ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ ПОВЕРХНОСТНОГО ИМПЕДАНСА МОНОКРИСТАЛЛОВ Tl₂Ba₂CaCu₂O₈₋₆ и YBa₂Cu₃O_{6.95} В МИКРОВОЛНОВОМ ДИАПАЗОНЕ ЧАСТОТ

А. А. Жуков, М. Р. Трунин, А. Т. Соколов, Н. Н. Колесников

Институт физики твердого тела Российской академии наук 142432, Черноголовка, Московская обл., Россия

Поступила в редакцию 5 июня 1997 г.

На частоте $\omega/2\pi = 9.4$ ГГц проведены прецизионные измерения действительной R_s и мнимой X_s частей поверхностного импеданса $Z_s = R_s + iX_s$ монокристаллов Π_2 Ba₂CaCu₂O_{8- $\delta}$} и YBa₂Cu₃O_{6.95} в интервале температур 0 < T < 140 К. В кристалле Π_2 Ba₂CaCu₂O_{8- $\delta}$} обнаружена линейная зависимость $R_s(T)$ при $T \leq 50$ К и измерена глубина проникновения магнитного поля $\lambda(4.2 \text{ K}) = X_s(4.2 \text{ K})/\omega\mu_0 \approx 3760 \text{ Å}$. Наряду с известными особенностями зависимости $Z_s(T)$ в высококачественных монокристаллах YBa₂Cu₃O_{6.95} (линейный ход $\lambda(T)$ и $R_s(T)$ при $T < T_c/3$, максимум $R_s(T)$ в области $T \sim T_c/2$), наблюдаемый нами линейный рост $\lambda(T)$ протирается до $T \simeq 50$ К, переходя в плато $\lambda(T) \approx$ сопят в интервале 60 < T < 85 К. В рамках двухжидкостной модели кривая $R_s(T)$ в областии и нормальном состояниях YBa₂Cu₃O_{6.95} хорошо описывается в предположении об электрон-фононном механизме релаксации квазичастиц. Мы также приводим формулу, описывающую зависимость $\lambda^2(0)/\lambda^2(T)$ во всем температурном интервале.

1. ВВЕДЕНИЕ

Измерения поверхностного импеданса $Z_s = R_s + iX_s$ высокотемпературных сверхпроводников (ВТСП) в микроволновом диапазоне частот дают информацию о механизме рассеяния, плотности состояний и природе сверхпроводящего спаривания в этих соединениях. Сейчас, в частности, широко обсуждается вопрос о симметрии параметра порядка в ВТСП [1]. Начало этой дискуссии было вызвано наблюдением линейной низкотемпературной зависимости глубины проникновения поля $\lambda(T) = X_s(T)/\omega\mu_0$ в ab-плоскости монокристаллов YBa₂Cu₃O_{6.95} (YBCO) [2]. Столь необычная для изотропного *s*-типа спаривания зависимость нашла естественное объяснение в случае $d_{x^2-y^2-}$ симметрии параметра порядка [3], когда на поверхности Ферми имеются линии, где параметр порядка обращается в нуль. Позднее было показано, что зависимость $\Delta\lambda(T) \propto T$ в YBCO имеет место в рамках двухзонной модели *s*-типа [4], когда из-за рассеяния на магнитных примесях сверхпроводящее состояние в зоне Си-О цепочек становится бесщелевым, а также в моделях смешанной (d+s)-симметрии [5]. К настоящему времени линейный ход $\lambda(T)$ при T < 30 К наблюдался не только в высококачественных монокристаллах ҮВСО, выращенных разными способами [6-8], но и в совершенных монокристаллах Bi₂Sr₂CaCu₂O₈ (BSCCO) [9] и Ba_{0.6}K_{0.4}BiO₃ (BKBO) [10]. Другим общим свойством ВТСП-монокристаллов, обнаруженным в [6–10], является линейная низкотемпературная зависимость поверхностного сопротивления $\Delta R_s(T) \propto T$. На частотах ~ 10 ГГц эта зависимость наблюдалась в [9,10] вплоть до температур $T \sim T_c/2$ (T_c —

критическая температура), в монокристаллах YBCO [6–8] — до $T \leq T_c/4$, а при дальнейшем росте температуры линейный ход сменялся широким максимумом $R_s(T)$ в области $T \sim T_c/2$. Поведение $R_s(T)$ в ВТСП во многом определяется процессами релаксации квазичастиц. Расчеты для случая неупругого рассеяния на антиферромагнитных спиновых флуктуациях в $d_{x^2-y^2}$ -модели [11] или при учете электрон-фононного взаимодействия в анизотропной модели *s*-типа [12] продемонстрировали возникновение максимума $R_s(T)$ в промежуточной области температур. Однако линейной зависимости $R_s(T)$ при низких температурах в микроскопических моделях до сих пор получено не было.

