ДРЕЙФ ВЕРТИКАЛЬНЫХ БЛОХОВСКИХ ЛИНИЙ В ДОМЕННОЙ ГРАНИЦЕ С НЕВЗАИМНЫМ СПЕКТРОМ В ПЕРПЕНДИКУЛЯРНО НАМАГНИЧЕННЫХ ПЛЕНКАХ

Г. Е. Ходенков

Совместная хозрасчетная лаборатория «Магнитооптоэлектроника» Института общей физики Российской академии наук при Мордовском государственном университете им. Н. Р. Огарева 430000, Саранск, Россия

Поступила в редакцию 24 октября 1996 г.

В статье рассматривается динамика вертикальных блоховских линий в переменных внешних магнитных полях с учетом магнитостатической невзаимности спектра доменной границы. Вычислена дрейфовая скорость поступательного движения вертикальных блоховских линий, которая оказывается отличной от нуля во втором порядке по слабому осциллирующему полю.

1. ВВЕДЕНИЕ

Под дрейфом блоховских линий понимается их поступательное перемещение вдоль доменной границы под действием осциллирующего внешнего магнитного поля только одной определенной поляризации. Такой эффект впервые был экспериментально обнаружен и исследован в планарно намагниченных пленках железоиттриевого граната (ЖИГ) [1-4]. Наряду с дрейфом блоховских линий в доменной границе в магнетиках различных типов давно наблюдался также и дрейф самих доменных границ. Наличие дрейфа предполагает существование нелинейных механизмов, ведущих к возникновению четных членов в зависимости скоростей доменных границ или блоховских линий от амплитуды внешнего поля.

Для доменных границ в одноосных ферромагнетиках подобный механизм исследовался, в частности, в [5]. Дрейф доменной границы здесь пропорционален квадратичной комбинации магнитных полей различающихся поляризаций. Такой дрейф, в принципе, может вызвать и дрейф вертикальных блоховских линий, но подобные механизмы в настоящей статье не рассматриваются.

Общая теория дрейфа блоховских линий была предложена в [6]. Для линий различных топологических типов с учетом общего вида магнитостатической энергии, наличия комбинации одноосной и кубической анизотропии получена частотная зависимость дрейфа в квадратичном по внешним полям произвольных поляризаций приближении и выяснены законы преобразования для силы, приводящей к дрейфу. В [7] был предложен другой механизм дрейфа вертикальных блоховских линий в перпендикулярно намагниченных пленках, в которых наблюдаются цилиндрические магнитные домены (ЦМД-пленках). Его реализация, однако, требует пространственной неоднородности магнитных параметров материала пленки по обе стороны от плоскости доменной границы.

2. ФОРМУЛИРОВКА ЗАДАЧИ

В настоящей работе исследуется частный механизм дрейфа вертикальных блоховских линий в доменных границах одноосных ферромагнетиков с большой константой анизотропии. Механизм основан на достаточно давно известной невзаимности спектра локализованных на доменных границах магнонов [8,9]. На существование подобного эффекта указывалось В. М. Четвериковым (1986 г.), соответствующие статические эффекты численно рассматривались также рядом других авторов (см. литературу по этому вопросу в [10], где исследовалось влияние магнитостатической невзаимности на движение вертикальных блоховских линий в постоянных полях). Невзаимность спектра модифицирует процессы диссипации в вертикальных блоховских линиях таким образом, что асимметрия скорости ее движения в прямом и обратном направлениях вдоль доменной границы возникает уже в первом нелинейном (квадратичном) приближении по внешнему полю. При исследовании поступательной динамики вертикальных блоховских линий в ЦМД-пленках обычно используются однополярные импульсы магнитного поля достаточной продолжительности. При этом в отличие от [1-4] возможный эффект невзаимности проявляется на фоне превосходящего его по величине основного вклада от нечетных по полю вклалов.

Предложенная в [10] теория относилась к постоянным внешним полям. В настоящей работе ставится задача получить уравнения движения вертикальных блоховских линий в переменных магнитных полях одной определенной поляризации, когда эффект асимметрии скорости, обусловленный в данной случае невзаимностью спектра, выделяется в чистом виде — в виде поступательного дрейфа линий. Рассмотрение ограничивается случаем очень тонких перпендикулярно намагниченных пленок, когда скрученность доменной границы мала и ею, как и ее влиянием на вертикальные блоховские линии, можно пренебречь.

