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Semiclassical quantization ofthe SU(З)-skугrniоп zero modes is performed Ьу means ofthe 
collective coordinate method. Тhe quantization condition known for S И (2) solitons quantized 
with SU(3) collective coordinates is generalized for SU(З) skyrmions with strangeness content 
difТerent from zero. Quantization of the dipole-type conf!guration with large strangeness content 
found recently is considered as an example and the spectrum and the mass splittings of the 
quantized states are estimated. Тhe energy and Ьасуоп number density of SU(З) skyrmions аге 
presented in the form emphasizing their symmetry in difТerent SU(2) subgroups of SU(З), and 
the lower boundary [ог the static епещу of SU(3) skyrmions is derived. 

1. INTRODUCTION 

The chiral воlitоп approach proposed at first Ьу Skyпnе [1] allows опе to describe the 
properties of baryons with fairly good accuracy [2-4]. Considerable progress has Ьееп made 
recently also in understanding the properties of few-nucleon systerns [5-7]. Moreover, this 
approach allows some predictions for the spectrum of states with baryon number В > 1 [8-13]. 
The quantization ofthe bound states of skyrmions, primarily their zero modes, is а necessary step 
towards realization of this approach. Different aspects of this problem have Ьееп considered, 
beginning with the papers [2,13] and [8,9,14]; however, more general treatment allowing the 
consideration of arbitrary SU(3) skyrmions was lacking until recently. 

In the sector with В = 2 besides the SO(3) hedgehog with the lowest quantum state 
interpreted as ап Н -dibaryon [8,9], the SU (2) torus - а bound В = 2 state - was discovered 
1 О years ago [15]. In the f1avor-symmetric (FS) саве, when аН тевоп masses in the Lagrangian 
are equal to the pion mass, there are three degenerate tori in the (и, d), (d, s) and (и, s) ВU(2) 
subgroups of SU(3). In the flavor symmetry broken (FSB) саве the (и, s) and (d, s) tori are 
degenerate and heavier thal1 the (и, d) torus. Another local minimum with large strangeness 
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Fig. 1. Мар of the different local minima for 
classical configurations with В = 2 in the plane 
(Си - Cd), Cs. H~re Си, Cd and Cs are the 
scalar quark contents of the soliton, (1) is the 
SO(3) hedgehog, (2),(3) and (4) are SU(2) tori in 
the (и, d), (d, s) and (и, s) subgroups of SU(3), 
and (5) is the dipole-type configuration (strange 

skyrmion molecule) 
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content was found recently in the sи(з) extension of the modeI [16]. This configuration is 
of molecular type and consists of two interacting В = 1 skyrmions located in different ВИ(2) 
subgroups of sи(з), (и, s) and (d, s). ТЬе attraction between two В = 1 skyrmions in optimal 
orientation which Ied to the formation of the torus-Iike state is not sufficient for this when 
both skyrmions are located in different SИ(2) subgroups of sи(з) and interact due оnlу to 
опе common degree of freedom. То find this configuration а speciaI algorithm was developed 
aIIowing for the minimization of ап energy functional depending оп eight functions of three 
variables [16]. ТЬе position of the known В = 2 classical configurations representing IocaI 
minima in sи(з) configuration space is shown оп Fig. 1 in the plane with the sca1ar strangeness 
content С s [17] as У -axis and the difference of the И - and D-contents as Х -axis. Since the 
sum of аН scalar contents is equal to unity, theyare defined uniquely at еасЬ point of this plot. 
ТЬе sо(з) hedgehog (1) has аН contents equal to 1/3 [12]. Intuitively this is clear, since the 
basis for the sо(з) solitons is formed Ьу the matrices Л2, -Л5, Л7 and they are located in three 
SИ(2) subgroups of sи(з) оп equal footing. ТЬе three tori in three different SИ(2) subgroups 
of sи(з) are denoted Ьу the Iabels (2), (3) and (4), the и - d symmetric state (2) with Cs = о 

being of special interest. ТЬе configurations (3) and (4) сап Ье connected Ьу isorotation in the 
(и, d) subgroup. ТЬе dipole type state (5) found recently [16] has а binding energy about half 
of that of the torus, i.e., about 0.04 of the mass of the В = 1 skyrmion. 