В настоящей работе описан экспериментальный метод, позволяющий измерять зависимости поверхностного сопротивления $R_s(T)$ и реактанса $X_s(T)$ кристаллов ВТСП на частоте 9.4 ГГц в широкой области температур. Этим методом впервые исследована температурная зависимость поверхностного импеданса монокристаллов $Tl_2Ba_2CaCu_2O_{8-\delta}$ (ТВССО). Измеренные на образцах ҮВСО кривые $R_s(T)$ и $X_s(T)$ анализируются в терминах предложенной в [8, 10] двухжидкостной модели.

2. МЕТОДИКА

Для измерения поверхностного импеданса образцов малого размера использовался метод, впервые предложенный в работе [13]. Основная идея метода заключается в том, что в центр цилиндрического сверхпроводящего резонатора, работающего на моде H_{011} , т. е. в максимум однородного магнитного поля, на сапфировом стержне помещается образец. Меняя температуру стержня и измеряя добротность Q и сдвиг частоты Δf резонатора с образцом внутри, а затем пустого резонатора (Q_0 , Δf_0) можно найти температурную зависимость поверхностного сопротивления R_s и реактанса X_s образца.

Этот метод предполагает два основных требования к измерительной установке. Во-первых, поскольку монокристаллы ВТСП имеют малые геометрические размеры и обладают малыми потерями в сверхпроводящем состоянии, то для выделения температурного хода импеданса образца на фоне пустого резонатора необходимо, чтобы сам резонатор имел высокую добротность. Во-вторых, наши измерения величин Q и Δf путем свипирования частоты требуют очень высокой стабильности генератора сверхвысокой частоты (СВЧ).

Мы использовали объемный цилиндрический резонатор из ниобия, диаметр и высота которого были равны 42 мм (рис. 1). Снаружи резонатор омывался жидким гелием и таким образом всегда находился в сверхпроводящем состоянии. В резонаторе возбуждалась мода H_{011} на частоте 9.42 ГГц. Поскольку эта мода является вырожденной (такую же частоту имеет колебание E_{111}), в верхней и нижней крышках резонатора были сделаны ниобиевые штыри диаметром и высотой 5 мм, что позволило развести моды E_{111} и H_{011} по частоте более чем на 10 МГц. Сапфировый стержень, на верхнем торце которого помещался образец, был теплоизолирован от стенок резонатора за счет вакуумирования резонаторного блока, который герметизировался с помощью индиевых уплотнений. Нижний конец стержня плотно вставлялся в тонкостенную трубку из нержавеющей стали, которая, в свою очередь, крепилась в центрирующей тефлоновой шайбе. Такая теплоизоляция позволяла сохранять добротность резонатора на уровне 10^7 при температуре стержня и образца $T \sim 140$ К. Регулирование температуры образца осуществлялась с помощью схемы, изображенной на рис. 2. Данные с термометра Т

Рис. 1. Конструкция резонаторного блока

поступали на аналого-цифровой преобразователь (АЦП) и считывались компьютером, который, сравнивая измеренную температуру с заданной, выдавал разность температур на цифро-аналоговый преобразователь (ЦАП). Далее управляющий сигнал поступал на усилитель Y_1 и корректировал выделяемую нагревателем Н мощность. Точность установки температуры во всем интервале 4 < T < 140 K была не хуже 0.3% от заданной температуры.