Рассмотрим одноосный ферромагнетик, ось легкой намагниченности которого коллинеарна оси z, а величина фактора качества велика $Q = H_a/4\pi M \gg 1$ (H_a — поле анизотропии, M — модуль вектора намагниченности), содержащий невозмущенную 180-градусную доменную границу в плоскости xz. Описание доменной границы будем проводить с помощью уравнений Слончевского для переменных y = q(x,t) и $\psi(x,t)$, т. е. используем уравнения поверхности доменной границы и величины азимутального угла вектора намагниченности на ней, которые зависят от координаты x (ось x лежит в плоскости доменной границы перпендикулярно оси легкого намагничивания) и времени t:

$$\eta_D \dot{\psi} + \alpha \dot{q} - \eta_D h_z = q'' - \kappa^2 q - (\sin 2\psi)'/2\sqrt{Q}, \tag{1a}$$

$$\eta_D \dot{q} - \alpha \dot{\psi} - h_x \sin \psi + h_y \cos \psi = -\psi'' + \sin \psi \cos \psi - q' \cos 2\psi / \sqrt{Q}.$$
 (16)

Уравнения (1) приведены в следующих безразмерных переменных:

$$x \to \frac{x}{\Lambda}, \quad q \to \frac{q}{\Delta}, \quad t \to t(4\pi\gamma M), \quad h_{x,y} \to \frac{h_{x,y}}{8M}, \quad h_z \to \frac{h_z}{4\pi M},$$
 (2)

причем точки и штрихи у переменных обозначают соответственно производные по tи x. Координата x вдоль доменной границы измеряется в единицах ширины блоховской линии $\Lambda = \Delta/\sqrt{Q}$, где Δ — ширина доменной границы; время t — в единицах $1/4\pi\gamma M$ (γ — магнитомеханическое отношение); положение доменной границы q(x,t) измеряется в единицах Δ. Слабые внешние магнитные поля **h**(*t*) измеряются в указанных в (2) единицах, пропорциональных намагниченности *M*. В уравнения входят малые параметры: $\alpha < 1$ — константа затухания Гильберта, $\kappa < 1$ — константа жесткости доменной границы. В уравнения введен топологический заряд $\eta_D = \pm 1$, причем верхний знак отвечает доменной границе с направлениями намагниченности в доменах $M_z(y \to \pm \infty) = \mp M$, тогда как отрицательный знак — противоположным ориентациям намагниченностей.

Вклад в уравнения (1) «невзаимной» магнитостатической энергии $\propto \sin^2(\psi - q'/\sqrt{Q})$ разложен по малому параметру $1/\sqrt{Q}$. Подчеркнем, что в линейном приближении уравнения (1) ведут к невзаимному спектру пристеночных магнонов, совпадающему с точным [9].

Одно из основных предположений настоящей работы состоит в том, что невзаимные эффекты учитываются повсюду только с точностью до $1/\sqrt{Q}$. Другие основные предположения состоят в выполнении следующих неравенств:

$$|h_{x,y,z}| < 1, \quad \alpha < 1, \quad \omega < \kappa < 1.$$
(3)

На малость амплитуд внешних полей и константы затухания (первые два неравенства) указывалось уже ранее. Последнее неравенство в (3) предполагает, что частоты внешних полей ω (измеряются в единицах $4\pi\gamma M$) лежат ниже частоты однородного резонанса доменной границы $\omega_0 = \kappa$, так что свободные пристеночные магноны не возбуждаются.