ТЬе zero modes of solitons Ьауе Ьееп quantized previously in а few cases: for sи (2) solitons 
rotated in the SИ(2) [2] as weH as in the sи(з) configuration space of coHective coordinates 
[13,8,14], and aIso for sо(з) solitons [8,9]. In the case of SИ(2) solitons rotated in sи(з) 
space the quantization condition known as the Guadagnini condition [13] was established; see 
also [18]. 

ТЬе quantization ofthe SИ(2) В = 1 hedgehog yields the spectrum ofbaryons, mainly the 
octet and decuplet, and moderate agreement with the data has Ьееп achieved [4]. Quantization 
of the SИ(2) torus in the sи(з) space of coHective coordinates leads to predictions of а 
rich spectrum of strange dibaryons [19,11]. Most of them are probably unbound if а natural 
assumption conceming the poorly known Casimir energy of the torus-like solitons is made; see 
aIso the discussion in the last section. 

However, these soIitons are оп]у particular cases, since other types of solitons exist, e.g. the 
above-mentioned solitons of dipole type with large strangeness content [16], point (5) оп Fig. 1. 
In generaJ, опе should expect that the тар of the 10caJ minima in the sи(з) conf1guration 
space will соте more and more compIicated with as the baryon number of the configuration 
increases. In some cases the IocaI minima corresponding to Iarger strangeness content mау 
Ьауе greater binding energy than configurations smаП or zero С s. Тherefore, а quantization 
procedure for arbitrary sи(з) so]itons should Ье developed. This is а subject of the present 
paper ([20] contains а preliminary short version). 

2. ТНЕ WESS-ZUМINО-WIПЕN TERМ 

Let us consider the Wess-Zumino (WZ) term in the action which defines the quantum 
numbers ofthe system in the quantization procedure. It was written Ьу Е. Witten in the еlеgапt 
form [21]: 

SWZ = ~i::'~Еj1vа{З"{ J ТrLj1LviJаL{ЗL"{d5х', (1) 

Q 

1942 



ЖЭТФ, 1997, 112, выn. 6(12) Semiclassical quantization . .. 

where n is the 5-dimensional region with 4-dimensional space-time as its boundary, Nc is the 
пиmЬес of colors of the underlying QCD, and Lp. = ut dp.U. As usual, we introduce time­
dependent collective coordinates for the quantization of zero modes according to the relation: 
U(r, t) = A(t)Uo(r)At щ. Integration byparts is possible then in the expression forthe WZ-term 
in the action, and we obtain for the WZ-term contribution to the Lagrangian of the system: 

(2) 

(3) 

with the angu!ar velocities of rotation in the сопfщurаtiоп space defined in the изиа! way, 
А t А = -iWkЛk /2. Summation оуес repeated indices is assumed here and below. The fиnctions 
W Z k сап Ье expressed t\lfough the cl1ira! derivatives Lk : 

i, k = 1, ... , 8, and 

wZf = -(L1, L4Ls + L6L7) - {L2LзLs )/V3 - 2(L8, L4L7 - LsL 6)/V3, 

w zf = -(L2, L4Ls + L6L7) - (LзL 1 Ls )/V3 - 2(Lg, L4L6 + LsL7)/V3, 

W zf = -(Lз , L4Ls + L6L7 ) - (L 1L 2L8)/V3 - 2(L8 , L4Ls - L6L7 )/V3, 

w Z4L = -(L4 , L j L2 - L6L7) - (LзLsL8)/V3 + 2(L8, L 1L7 + L 2L6)/V3, 

W zf = -(Ls, L 1L2 - L6L7 ) + (LзL4L8)/V3 - 2(L8 , L 1L 6 - L 2L7 )/V3, 

W zf = (L6, L 1L2 + L4Ls) + (LзL7L8)/V3 - 2(L8, L 1Ls - L2L4)/V3, 

W zf = (L7 , L 1L2 + L4Ls) - (LзI/6Ls)/V3 + 2(L8, L 1L4 + L2Ls)/V3, 

W zf = -V3(L 1L2Lз ) + (L 8L4Ls) + (L8L6L7 ), 

where (L 1 L2Lз ) denotes the mixed product of vectors L 1, ~, Lз , etc. and 

(4а) 

(5) 

are the third and eighth components ofthe chira! derivatives in the (и, s) and (d, s) BU(2)-зиЬ­
groups. Here [LзL8 ] = -[LзL8 ], etc. 