Высокую стабильность ($\approx 10^9$) СВЧ обеспечивал СВЧ-синтезатор, который работал по схеме фазовой автоматической подстройки частоты (ФАПЧ). Сигнал с генератора СВЧ проходил через вентиль В₁, затем часть СВЧ-мощности ответвлялась направленным ответвителем НО и поступала в блок преобразователя частоты (БПЧ). Там колебания на частоте 9.4 ГГц преобразовывались в низкочастотные (до 50 МГц) и подавались на блок ФАПЧ, где низкая частота сравнивалась с частотой опорного мегагерцового синтезатора. В результате вырабатывался фазоразностный сигнал управления генератором СВЧ, замыкая, таким образом, контур стабилизации СВЧ-синтезатора. Регулирование частоты производилось изменением частоты опорного синтезатора, управляемого выходным напряжением 20-ти разрядного ЦАП.

Электромагнитная волна из СВЧ-синтезатора по прямоугольному волноводу через

Рис. 2. Схема измерений добротности и сдвига резонансной частоты в зависимости от температуры

аттенюатор A_1 и вентиль B_2 поступала в резонатор, который связан с волноводами с помощью регулируемых петель связи. Далее из резонатора через вентиль B_3 и аттенюатор A_2 СВЧ-волна попадала на диод Д, который работал в квадратичном режиме. Сигнал с диода, усиленный усилителем Y_2 , поступал на АЦП и далее считывался компьютером.

При изменении частоты CBЧ-синтезатора f_{sw} и измерении напряжения на диоде Д регистрировалась зависимость прошедшей через резонатор мощности CBЧ от частоты, которая имеет вид обычной резонансной кривой:

$$P(f_{sw}) = \frac{P_0}{4(f_{sw} - f_i)^2 / f_i^2 + 1/Q_i^2},$$
(1)

где P_0 — константа, не зависящая от частоты f_{sw} , $f_i = f$ и $Q_i = Q$ в случае, когда резонатор нагружен образцом, $f_i = f_0$ и $Q_i = Q_0$ для резонатора без образца. По частоте максимума кривой $P(f_{sw})$ определялась собственная частота f_i резонанса, а по ширине полосы пропускания δf_i на уровне $0.5P(f_i)$ вычислялась добротность резонансной системы $Q_i = f_i/\delta f_i$. Достигнутая нами точность измерения добротности ~ 10^7 была не хуже 1%, а точность определения частоты резонанса ~ 10 Гц.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

В работе исследовались монокристаллы ТВССО и YBCO, способы выращивания которых изложены соответственно в работах [14, 8]. Они имели форму пластинок с характерными размерами $1 \times 1 \times 0.1$ мм³ (ТВССО) и $1.5 \times 1.5 \times 0.1$ мм³ (YBCO). Образец устанавливался на торце сапфирового стержня так, что ось \hat{c} кристалла была направлена вдоль микроволнового магнитного поля, и высокочастотные токи циркулировали в плоскости *ab*.

Рис. 3. Измеренные температурные зависимости 1/Q и Δf в монокристалле ТВССО

На рис. З приведены температурные зависимости добротности (квадраты) и сдвига резонансной частоты (кружки) резонатора с монокристаллом ТВССО внутри. Поверхностное сопротивление R_s и реактанс X_s определяются из измеренных кривых Q(T) и $\Delta f(T)$ с помощью соотношений

$$R_s(T) = \Gamma_s \left[Q^{-1}(T) - Q_0^{-1}(T) \right], \qquad X_s(T) = -\frac{2\Gamma_s}{f_0} \left[\Delta f(T) - \Delta f_0(T) \right] + X_0, \tag{2}$$

где Γ_s — геометрический фактор образца, X_0 — аддитивная константа. Величина X_0 находилась из условия равенства мнимой и действительной частей импеданса в нормальном состоянии $R_s(T_c) = X_s(T_c)$. Величина Γ_s образца с известными размерами вычислялась в предположении, что напряженность магнитного поля на поверхности образца совпадает с амплитудой поля в центре невозмущенного резонатора. Для одного из кристаллов геометрический фактор был найден из формулы (2) по экспериментальным значениям $Q(T_c)$ и удельного сопротивления $\rho(T_c) = 2R^2(T_c)/\omega\mu_0$. Это экспериментальное значение Γ_s оказалось на 40% меньше вычисленного. В дальнейшем мы учитывали эту поправку в расчетах геометрического фактора образцов.