Уравнениям (1) отвечает локальный полевой импульс $\eta_D q \psi'$, который в силу (1), как можно проверить, удовлетворяет уравнению непрерывности, имеющему вид

$$-\frac{d(\eta_D q\psi')}{dt} + \alpha(\dot{\psi}\psi' - q\dot{q}') + \frac{\partial}{\partial x} \left\{ -h_x \cos\psi - h_y \sin\psi - \frac{\psi'^2}{2} + q''q - \frac{q'^2}{2} - \kappa^2 \frac{q^2}{2} - \frac{q(\sin 2\psi)'}{2\sqrt{Q}} + \frac{(q'\sin 2\psi)'}{2\sqrt{Q}} - \frac{\cos 2\psi}{4} - \sin 2\psi \frac{q'}{\sqrt{Q}} \right\} = 0.$$
(4)

Согласно (4), изменение локального импульса во времени компенсируется его затуханием за счет вязких процессов и дивергенцией от потока импульса (соответственно второй, и третий члены в левой части). Отметим, что в стационарном случае, рассмотренном в [10], для целей упрощения расчетов использовалось уравнение баланса энергии. Одно из преимуществ использования (4) по сравнению с уравнением баланса энергии состоит в том, что в него даже в нестационарном случае не входят производные по времени от внешних полей.

3. ТЕОРИЯ ВОЗМУЩЕНИЙ

Для получения уравнений движения вертикальных блоховских линий будем исходить из теории возмущений, сформулированной в [11]. Отличия состоят, во-первых, в наличии невзаимных членов в уравнениях (1) и, во-вторых, в использовании уравнения сохранения потока импульса (4), которое существенно упрощает отбор необходимых членов в разложениях и вычисления.

Рассматриваются уравнения (1), в которых в силу неравенств (2) опущены диссипативные члены и вклады внешних полей. Их влияние будет учтено ниже с помощью уравнения (4). Решения уравнений (1) ищутся в виде рядов

$$\psi(x,t) = \psi^{(0)}(u) + \psi^{(1)}(u,t) + \dots$$
(5a)

$$q(x,t) = q^{(0)}(u) + q^{(1)}(u,t) + \dots$$
(56)

Здесь локальная переменная u = x - X(t), где X(t) — координата вертикальной блоховской линии на оси x, уравнение для которой и подлежит определению. Для целей настоящей работы достаточно учесть только приведенные первые два члена в разложениях (5).

Уравнения нулевого приближения имеют вид

$$q^{(0)\prime\prime} - \kappa^2 q^{(0)} = (\sin\psi^{(0)}\cos^{(0)})' / \sqrt{Q},$$
(6a)

$$-\psi^{(0)\prime\prime} + \sin\psi^{(0)}\cos\psi^{(0)} = \cos 2\psi^{(0)}q^{(0)\prime}/\sqrt{Q}.$$
(66)

Так как согласно (ба) $q^{(0)} \propto 1/\sqrt{Q}$, то правая часть (бб) имеет порядок 1/Q и ее можно опустить. Среди решений (бб) с нулевой правой частью (т.е. без учета невза-имности) выберем следующие два, оба отвечающие 180-градусной вертикальной бло-ховской линии:

$$\cos\psi^{(0)} = -\operatorname{th} u, \quad \psi^{(0)'} = 1/\operatorname{ch} u, \quad \eta_L = 1, \tag{7a}$$

$$\cos\psi^{(0)} = \operatorname{th} u, \quad \psi^{(0)\prime} = -1/\operatorname{ch} u, \quad \eta_L = -1. \tag{76}$$

Вертикальной блоховской линии типа (7а) приписывается положительный топологический заряд, $\eta_L = 1$, тогда как типа (7б) — отрицательный, $\eta_L = -1$. Оба приведенных решения имеют одинаковые направления намагниченностей в доменной границе при $x \to \pm \infty$: $\psi(x \to -\infty) \to 0$ и $\psi(x \to \infty) \to \eta_L \pi$.

После этого в приближении $\kappa < 1$ можно записать (см. [10]) следующее приближенное решение уравнения (6а), определяющее деформацию доменной границы в статическом состоянии под действием невзаимной части магнитостатической энергии:

$$q^{(0)} = \frac{\eta_L}{\sqrt{Q}} \left[\frac{1}{\operatorname{ch} u} - \frac{\pi\kappa}{2} \exp\left(-\kappa |u|\right) \right].$$
(8)

Отметим, что знак амплитуды деформации доменной границы зависит только от знака топологического заряда вертикальной блоховской линии η_L и не зависит от знака топологического заряда доменной границы η_D . Подчеркнем, что именно наличие деформации поверхности доменной границы (8) ведет к невзаимным динамическим эффектам в динамике вертикальной блоховской линии.