1 
Rik(UO) = 2" Tr ЛдОЛkuJ 

is а real orthogonal matrix, and W zf are defined Ьу the expressions (5) with the substitution 
Lk -+ Rk • Re!ations similar to (5) сап Ье obtained for WZз and Wz 8 ; they are analogs of 
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w Zз and W Z& [ос the (и, s) or (d, s) SИ (2)-subgroups, thus clarifYing the symmet:ry of the 
W Z -term in the different SИ(2) subgroups of SИ(3). 

The Ьасуоп пuтЬес of the SИ (3) skyrmions сап Ье written a1so in terrns of Li in а [олn 
where its symmet:ry in the different SИ(2) subgroups of SИ(3) is obvious: 

1 
В=--х 

27Г2 

Х J (Ll~Lз)+(ЦL5Lз)+(L6I.qLз)+~[(Ll,ЦI.q-L54)+(~,ЦL6+L51.q)])dЗт. (6) 

The contributions of the three SИ(2) subgroups enter the Ьасуоп пuтЬес оп equal [ооНng. 
In addition, mixed terms corresponding to the interaction of the chiral fields from different 
subgroups асе present also. 

It should Ье noted that the results of calculating the WZ-term according to (5) depend 
оп the orientation of the soliton in the SИ(3) configuration space. When solitons асе located 
in the (и, d) SИ(2) subgroup of SИ(3), only L 1, L2 and Lз асе difierent from zero, W z[l 
and W zf асе both proportional to the B-пuтЬес density, and the well known quantization 
condition Ьу Guadagnini [13] rederived in [18], 

2 
YR = -dLwz/r.luJ& = N В/3 

vГз с , (7) 

applies, where YR is the so-called right hypercharge characterizing the SИ(3) irrep under 
consideration. This relatioll is generalized to [20] 

(8) 

where the sca1ar strangeness content С s is defined in terrns cf the сеа1 parts of the diagonal 
matrix elements of the matrix И: 

с - (1 - RеИзз ) 
s - (3 - Rе(Иll + И22 + Изз») , 

(9) 

and ( ... ) means averaging ос integration оуес the whole 3-dimensional space [17]. тhis formula 
was checked in several cases. 

а) Опе сап rotate any SИ(2) soliton ofthe (и, d) subgroup Ьуап arbitra:ry constant SИ(3) 
matrix containing И4 = ехр( -iv Л4), In this case С s = (l /2) sin2 v [17], and both W Z[l, W zf 
асе proportional to R&& = 1 - (З/2)siп2 v. As а result, the relation (8) is fulfilled exactly. 
Solitons (3) and (4) оп Fig. 1 сап ье obtained [roт the (и, d) soliton (2) Ьу теаns of И4 or 
И2И4 rotations and satisfy relation (8). For example, when the skyrmion is located in the (и, s) 
SИ(2) subgroup of SИ(3) we have 

WZ _ vГзNсВ r;; 
L (u,s) - - 12 ("-1& - V3"-1з). (lOa) 

For skyrmions in the (d, s) SИ(2) subgroup 

W Z vГзNсВ. r;; 
L (d, s) = - 12 ("-1& + V 3"-1з). (10Ь) 
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Since Cs = 0.5 in both cases [17], re1ation (8) ho1ds. То derive (lOa,b) we have noted that 
if the SOlitOI1 is located in апу ВU(2) subgroup of ВU(3) two terrns in (2) and (4а) give equal 
contributions. 

Ь) For the ВО(3) hedgehog the strangeness contel1t was calcu1ated previously, Cs = 

= 1/3, [12,11] and LWZ = О according to [8], at least [от periodic A(t) [9]. The standard 
assumption that the angular velocities are constal1t corresponds to (quasi)periodic behaviour of 
A(t), so, relation (8) is satisfied. 

с) We obtained the relation (8) numerically [от solitons of the [оrrn [16] 

( 11) 

with U(u,d) = ехр(iаЛ2)ехр(iЬЛз ) and UL(u,s) and UR(d,s) being deforrned interacting 
В = 1 ВU(2) hedgehogs. For this ansatz we had [ог the rotated ВU(3) Cartan-Maиrer 
currents [161: 

(12) 

L8i = J3(l3i + тзд/2. 

in terms of the ВU(2) Cartan-Maurer currents lk,i and Tk,i (i, k = 1,2,3) and the functions 
а and Ь, with 

TI(b) = СЬТI - SbT2, Т2(Ь) = СЬТ2 + SbTI, СЬ = cosb, Sb = sinb, Со. = cosa,etc. 