Температурные зависимости поверхностного сопротивления $R_s(T)$ и реактанса $X_s(T)$ монокристалла ТВССО представлены на рис. 4. При $T \ge T_{c1} = 112$ К эти величины равны, $R_s(T) = X_s(T)$, что отвечает условию нормального скин-эффекта. Значению $R(T_{c1}) \simeq 0.19$ Ом соответствует величина $\rho(T_{c1}) \simeq 100$ мкОм·см. На обеих кривых $R_s(T)$ и $X_s(T)$ отчетливы видны два сверхпроводящих перехода с критическими температурами $T_{c1} \simeq 112$ К и $T_{c2} \simeq 81$ К. Согласно работе [15] первый переход соответствует фазе (Tl_{1.85}Cu_{0.15})Ba₂(Ca_{0.875}Tl_{0.125})Cu₂O₈ (или 2212), а второй – фазе TlBa₂(Ca_{0.87}Tl_{0.13})Cu₂O₇ (или 1212), в которой по сравнению с фазой 2212 нет одной TlO(3) плоскости. Вырастить однофазный кристалл TBCCO, имеющий критическую температуру $T_c \approx 110$ К, нам пока не удалось.

Рис. 4. Температурные зависимости поверхностного сопротивления R_s и реактанса X_s в монокристалле ТВССО

Рис. 5. Низкотемпературные зависимости R_s и глубины проникновения поля $\lambda = X_s / \omega \mu_0$ в монокристалле ТВССО. Указано значение $R_s(0 \text{ K}) \equiv R_{res}$

Рисунок 5 демонстрирует низкотемпературное поведение глубины проникновения магнитного поля $\lambda(T) = X_s(T)/\omega\mu_0$ и поверхностного сопротивления $R_s(T)$ в монокристалле ТВССО. Величина $\lambda(4.2 \text{ K}) \approx 3760 \text{ Å}$ приблизительно вдвое превышает найденное в работе [16] значение $\lambda(0)$ в 2212 фазе с $T_c \approx 100 \text{ K}$. Зависимость $R_s(T)$ линейна в интервале $4 < T \leq 50 \text{ K}$. Продолжая эту линию до T = 0, получаем величину остаточ-

Рис. 6. Температурные зависимости поверхностного сопротивления R_s и реактанса X_s в монокристалле YBCO

ного поверхностного сопротивления $R_{res} \equiv R_s(0) \approx 320$ мкОм. Малое значение R_{res} отвечает высокому качеству поверхности кристалла. Для большинства других образцов при T < 30 К кривая $R_s(T)$ выходила на постоянный уровень $R_{res} > 1$ мОм.

На рис. 6 показаны температурные зависимости поверхностного импеданса монокристалла YBCO с критической температурой $T_c \simeq 92$ К. В нормальном состоянии $R_s(T) = X_s(T)$; $R_s(T_c) \simeq 0.11$ Ом, $\rho(T_c) \simeq 35$ мкОм см. Особенности температурных зависимостей $R_s(T)$ и $\lambda(T)$ в сверхпроводящем состоянии видны на рис. 7 и 8. Линейный ход $R_s(T)$ при $T \leq 20$ К сменяется максимумом в области $T \sim 40$ К (рис. 7). Такое поведение $R_s(T)$ типично для высококачественных монокристаллов YBCO [6–8]. Линейная зависимость $\lambda(T)$ при T < 30 К также наблюдалась ранее [2,6–8]. Для кристалла YBCO на рис. 8 изменение $\Delta\lambda(T) \propto T$ вплоть до $T \approx 50$ К. Продолжая линию $\lambda(T)$ до T = 0, находим характерное для *ab*-плоскости YBCO значение $\lambda(0) \simeq 1400$ Å. В интервале 60 < T < 85 К глубина проникновения практически не зависит от температуры. Плато у кривой $\lambda(T)$ проявляется для всех исследованных нами монокристаллов YBCO, выращенных одинаковым способом [8], но в разных относительно $T_c/2$ температурных интервалах. Например, в [8] плато наблюдалось при 35 < T < 65 К. Микроволновые измерения эпитаксиальных пленок [17] и монокристаллов YBCO [7] также демонстрировали особенность $\lambda(T)$ в области $T \sim 60$ К.