Уравнения следующего порядка имеют вид

$$q^{(1)\prime\prime} - \kappa^2 q^{(1)} = \eta_D \dot{\psi}^{(0)} + (\cos 2\psi^{(0)}\psi^{(1)})' / \sqrt{Q}, \tag{9a}$$

$$\hat{L}\psi^{(1)} = \eta_D \dot{q}^{(0)} + \cos 2\psi^{(0)} \frac{q^{(1)'}}{\sqrt{Q}} - 2\sin 2\psi^{(0)} \frac{\psi^{(1)}q^{(0)'}}{\sqrt{Q}},\tag{96}$$

где

$$\hat{L} = -d^2/du^2 - \cos 2\psi^{(0)}.$$
(9b)

Следует иметь в виду, что производные по времени в правых частях (9) равны $\partial/\partial t = -X\partial/\partial u$.

Так как, согласно (96) и (8), $\psi^{(1)} \propto 1/\sqrt{Q}$, то второй член в правой части (9а) имеет порядок 1/Q и его можно опустить. После этого в пределе $\kappa < 1$ решение (9а) можно представить в виде

$$q^{(1)} = \frac{\eta_L \eta_D \dot{X}}{2\kappa} \exp\left(-\kappa |u|\right).$$
(10)

Отметим здесь одно важное обстоятельство: сумма деформаций поверхности доменной границы (8) и (10) не имеет определенной симметрии относительно изменения знака скорости вертикальной блоховской линии \dot{X} .

В использованном приближении уравнение (96) сводится к

$$\hat{L}\psi^{(1)} = -\dot{X}\eta_D q^{(0)\prime} + \cos 2\psi^{(0)} q^{(1)\prime} / \sqrt{Q}.$$
(11)

Уравнение (11) корректно, так как ядро оператора \hat{L} , которым служит симметричная функция 1/ch u, автоматически ортогонально антисимметричной правой части уравнения (11). Приближенное решение (11) имеет вид (см. [10])

$$\psi^{(1)} = \frac{\eta_L \eta_D \dot{X}}{2\sqrt{Q}} \left[\frac{u}{\operatorname{ch} u} - \pi \operatorname{sign}(u) \left(1 - \frac{1}{\operatorname{ch} u} \right) \exp\left(-\kappa |u| \right) \right], \tag{12}$$

где sign(u) — знаковая функция. В пределе $\kappa = 0$ приведенное решение точно удовлетворяет исходному уравнению. Проведенная численная проверка показала, что это приближенное решение очень незначительно отклоняется от точного лишь в точках экстремумов последнего.

Отметим, кроме того, что в дальнейшем, как и при вычислении (12), мы пренебрегаем членами $\propto \kappa^2$, так как при вычислении невзаимных эффектов будет использоваться, где это возможно, предел $\kappa = 0$. Отметим еще, что сумма (7) и (12) так же, как и сумма деформаций доменной границы (8) и (10), не имеет определенной симметрии при изменении знака скорости вертикальной блоховской линии \dot{X} . Эти обстоятельства являются определяющими в формировании механизма дрейфа вертикальной блоховской линии.

4. УРАВНЕНИЯ ДВИЖЕНИЯ И ДРЕЙФ ВЕРТИКАЛЬНОЙ БЛОХОВСКОЙ ЛИНИИ

Первых приближений (7), (8), (10), (12) уже достаточно для получения уравнений движения вертикальной блоховской линии с учетом невзаимных эффектов. Проинтегрировав уравнение непрерывности плотности импульса (4) по x в бесконечных пределах и предполагая отсутствие излучения спиновых волн движущейся вертикальной блоховской линии, придем к интегральной форме этого уравнения, которое, фактически, и является уравнением движения вертикальной блоховской линии:

$$-dP/dt + F_q + F_d + F_e = 0, (13)$$

$$P = \eta_D \langle q\psi' \rangle, \tag{14a}$$

$$F_g = -\pi \eta_L \eta_D \bar{q}(t), \tag{146}$$

$$F_d = \alpha \langle \psi \psi' - q \dot{q}' \rangle, \tag{14b}$$

$$F_e = 2h_x(t). \tag{14r}$$

Согласно (13), изменение интегрального импульса вертикальной блоховской линии (14а) во времени компенсируется гиротропной силой (14б), вязкой силой (14в) и действующей со стороны поля $h_x(t)$ внешней силой (14г). Угловые скобки здесь, как и повсюду в дальнейшем, означают взятие интегралов по u в бесконечных пределах. Дифференциальные уравнения в частных производных (1) таким образом сведены к уравнению в обыкновенных производных (13), которое по форме совпадает с уравнением движения материальной точки.