Неге 

ЙL(u,s)=!о+iТk!k, UR(d,s)=QO+iTkqk, k=I,2,3, 

т and т are the РаиН matrices corresponding to the (и, s) and (d, s) SU(2)-subgroups, and 
!(Т + ... + л = 1, qб + ... + Q~ = 1. 

ц = TLiTt, UО = VT, V = U(u, s) ехр(iаЛ2), т = ехр(iЬЛз )U(d, s). 

The chirally invariant quantities, B-питЬес density (6), and the second-order and Skyrrne terrn 
сопtriЬиtiопs to the static energy have the same [огт in terrns of L ki апd L ki . The [оrrnиlа 
(4а) should Ье writtеп then as 

(4Ь) 

with W zt given in terrns of L~ according to (5). In the fоl1оwiпg we shall omit the index «Т» 
everywhere. Rеlаtiопs (10а,Ь) сап Ье checked easily with the help of (4), (5) and (12). 

Usiпg (12) апd (5) we obtain 

L JЗ( ) w Zg = 2 (11121з) + (flf2fз) + So.[(Il f2 - fl)2,)З + fз) - (dsо.)З, fз - 2db)] . (13) 
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It follows [roт (13) and (4) that at large relative distances, for arbitrary but not overlapping 
solitons, and for а = О, we have 

ymin = ~LWZ = _1_/WZLd3X = 
R /3 8 2/371'2 8 

= 4~2 /[(11121З) + (rlr2rз)Jd3 :r = -(BL + B R )/2, (14) 

where B L and BR are the baryon питЬет located il1 the left (u,s) and right (d,s) ВU(2) 
subgroups of ВU(3). Relation (8) holds since CS = 1/2 for both (и, s) and (d, s) skyrmions. 
Equation (14) does not hold in the general case for overlapping solitons, since there is по 
conservation law for the components of t!le Wess-Zumino telm. 

For the strange skyrmion molecule [16] we should calcu1ate (3), (5" (8) with W Z8 = 

= (R8k (V) + RkS(T»W zt. The contribution -(BL + B R )/2 also арреат with some additional 
terms which tum out to Ье small numerically. We obtained CS = 0.475 and YR'in = -0.87 
in the FSB case, so relation (8) is satisfied with good accuracy. 

It is natural to assume that (8) is valid with good accuracy for апу ВU(3) skyrmions. 
However, corrections to this relation are not excluded Ьу our treatment. 

З. ROTATION AND STATIC ENERGY 

We start with the well known Lagrangian density of the Skyrme model widely used in the 
literature since [2]. It depends оп the parameters F 7r = 186 МеУ (experimental value) and the 
Skyrme parameter е: 

р2 - - 1 .. - - - 2 
L Sk = - 16 Tr LJ1.LIL + 32е2 Tr(LJ1.L v - L v LJ1.) + LM (15) 

We take е = 4.12, close to the value suitable for describing, with а bit more complicated 
Lagrangian, the mass splittings inside the ВU(3) multiplets of baryons [4]. The chiral and 
flavor-symmetry-breaking mass terms L M in (15) depending 011 meson masses wil1 Ье described 
in detail il1 Section 4. 

The expression for the rotation energy density of the system depending оп the angular 
velocities of rotations in the ВU(3) collective coordinate space defined in Section 2 сап Ье 
written in nlOre compact form than previously [20,16]: 

1 { 2 2 2 1( 2 2 + --2 (812 + 845) + (845 + 867) + (867 - 812) + - (2813 - S46 - 857) + (2823 + 847 - S56) + 
16е 2 

+(2834 + 816 - 827)2 + (2835 + 817 + 821i + (2836 + 814 + 825)2 + (2837 + 815 - 824)2) }. (16) 

Here 8ik = WiLk - WkLi, i, k = 1,2 ... 8 are the ВU(3) indices, and 834 = (834 + /3884)/2, 

835 = (835 + /3S85)/2, 836 = (-836 + /3886)/2,837 = (-837 + /3887)/2, similar to Lз and L8• 
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То get (16) we used the identity: SabScd - SadScb = SacSbd' The formula (16) possesses 
remarkable symmetry relative to the different SU(2) subgroups of SU(З). The functions L 8 or 
L8 do not enter (16) as well as expression (6) for the baryon number density. The functions i;;; are 
connected with the body-flXеd angular velocities of ВU(3) rotations Ьу means oftmnsformation 
(see (8) аЬоуе) 

(17а) 

or 

(17Ь) 

Rik(V t ) = Rki(V) and Rik(T) are real orthogonal matrices, i, k = 1, ... 8, and UJ; = 
= 2('"-'; - Rk1(UO)'"-'k'"-'I)' Expressions for R ik are given in the Appendix for the general case 
of the parametrization (11). Relations (17) hold just because we are opemting with rotated 
functions Lki in (12). 