4. ОБСУЖДЕНИЕ

При обсуждении экспериментальных кривых $Z_s(T)$ удобно рассматривать также температурные зависимости комплексной проводимости $\sigma_s \equiv \sigma_1 - i\sigma_2$. Связь импеданса и проводимости σ_s выражается простым локальным соотношением

$$Z_s = R_s + iX_s = \left(\frac{i\omega\mu_0}{\sigma_1 - i\sigma_2}\right)^{1/2}.$$
(3)

Рис. 7. Зависимость $R_s(T)$ в монокристалле YBCO в области низких температур. Прямолинейный отрезок проведен на глаз. Указано значение $R_s(0) \equiv R_{res}$

Рис. 8. Зависимость глубины проникновения поля $\lambda(T) = X_s(T)/\omega\mu_0$ в кристалле YBCO в области низких температур

Из (3) для нормированных величин получаем общие, справедливые как в сверхпроводящем, так и в нормальном состояниях сверхпроводника, выражения, связывающие действительную и мнимую части импеданса с компонентами комплексной проводимости и наоборот:

$$\frac{R_s(T)}{R_s(T_c)} = \sqrt{\frac{\sigma(T_c)(\varphi^{1/2} - 1)}{\sigma_2 \varphi}}, \qquad \frac{X_s(T)}{X_s(T_c)} = \sqrt{\frac{\sigma(T_c)(\varphi^{1/2} + 1)}{\sigma_2 \varphi}},$$
(4)

$$\frac{\sigma_1(T)}{\sigma(T_c)} = \frac{4R_s^2(T_c)R_sX_s}{(R_s^2 + X_s^2)^2}, \qquad \frac{\sigma_2(T)}{\sigma_2(0)} = \frac{\lambda^2(0)}{\lambda^2(T)} = \frac{X_s^2(0)(X_s^2 - R_s^2)}{(R_s^2 + X_s^2)^2}.$$
(5)

Здесь $R_s(T_c) = X_s(T_c)$ и $\sigma(T_c) = \sigma_1(T_c)$ — значения импеданса и проводимости при $T = T_c$, а $X_s(0)$ и $\sigma_2(0)$ — при T = 0; $\lambda = (1/\omega\mu_0\sigma_2)^{1/2}$; $\varphi = 1 + (\sigma_1/\sigma_2)^2$. На рис. 9 показаны зависимости (5) для монокристалла ТВССО, построенные по экспериментальным графикам $R_s(T)$ и $X_s(T)$ (рис. 4, 5). Кривые на рис. 9 имеют достаточно сложный вид, обусловленный совместным вкладом двух сверхпроводящих талиевых фаз — 2212 и 1212. Тем не менее, основываясь на экспериментальных результатах данной работы и микроволновых измерениях импеданса [6–10], можно указать общие для всех высококачественных монокристаллов YBCO, BSCCO, ВКВО и ТВССО черты поведения $Z_s(T)$ и $\sigma_s(T)$ при низких, промежуточных и близких к T_c температурах.

Низкие температуры, $T \ll T_c$.

Общей закономерностью являются линейные низкотемпературные зависимости поверхностного сопротивления $R_s(T)$ и действительной части проводимости $\sigma_1(T)$. Реактанс $X_s(T) \propto \lambda(T)$ и мнимая часть проводимости $\sigma_2(T)$ тоже линейно зависят от температуры во всех упомянутых выше монокристаллах ВТСП, кроме кристалла ТВССО, хотя у кривых $\lambda(T)$ на рис. 5 и $\sigma_2(T)$ на рис. 9 имеется ярко выраженный линейный участок при 20 < T < 50 К. Наши измерения ТВССО в определенном смысле напоминают результаты исследования первых высококачественных монокристаллов YBCO [18], когда при низких температурах отчетливо наблюдался линейный ход $R_s(T)$ и $\sigma_1(T)$, а зависимости $\lambda(T)$ и $\sigma_2(T)$ считались квадратичными.

Рис. 9. Температурные зависимости компонент проводимости в монокристалле ТВССО. Температурнозависящая часть $R_s(T)$ в формуле (5) получена из измеренной величины R_s , приведенной на рис. 4 и 5, вычитанием остаточного поверхностного сопротивления R_{res}

Промежуточные температуры, $T \sim T_c/2$.