Действие поля $h_z(t)$, которое явным образом не входит в уравнение непрерывности (4), прежде всего приводит к смещению доменной границы в целом, что, в свою очередь, вызывает смещение вертикальной блоховской линии за счет гиротропного эффекта. Кроме того, поле $h_z(t)$ меняет асимптотику необходимых решений (1). Фактически уравнение первого приближения (9а) нужно дополнить членом $h_z(t)$ в правой части. Решение (10) после этого претерпевает изменение: в его правую часть необходимо добавить выражение

$$\dot{\bar{q}} = \eta_D h_z(t) / \kappa^2$$
.

Учет этого дополнительного вклада в выражении для локального полевого импульса $\eta_D q \psi'$ и приводит к гиротропной силе F_g (146). Сама же величина $\bar{q}(t)$ вместе с соответствующим ей углом $\overline{\psi}(t)$ может быть определена из линеаризованных уравнений (1), в которых явным образом учитывается поле $h_z(t)$ и в которых опущена зависимость от координаты x. Обоснование более общего, нелинейного, асимптотического представления можно найти в [11].

Отметим еще, что при записи выражений (14б) и (14г) не учитывались нелинейности по слабым внешним полям. Согласно [5], эти нелинейности при определенных условиях могут привести к дрейфовому движению самой доменной границы и, следовательно, к дрейфу содержащихся в ней вертикальных блоховских линий. Этот эффект не связан с эффектами невзаимности спектра, требует магнитных полей двух различных поляризаций и поэтому здесь не рассматривается.

Теперь, чтобы прийти к уравнениям движения вертикальной блоховской линии, достаточно вычислить с помощью (7), (8), (10) и (12) импульс P (14а) и вязкую силу (14в), входящие в уравнение (13). При вычислении возникающих интегралов, помимо учета неравенств (3), ограничиваемся лишь учетом членов первого порядка по $1/\sqrt{Q}$, причем скорость вертикальной блоховской линии \dot{X} (измеряемая в единицах $4\pi M\gamma\Lambda$) также полагается малой.

Импульс вертикальной блоховской линии имеет известный [11] вид:

$$P \approx \langle \eta_D q^{(1)} \psi^{(0)'} \rangle \approx \frac{\pi \dot{X}}{2\kappa} \left\langle \frac{\exp(-\kappa |u|)}{\operatorname{ch} u} \right\rangle \approx \frac{\pi^2 \dot{X}}{2\kappa}.$$
(15)

Благодаря наличию большого множителя 1/к в (15) можно пренебречь всеми остальными поправками к импульсу.

Вязкая сила (14в) состоит из двух парциальных вкладов: квадратичного по углу ψ и квадратичного по координате доменной границы q. Первый вклад представляем в виде

$$-\alpha \dot{X} \langle (\psi^{(0)\prime})^2 + 2\psi^{(0)\prime} \psi^{(1)\prime} \rangle \approx -2\alpha \dot{X} - \alpha \frac{\eta_D X^2}{\sqrt{Q}} \times \left\{ \frac{1}{\operatorname{ch} u} \left(\frac{1}{\operatorname{ch} u} - \frac{u \operatorname{sh} u}{\operatorname{ch}^2 u} - \pi \operatorname{sign}(u) \frac{\operatorname{sh} u}{\operatorname{ch}^2 u} \right) \right\} = -2\alpha \dot{X} - \alpha \eta_D \dot{X}^2 \frac{1 - \pi}{\sqrt{Q}}.$$
(16a)

