J -wu - е 
К = - -- COS(UJ.\)d),. 

27r ch(UJu) 
О 

The solution 1 ::; ~(Q) ::; ../2 is known in some limiting cases {5] 
sinQ/u« 1, ~(Q) = 1 + sinQln2/(7ru); 
р = l,Q = 7r, ~(Q) = 1, 0< u < 00; 

00 

р ---+ 1, ~(Q) = 1 +ln2(l- p)f(u)/u, f(u) = 1- J dxJo(x)exp(-uх)/сhхu; 
о 

р« 1,и, ~(Q) = 1 + pln2/u; 
'/1, ~ 1, ~(Q) = 1 + sin 7rp ln 2/(7ru); 
и« sinQ, ~(Q) =../2 [1 - u/(27rsinQ)]. 

3. ELECfRIC CURRENTS 

3.1. Attractive interaction 

3.1.1. Gapless paired excitations (h < hc1 ) 

(11) 

(12) 

In the ground state аП particles are bound into singlet pairs. The lowest excitations are 
gapless excitations of bound pairs. For а sufficiently strong magnetic field (h > hc ) unpaired 
electron excitations асе gapless too. 
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ТЬе particle-hole excitations ofpairs are desaibed Ьу а set ofnumbers Jo< = J~ +8(а-ао) 
(for hole type excitations), where {J~} and {Л~} are the ground-state sets. Here 6(х) is the 
usual step-function. 

From (3) we find ап equation for the fиnction 0-('\0<) = NaO"('\o<)b'\",: 

л 

0-('\) + J К('\ - ,\')O-(,\')d,\' = 8('\ - '\0) + 2Ф, 
Фа 

-л 

(13) 

where б,\ = '\", - ,\~ is the shift of а number '\", дuе to the excitation and 0"('\0) is the ground
state solution. 

Taking the derivative with respect to v we have ao-/av = Na6('\)/,l[. The energy is 

(14) 

ТЬеп the current j = -аW/аА equals 

j = 2. J E~' 0-(.-\)6('\) d.-\. 
ФО 0"('\) 

(15) 

The momentum is р = J P~('\)O-('\)d'\, where о- is the solution of Eq. (13) for Ф = О. 
For excitations with small momenta р сх: (Л - '\0) we сап ешПу see that the current 

j сх: рЕб'(Л) is proportional to the dispersion ofthe Fermi velocity. In the limit и -t О we find 
tl1at 

о- = 8('\ - '\0)/2, а(>.) = 1/2, z = 1/2, 

As we showed in the case of repulsion [8-1 О], the current would ье absent in the linear spectrum 
approximation. 

3.1.2. States with added particles 

We calculate now the currents of states obtained Ьу adding an electron pair or unpaired 
electron. ТЬе simplest way to calculate the current is to include the magnetic vector-potential 
in the I/Na corrections of the energy, found in [11]: 

bW = :: L vn {(Z-lLlN)~ + (ZTD)~ + I~ + I;;}, 
а n=I,2 

(16) 

where VI = a€(Q)Jap(Q) and V2 = д€(Л)Jдр(Л) are the Fermi velocities of unpaired and 
pair excitations, respectively, and Zij = {j(Q, Л). Note that for h < hc unpaired excitations 
have а gap, so for this case Vl = О. In the case h > hc both singlet and pair excitations are 
gapless, that is, Vl, V2 "1 О. Here ilNT = (ilN1, LlN2 ), LlN1, ilN2 are the numbers of added 
unpaired electrons and bound pairs, respectively; nT = (D 1, D2), 2D1,2D2 are differences in 
the numbers of positive апд negative I j , J", numbers, respectively; ГГ = L г}, It = L J~ 
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are sums of quantum numbers of particle-hole states near to the right (+) and left (-) Fermi 
points of the k and >. seas. То include the vector-potential we substitute 

Ву varying (16) over the vector-potential А we obtain for the electric сuпепt 

j = 2 2: vn(ZlnDl + Z2nD2)(Zln + 2Z2n ). (17) 
n=I,2 

For pair excitations we have 2D2 = 1, D 1 = О, 

(18) 

Therefore the charge is ечuаl to 

q = 2ZiiЛ). (19) 

As follows [roт (10) the charge тау acquire апу value in the interval 1/2 ::; q ::; 2. In the 
case р --у 1 we have from (1 О) 

1 
q = 1 - -=-21:-n -.-[ с:::-:/:-( l---р-:-;"")] , 

р = 1, q = 1, О < и < 00. 

In the limit р --у о, р/и --у О 

In the limit и « 1, л »и К(х):::::: 8(х), Z --у 1/"fi and q --у 1. In the limit и --+ 00, 

л « и we have Z :::::: 1, q :::::: 2. In strong magnetic fields h > hc we obtain 

q = (1 + _и )2 
21Г >'0 

For unpaired added particles the сuпепt and charge are found substituting 2D1 = 1, D2 = О 
to Еч. (16): 

j = Vlq, q = Zll(Q) [Zll(Q) + 2Z21 (Q)] = 1- 4 J К (2(sink - >'»62(>')d>'. 

In the case и --у О we have q --у О, that is, the excitations do not carry ап electric сuпепt. Ву 
using the Wiener-Hopf technique we find in the limit Л/и» 1, и « 1 that 

q:::::: f8ехр (_Л1Г). 
y~ 2и 

In the opposite Iimit и --у 00, л « и we obtain q :::::: 1 - 4Л/(1Ги). 