The expression for static energy сап Ье obtained from (16) Ьу means of the substitution 
UJi -+ 2L i and Sik -+ 2[LiLk ], [16]. It сап Ье written in а form which emphasizes quite clearly 
the lower boundary for the static energy proportional to the winding (baryon) number of the 
system: 

- : 2 : 2)] 2 F1t -} 3 +[Lз + Lз - 3(n45 + n67)] + [Lз - Lз - 3(n67 - nI2)] + M.t. + 311" еВ d т, (18) 

where iз is the baryon number density given Ьу the integmnd in (6), ~ = F1t er and Dik = [LiLk). 

Wheh i = 4,5, k = 3 th~n Lз should Ье taken in ni3. For i = 6,7 Lз should ье taken. In (18) 

we used relations Lз - Lз = Lз and 

-2 -:2: 2922 
(Lз + Lз ) + (Lз + Lз) + (Lз - Lз ) = "2(Lз + L8)· 

The chiral- and f1avor-symmetry-breaking mass term M.t. will Ье considered in Section 4. 
From (18) we have the inequality 

-- 2 F7r E stat - M.t. ~ 311" -В. 
е 

(19) 

This inequality was obtained first Ьу Skyrme [1] for the ВU(2) model апд is а particular case 
of the Bogomol'ny-type bound. 

Eight diagonal moments of inertia and 28 otf-diagonal ones define the rotation епещу, а 
quadratic form in '"-'i'"-'k, according to (16), (17). Тhe analytical expressions for the moments of 
inertia are too lengthy to Ье reproduced here. Fortunately, it is possible to perform calculations 
without explicit analytical formulas, Ьу substituting (17) into (16). 
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The expression for E rot simp1ifies considerably when the (и, d) ВU(2) soliton is quantized 
in the ВU(3) space of collective coordinates: 

(20а) 

or 

(20Ь) 

where 

Wi = [Rik(UO) - бik]LVk = 2(fJk - f2бik + 10fiklfl)LVk 

for i, k = 1,2,3, UJ and W have three components in the (и, d) ВU(2) subgroup with iiJ2 = 

4[UJ2f2 - (iiJf)2]. 
То derive (20Ь) we used also that 

wl + ... + w; = 2(1 - lo)(LVl + ... + LV;). 

Here li parametrizes the chiral derivatives of UО : UJdkUO = iTili,k, and the functions 10, f 
define the matrix Uо in the usual way 

Equation (20Ь) defines the moments of inertia of arbitrary ВU(2) skyrmions rotated in 
ВU(3) configuration space and i1lustrates well that the ВU(2) case is much simpler than general 
ВU(3) case. The analytica1 expressions for the moments of inertia ofaxially symmetric ВU(2) 
skyrmions, also rotated in II-direction, сап Ье found in [11,19]. 

When the ВU(2) hedgehog is quantized in the ВU(3) collective coordinates space опlу 
two different moments of inertia enter [8,13,14]: в/ = 02 = 0з and 04 = 05 = 06 = 07. 
For the ВО(3) hedgehog the rotation energy also depends оп two different moments ofinertia: 
02 = 05 = 07 and 0\ = 0з = 04 = 06 = 08 [8,9]. In the сзsе of the strange skyrmion 
тоlесиlе we obtained four different diagonal moments of inertia [20]: 0\ = 02 = 0N; 0з; 
04 = 05 = 06 = 07 = 0s and 08. Numerically the difference between 0N and 0з is not large 
while 08 is а bit greater than 0s (see ТаЫе 1 below). In view of the symmetry properties of 
the cOllfiguration тапу off-diagona1 moments of inertia are equa1 to zero. Few of them are 
different from zero, but at least Оllе order of magllitude smaller than the diagollal momellts of 
illertia, e.g. 046 and 057' For this reason we shall neglect them here in making estimates. 