При вычислении интегралов учитывалось, что их значения определяются быстро убывающими экспоненциальными множителями с показателями 1, так что под интегралом экспоненциальными множителями с показателями $\kappa < 1$ можно было пренебречь. Кроме того, учитывались известные соотношения: |u|' = sign(u) и $[\text{sign}(u)]' = 2\delta(u)$, где $\delta(u)$ — дельта-функция Дирака. В тех же приближениях для второго парциального вклада в вязкую силу имеем

$$\alpha \langle q' \dot{q} \rangle = -\alpha \dot{X} \langle (q')^2 \rangle \approx -2\alpha \dot{X} \langle q^{(0)\prime} q^{(1)\prime} \rangle \approx \\ \approx \frac{-\alpha \eta_D \dot{X}^2}{\sqrt{Q}} \left\langle \operatorname{sign} u \frac{\operatorname{sh} u}{\operatorname{ch}^2 u} \right\rangle = -\frac{2\alpha \pi \eta_D \dot{X}^2}{\sqrt{Q}}.$$
(166)

Таким образом, полная величина вязкой силы, действующей на вертикальную блоховскую линию, с учетом невзаимных эффектов равна

$$F_d = -2\alpha \dot{X} - \alpha \eta_D (1+\pi) \dot{X}^2 / \sqrt{Q}.$$
(17)

Обратим внимание на наличие в ней квадратичных по скорости членов, не зависящих от топологического заряда вертикальной блоховской линии и обусловленных невзаимностью магнитостатической энергии. Величина вязкой силы не имеет определенной симметрии относительно изменения знака X, так как такой симметрией не обладает ни деформация поверхности доменной границы (сумма (8) и (10)), ни сумма азимутальных углов (7) и (12). Направление движения вертикальной блоховской линии, в котором диссипативная сила максимальна, можно определить с помощью простого правила. Диссипативная сила максимальна, если знак амплитуды динамического (гиротропного) прогиба доменной границы (10) совпадает со знаком амплитуды статической деформации доменной границы (8).

Собирая вместе полученные результаты (14), (15) и (17) и подставляя их в уравнение (13), приходим к уравнению движения вертикальной блоховской линии. Отметим, что вычисление следующих членов рядов (5) с использованием интегрального уравнения сохранения импульса (оно в настоящем подходе выполняет роль условия разрешимости задачи, использованного в [11]) дает возможность получить кубические по скоростям члены, в точности совпадающие с вычисленными в [11].

Ограничимся здесь только тем, что для сравнения приведем кубические члены вместе с вычисленными выше квадратичными членами в диссипативной силе (17). Эффективное уравнение движения вертикальной блоховской линии имеет следующий вид:

$$\frac{\pi^2}{2\kappa} \frac{d}{dt} \left(\dot{X} + \dot{X}^3 \right) + 2\alpha \left(\dot{X} + \frac{\pi^2 \dot{X}^3}{8\kappa} \right) + \frac{\alpha \eta_D (1+\pi)}{\sqrt{Q}} \dot{X}^2 + \pi \eta_D \eta_L \dot{\bar{q}} - 2h_x(t) = 0, \quad (18a)$$

где величина $\dot{\bar{q}}$ (необходимая при учете поля $h_z(t)$) определяется из линейного уравнения

$$\bar{\bar{q}} + \alpha \bar{\bar{q}} + \kappa^2 \bar{q} = \eta_D h_z. \tag{186}$$

Рассмотрим теперь несколько простых следствий уравнений (18). Пусть внешнее поле h_x имеет постоянную величину. Тогда из (18a) следует, что

$$\dot{X} = \frac{h_x}{\alpha} \left(1 - \frac{\eta_D a h_x}{\sqrt{Q} \alpha} \right),$$

где $a = (1 + \pi)/2$ (в [10] ошибочно записан коэффициент $(1 + 2\pi)/2$). Анализ приведенного выражения показывает, что скорость вертикальной блоховской линии максимальна по абсолютной величине, когда противоположны знаки статической (8) и динамической (10) амплитуд деформации доменной границы (т.е. минимальна суммарная деформация).