Note that in this Iinear-spectrum approximation we find that particle-hole excitations do 
not carry current (j = О), in accordance with previous results. 
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3.2. Repulsive interaction 

3.2.1. Hole and particle states 

А similar expressions сап Ье derived for the case И > О. For spin singlet-triplet excitations 
or particle-hole states we derived [8] 

Q 

p(k} = Nall + f(k} + J p(k'} cos k' K(sin k - sin k'}dk', 
27Т' 

-Q 

(20) 

where f(k} = 2:(1j7T'}tg-'{ехр[27Т'(Siпk - Лi}ju]} for spin excitations and f(k} = 8(k - ki } 

for Ьоlе states, p(kj } = NaP(kj}bkj , p(k} is а known function for the ground state, and bkj 
is the shift of а number k j due to the excitation. For the energy, moment.um and сuпепt we 
find 

о I 1 11 2 1 J E~ р2 
W = L fo(kj } = L fo(kj } + L fo(kj}bkj + '2 L Ео (kj}(bkj ) - '2 NaP(k} dk, 

where Ео = -2coskj, and bk = p(k}jNaP(k}, and 

Р = J p(k}dk, 

._ljQ .f~p~(k} 
J - - dk (k)' 

ФО -Q Р 
(21) 

where ~(k) is the solution of Eq. (12). In accordance with the results [8-10], we have j rx 
pf~(PF), In the limit и - О we again find j = 2рсоs(цj2}. Equation (21) supplements the 
results of [8,9]. 

3.2.2. States with added particles 

А simi1ar treatment сап Ье сапiеd out for the repu!sive model и > О. In this case the 
subscripts 1,2 in Eq. (16) сопеsропd to charge and spin degrees of freedom, respective!y, so 
v, and V2 are the charge and spin excitation velocities. In сопtrаst to the 1t < О case both types 
of ехсitаtiопs are gapless. То include the orbita1 magnetic field we substitute 

Nall 
D,-D 1 +--. 

27Т' 

Ву vаryiпg with respect to the vector роtепtiаl we obtain for the e!ectric сuпепt 

j = 2Vl(Zl1D, + Z2,D2}Zl1 = v,(2D, + D 2}e(Q}. (22) 

Here 2D, (2D2) dепоtеs the diffеrепсе iп the пumЬегs of positive and negative Ij (Ja.), 
respectively. Changing the number оfsрiп-пр and spin-down electrons Ьу дNj and дN1 , i.e., 
сhапgiпg the tota! пumЬеr of particles Ьу дN] = дNj + дN1 апd the ппmЬеr of sрiп-dоwп 
particles Ьу дN2 = дN1 , is equivalent to adding (removing) дN1 extra I j and дN2 extra Ja. 
vаlпеs. The vа!пеs I j , Ja тау Ье iпtеgеr or ha!f-integer, depending оп the parity ofthe numbers 
N], N 2. Therefore the пumЬеrs D], D 2 dерепd оп дN" дN2 попtriviаl1у, so that 

D] = дN, ; дN2 (mоd 1}, 
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Adding а spin-up particle to the system дN\ = 1, дN2 = О we obtain D\ = ±1/2, D 2 = =f1/2. 
Similarly, adding а spin-down particle corresponds to дN\ = дN2 = 1, D 1 = О, D 2 = ±1/2. 
In both cases we find for the electric current 

j = qv\, q = e(Q)/2. (23) 

Substituting soIutions of Eq. (12) into (23) we find 1/2 ~ q ~ 1 and 
sin Q /и « 1, q = 1/2 + sin Q!n 2/(1I"и); 
р = 1, Q = 11", q = 1/2, 0< u < 00; 
р -+ 1, q = 1/2 + !п2(l- p)/uf(u); 
р« 1,и; q= 1/2+pln2/u; 
u ~ 1, q = 1/2 + sin 7rp ln 2/(1I"и); 
и« sinQ, q = 1 - u/(411"sinQ). 
These results complement our earlier results [8-10]. 

4. CONCLUSIONS 

We have considered the electron currents of excitations in the опе-dimепsiопаI Hubbard 
modeI. We found that for particle-hole excitations with а smaIl momentum the current is 
proportional to the momentum and to the dispersion of the Fermi velocity. Therefore this 
сипепt is absent in the linear spectrum approximation. We have calculated the currents and 
charges of states with added particles (unpaired or paired bound electrons in the case u < О ). 
We found that the charge is noninteger and continuous!y depends оп the band fiIling and the 
onsite potentia! и. Note that а spin-charge decoupling has по place in the case ofthe Hubbard 
model in the magnetic field. Тhe contributions of spin- and charge-density waves саппо! Ье 
described Ьу two independent effective Hamiltonians. Charge- and spin-density waves interact. 
The physical values (the spectrum of conformal operator dimensions, the electric charges in 
question, etc.) are determined Ьу the 2 х 2 dressed charge matrix rather than two sca!ar coupling 
constants. As а result both spin and charge excitations cary the electron current. 

1 ат very gratefи! to S. А. Brazovskii for а stimu!ated discussions. This work was supported 
Ьу the Russia Fund of FundamentaI Research under grant NQ 960217791, and partiaIly Ьу the 
program «Statphysics» of Ministry of Science. 
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