Общим у кривых $R_s(T)$ в совершенных кристаллах YBCO, выращенных разными способами, является широкий максимум в области $T \sim 40$ К. Такого максимума нет в других монокристаллах ВТСП, в отличие от YBCO, обладающих тетрагональной структурой. Для них на частотах ~ 10 ГГц характерен линейный рост $R_s(T)$ вплоть до $T \sim T_c/2$. В настоящей работе и в недавних экспериментах [7,8] с монокристаллами YBCO наблюдались особенности в зависимостях $\lambda(T)$ и $\sigma_2(T)$. На вставке к рис. 10 изображена кривая (кружки) $\sigma_2/\sigma_2(0)$, полученная из экспериментальных данных рис. 6 с помощью формулы (5). Эта кривая в промежуточной области температур представляет собой плато, простирающееся до $T \simeq 0.9T_c$. Отметим еще, что максимум $R_s(T)$ на рис. 6, 7 и 10 выражен гораздо слабее обычного [6, 8, 18]. В работе [7] с повышением температуры сразу за максимумом следовал заметный подъем $R_s(T)$.

Близкие к T_c температуры, $T \to T_c$.

При переходе в сверхпроводящее состояние резко убывает поверхностное сопротивление $R_s(T)$. На частотах ~ 10 ГГц в совершенных кристаллах YBCO величина R_s уменьшается в 100 и более раз при понижении температуры на 1 К от T_c . Кривые $\sigma_2(T)$ вблизи T_c характеризуются крутым наклоном. Из рис. 10 видно, что производная $(1/\sigma_2(0))d\sigma_2(T)/dT$ при $T = T_c$ равна -4. Точно такое же или очень близкое значение производной было получено в экспериментах [6-8] с монокристаллами YBCO.

В настоящее время нет микроскопической теории, описывающей указанные закономерности температурного поведения поверхностного импеданса или микроволновой проводимости монокристаллов ВТСП. В рамках широко обсуждаемых в литературе моделей с $d_{x^2-y^2}$ - или анизотропным *s*-типом спаривания пока не найдено объяснение даже линейной низкотемпературной зависимости $R_s(T)$, которая свойственна всем со-

Рис. 10. Сравнение рассчитанных (линии) и экспериментальных (символы) температурных зависимостей поверхностного сопротивления $R_s/R_s(T_c)$ и мнимой компоненты проводимости $\sigma_2/\sigma_2(0)$ (вставка) в монокристалле YBCO. Температурнозависящая часть R_s получена из измеренной величины R_s , приведенной на рис. 6 и 7, вычитанием остаточного поверхностного сопротивления R_{res}

вершенным кристаллам ВТСП. В то же время основное внимание в экспериментальных работах уже уделяется промежуточной и близкой к T_c областям температур. Например, обнаруженные недавно в высококачественных монокристаллах YBCO новые особенности проводимости [7, 19, 20] указывают, по мнению авторов, на многокомпонентную природу параметра порядка. В отсутствие общепринятой микроскопической теории представляется важным феноменологическое описание высокочастотного отклика, которое демонстрировало бы общие для любого класса соединений ВТСП закономерности. В работах [8, 10] нами была предложена двухжидкостная модель, описывающая особенности кривых $Z_s(T)$ в интервале $0 < T \leq 1.3T_c$. Здесь мы продемонстрируем выводы этой модели применительно к результатам измерений образца YBCO.

В двухжидкостной модели кристалл с концентрацией носителей n переходит из нормального состояния в сверхпроводящее при температуре $T = T_c$. В результате такого перехода образуются сверхпроводящие с плотностью n_s и нормальные с плотностью n_n носители, имеющие одинаковые заряды e и массы m, причем $n_s(t) + n_n(t) = n$ при любой температуре $t \equiv T/T_c \leq 1$. В микроволновом диапазоне частот ($\omega \tau \ll 1$) компоненты проводимости в двухжидкостной модели имеют очень простой вид:

$$\sigma_1 = \frac{e^2 \tau}{m} n_n, \qquad \sigma_2 = \frac{e^2}{m\omega} n_s, \tag{6}$$

где τ — время релаксации нормальных носителей. Зная экспериментальные значения $\sigma_2(t)$, из (6) находим зависимости $n_s(t)$ и $n_n(t) = n - n_s(t)$. Поэтому единственной недостающей для определения проводимости $\sigma_1(t)$ в (6) и импеданса $Z_s(t)$ в (3), (4) функцией температуры является $\tau(t)$. Можно сформулировать и обратное утверждение: из экспериментальных данных $R_s(T)$ и $\sigma_2(T)$ в рамках двухжидкостной модели можно восстановить зависимость $\tau(T)$.