Рассмотрим теперь переменное внешнее поле $h_x = h \cos(\omega t)$ и вычислим величину дрейфовой скорости вертикальной блоховской линии. Считая невзаимный член малым и решая уравнение (18а) методом последовательных приближений, находим среднюю скорость дрейфового движения вертикальной блоховской линии:

$$\overline{\dot{X}} = 4\pi M \gamma \Lambda \frac{-\eta_D (1+\pi)/\sqrt{Q}}{4\alpha^2 + (\pi^2/2\kappa)^2 (\omega/4\pi M\gamma)^2} \left(\frac{h}{8M}\right)^2.$$
(19)

Отметим, что, как показывают вычисления, в случае переменного поля $h_z(t) = h \cos(\omega t)$ множитель $(h/8M)^2$ в (19) следует заменить на

$$\left(\frac{\pi}{2}\right)^2 \left(\frac{\omega}{4\pi\gamma M}\right)^2 \left(\frac{h_z}{4\pi\gamma M\kappa^2}\right)^2.$$

Конечно, наряду с дрейфом (19) вертикальная блоховская линия испытывает и осцилляционное движение. Здесь следует сказать, что полевая и частотная зависимости (19) совпадают с соответствующими результатами [6] (формула (27)) и что (19) определяет в случае Q > 1 константы, введенные в [6], в рамках механизма невзаимности.

Направление дрейфа определяется теми же соображениями, что и при равномерном движении вертикальной блоховской линии в постоянном поле [10]. В рассмотренном механизме для вертикальных блоховских линий типов (7) направление дрейфа зависит только от знака топологического заряда доменной границы η_D . Отметим, что наряду с рассмотренными типами вертикальных блоховских линий (7) существуют еще два типа с $\eta_L = \pm 1$, но с другими асимптотическими значениями азимутального угла: $\psi(x \to -\infty) = \pi$ и $\psi(x \to \infty) = 2\pi$ ($\eta_L = 1$) или 0 ($\eta_L = -1$). Можно проверить, что для подобных вертикальных блоховских линий меняется знак перед величиной внешней силы (14г) и знак перед членом с $h_x(t)$ в уравнении (18а), но знак в формуле для скорости дрейфа (19) остается неизменным.

В заключение перечислим основные приближения, при которых справедливо уравнение движения вертикальной блоховской линии (18), учитывающее невзаимность спектра доменной границы. Рассматриваются достаточно тонкие пленки перпендикулярно намагниченных одноосных ферромагнетиков с большой величиной фактора качества, $Q \gg 1$, в которых можно пренебречь эффектами скрученности доменной границы. Отметим, что к этому классу относятся также ЦМД-пленки ферритов-гранатов вблизи точки компенсации магнитного момента, где формально параметр ширины вертикальной блоховской линии $\Lambda(\to \infty)$ превышает толщину пленки. Параметр затухания Гильберта α также предполагается малым. Константа жесткости доме́нной границы κ хотя и мала, но ее величина должна превышать пороговое значение, за которым развивается изгибная неустойчивость доменной границы. Амплитуды внешних возбуждающих полей малы, а их частоты лежат ниже частоты однородного резонанса доменной границы.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант № 95-02-05498а).

Литература

- 1. M. L. Dedukh, V. S. Gornakov, and V. I. Nikitenko, Phys. Stat. Sol. (a) 75, K117 (1983).
- 2. В. С. Горнаков, Л. М. Дедух, В. И. Никитенко, ЖЭТФ 86, 1505 (1984).
- 3. Л. М. Дедух, В. И. Никитенко, В. Т. Сыногач, ФТТ 26, 3463 (1984).
- 4. В. С. Горнаков, Л. М. Дедух, В. И. Никитенко, ЖЭТФ 94(3), 245 (1988).
- 5. В. Г. Барьяхтар, Ю. И. Горобец, С. И. Денисов, ЖЭТФ 98, 1345 (1990).
- 6. С. В. Иорданский, В. И. Марченко, ЖЭТФ 91, 1867 (1986).
- 7. А. М. Гришин, А. Ю. Мартынович, ЖТФ 60, 118 (1990).
- 8. J. F. Janak, Phys. Rev. A 134, 441 (1964).
- 9. И. А. Гилинский, ЖЭТФ 68, 1032 (1975).
- 10. Г. Е. Ходенков, ФТТ 38, 1149 (1996).
- 11. А. К. Звездин, А. Ф. Попков, ЖЭТФ 91, 1789 (1986).