В [8] мы показали, что все перечисленные выше особенности зависимости $R_s(T)$ в монокристаллах YBCO [6–8] описываются в предположении электрон-фононного механизма рассеяния квазичастиц, когда для $\tau(t)$ в (6) используется формула Блоха– Грюнайзена:

$$\frac{1}{\tau(t)} = \frac{1}{\tau(T_c)} \frac{\beta + t^5 \mathscr{F}_5(\kappa/t) / \mathscr{F}_5(\kappa)}{1+\beta}, \qquad \mathscr{F}_5(\kappa/t) = \int_0^{\kappa/t} \frac{z^5 e^z dz}{(e^z - 1)^2}, \tag{7}$$

где $\kappa = \Theta/T_c$ (Θ — дебаевская температура) и $\beta \approx \tau(T_c)/\tau(0) \ll 1$ — численные параметры. При $\kappa \gg 1$ из (7) получаем известный закон $1/\tau(t) \propto t^5$.

Полагая $\beta = 0.2$, $\kappa = 1.2$ в (7) и используя экспериментальные значения $\sigma_2(t)$ (кружки на вставке к рис. 10) и $\omega \tau(T_c) = (\rho(T_c)\sigma_2(0))^{-1} = 0.004$, из (6) и (2) находим зависимость $R_s(t)/R_s(T_c)$, изображенную линией на рис. 10. Как отмечалось в [10], характерный для монокристаллов YBCO максимум $R_s(T)$ при $T \sim 40$ К может быть описан только при использовании функции $1/\tau(t) \propto t^5$. Добавление квадратичного по температуре члена, отвечающего электрон-электронному рассеянию, в числитель выражения (7) приводит к «сглаживанию» максимума, как это и происходит в монокристаллах ВТСП с тетрагональной структурой.

В рамках двухжидкостной модели можно описать и саму экспериментальную зависимость $\sigma_2(t)/\sigma_2(0) = \lambda^2(0)/\lambda^2(t) = n_s(t)/n$ на рис. 10. При t = 1 ее производная равна -4, что совпадает с известным из двухжидкостной модели Гортера-Казимира $(n_s(t) \propto (1-t^4))$ значением и, как было показано в работах [21], соответствует превышающей единицу средней величине электрон-фононного взаимодействия. Линейные низкотемпературные зависимости $\lambda(T)$ и $R_s(T)$ в монокристаллах YBCO, BSCCO и BKBO хорошо описывались функцией $n_s(t) \propto (1-t)^{\alpha}$, где α — численный параметр [10]. Поэтому при произвольной температуре, $T \leq T_c$, указанному поведению $n_s(t)$ в области низких и близких к T_c температур удовлетворяет формула

$$n_s/n = (1-t)^{\alpha}(1-\delta) + \delta(1-t^{4/\delta}), \tag{8}$$

где $0 < \delta < 1$ — весовой множитель. Линия, изображающая функцию (8) при $\alpha = 5.5$ и $\delta = 0.15$, отлично совпадает с экспериментальными значениями $\sigma_2(t)/\sigma_2(0)$ на рис. 10. Весь набор кривых $\sigma_2(t)$, измеренных нами на кристаллах YBCO, выращенных одина-ковым способом, описывался формулой (8), в которой параметр $\alpha \approx 5.5$ практически не менялся, а варьировался параметр δ в интервале $0.1 < \delta < 0.5$.

5. ЗАКЛЮЧЕНИЕ

В данной работе впервые исследованы температурные зависимости действительной $R_s(T)$ и мнимой $X_s(T)$ частей поверхностного импеданса монокристалла ТВССО. Обнаружен линейный ход $R_s(T)$ при $T \leq 50$ К и измерена глубина проникновения магнитного поля $\lambda(4.2 \text{ K})$. Сформулированы общие для всех высококачественных монокристаллов ВТСП закономерности поведения микроволнового импеданса и комплексной проводимости и указаны особенности в температурных зависимостях этих величин. Измеренные в монокристалле YBCO кривые $R_s(T)$ и $\lambda(T)$ хорошо описываются в рамках двухж идкостной модели, предполагающей электрон-фононное рассеяние квазичастиц, линейную зависимость плотности сверхпроводящих носителей при $T \ll T_c$ и зависимость, соответствующую вблизи T_c формуле Гортера–Казимира.

Работа выполнена в рамках проектов Российского фонда фундаментальных исследований (97-02-16836) и Государственной программы «Сверхпроводимость» (96-060).

Литература

- 1. В. М. Локтев, ФНТ 22, 3 (1996).
- 2. W. N. Hardy, D. A. Bonn, D. C. Morgan et al., Phys. Rev. Lett. 70, 3999 (1993).
- 3. P. J. Hirschfeld and N. Goldenfeld, Phys. Rev. B 48, 4219 (1993); H. Won and K. Maki, Phys. Rev. B 49, 1397 (1994).
- S. D. Adrian, M. E. Reeves, S. A. Wolf et al., Phys. Rev. B 51, 6800 (1995); A. A. Golubov, M. R. Trunin, A. A. Zhukov et al., Письма в ЖЭТФ 62, 477 (1995).
- R. Combescot and X. Leyronas, Phys. Rev. Lett. 75, 3732 (1995); C. O'Donovan and J. P. Carbotte, Phys. Rev. B 52, 4568 (1995); H. Kim and E. J. Nicol, Phys. Rev. B 52, 13576 (1995).
- D. A. Bonn, S. Kamal, K. Zhang et al., Phys. Rev. B 50, 4051 (1994); J. Mao, D. H. Wu, J. L. Peng et al., Phys. Rev. B 51, 3316 (1995); T. Jacobs, S. Sridhar, C. T. Rieck et al., J. Phys. Chem. Solids 56, 1945 (1995).
- 7. H. Srikanth, B. A. Willemsen, T. Jacobs et al., Phys. Rev. B 55, R14733 (1997).
- М. Р. Трунин, А. А. Жуков, Г. А. Емельченко и др., Письма в ЖЭТФ 65, 893 (1997).

- T. Jacobs, S. Sridhar, Q. Li et al., Phys. Rev. Lett. 75, 4516 (1995); S. F. Lee, D. C. Morgan, R. J. Ormeno et al., Phys. Rev. Lett. 77, 735 (1996).
- 10. М. Р. Трунин, А. А. Жуков, Г. Э. Цыдынжапов и др., Письма в ЖЭТФ 64, 783 (1996).
- 11. P. J. Hirschfeld, W. O. Putikka, and D. J. Scalapino, Phys. Rev. B 50, 4051 (1994).
- 12. A. A. Golubov, M. R. Trunin, A. A. Zhukov et al., J. Phys. I France 6, 2275 (1996).
- 13. S. Sridhar and W. L. Kennedy, Rev. Sci. Instrum. 54, 531 (1988).
- 14. Н. Н. Колесников, М. П. Кулаков, Ю. А. Осипьян и др., Сверхпроводимость: физика, химия, техника 4, 957 (1991).
- 15. В. С. Симонов, В. Н. Молчанов, Кристаллография 41, 31 (1996).
- 16. H. Ning, H. Duan, P. D. Kirven et al., J. Supercond. 5, 503 (1992).
- 17. N. Klein, N. Tellmann, H. Schulz et al., Phys. Rev. Lett. 71, 3355 (1993).
- 18. D. A. Bonn, R. Liang, T. M. Riseman et al., Phys. Rev. B 47, 11314 (1993).
- 19. R. Cagnon, S. Pu, B. Ellman et al., Phys. Rev. Lett. 78, 1976 (1997).
- 20. C. J. Stevens, D. Smith, C. Chen et al., Phys. Rev. Lett. 78, 2212 (1997).
- A. A. Mikhailovsky, S. V. Shulga, A. E. Karakozov et al., Solid State Comm. 80, 511 (1991);
 R. T. Collins, Z. Schlesinger, and F. Holtzberg, Phys. Rev. B 43, 3701 (1991); O. V. Dolgov,
 - E. G. Maksimov, A. E. Karakozov et al., Solid State Comm. 89, 827 (1994).