The Lagrangian of the system сап Ье written in terms of the angular velocities of rotation 
alld тотепи of inertia in the form (in the body-fixed system) 

0N 2 2 0з 2 0s 2 2 2 2 08 2 
L rot = T(LV\ + LV2) + 2"LVз + T(LV4 + LV5 + LV6 + LV7) + 2" LV8 + 045(LV4LVS - LV6LV7) + .... (21) 

The above-mentioned relations between the differellt moments ofinertia ofthe strange тоlесиlе 
саll Ье obtained in the following way, at large distances between the two В = 1 hedgehogs. 
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ТаЫе 1 
Тhe values of the masse(. Mcl, the mass term M.t. (in MeV), the strangeness content 
Св and the moments of шеrtiа (in 10-3 MeV- 1) for the hedgehog with В = 1 and the 
dipole configuration with В = 2 [16] in the flavor-symmetric (FS) and flavor-symmetry-broken 
(FSB) cases. Here M.t. is included in Мс/, F1f = 186 МеУ and е = 4.12. Тhe асспrасу 

of calcu1ations is at least '" 0.5% in the masses and few % in other quantities 

в M c1 M.t. CS 8N 8s 8з 88 8З8 846 = -857 

FS 1 1702 46 - 5.55 2.04 - - - -
FS 2 3330 87 0.495 4.14 7.13 2.86 8.14 0.01 0.63 

FSB 1 1982 199 - 3.24 1.06 - - - -
FSB 2 3885 380 0.475 2.44 4.13 1.70 4.77 0.002 0.24 

When the В = 1 skyrmion is located in the (и, s) SU(2) subgroup of SU(3) we obtain from 
(12) and (16): 

(22а) 

where we have retained the notations used for the (и, d) В = 1 soliton. 
For the В = 1 skyrmion in tlle (d, s) subgroup: 

О s 2. 2 2 2 О N [2 2 1 r-; 2] Lrot(d, s) = "2«.Ul + (.U2 + (.U4 + (.us) + 2 (.U6 + (.U7 + 4«.UЗ - v 3(.U8) , (22Ь) 

with [13,14] 

(22с) 

where F(r) is the рroШе function of the В = 1 hedgellOg a11d /0 = cosF. Relatio11s (22с) 
follow immediately from (20Ь). Note, that the combinations of (.uз and (.U8 which enter the 
expressions for the rotation energy (22а, Ь) and the WZW-term (10) are orthogol1al to each 
other, as it follows from general arguments. 

When two В = 1 hedgehogs in different subgroups, (d, s) al1d (и, s), are located at large 
distal1ces, we should take tlle sum of the expressiol1s (22а), (22Ь). Simple relatiol1s for the 
В = 2 moments of inertia 8 il1 terms of the В = 1 inertia О then appear: 

8N = 20s , 8s = ON + Os, 8з = 0N /2, 88 = 30N /2 = 38з. (23) 

For interactil1g hedgehogs in а molecule these relatiol1s hold 0111y approximately (see ТаЫе 1 
where some l1umbers are corrected in comparisol1 with [20]). 

111 the flavor-symmetric (FS) case аН meson masses il1 the Lagrangian are equal to the 
pion mass, the distal1ce betwee11 centers ofboth skyrmiol1s in the molecule equals '" 1.05 Fm. 
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Fig. 2. тз-У -diagrams for the lowest 
SU(3) multiplets allowed for the еше of [SU(2)]З 
eonfigurations, ansa,fZ (11): singlet (р, q) = (О, О), 

oetet (1, 1), decuplet (3, О) and antideeuplet (0,3). 
The lower dashed line indieates isomultiplets with 
у = -1 ~ YR'in, т = N; the upper dashed line 
SllOWS nonstrange isomultiplets with У = В = 2 

In the FSB case the kaon mass is included in the Lagrangian (see the next section) ahd the 
distance between soIitons centers in the molecule is '" 0.75 Fm [16,20]. 

The Hamiltonian of the system сап Ье obtained Ьу the canonical quantization 
procedure [2, 14,8] which we reproduce here for completeness. ТЬе components of the body­
fIxed SU(З) angular momentum J{! сап Ье defIned as 

(24) 

This defInition coincides identically with another опе, 

(25) 

where 7г oifЗ = dL / d.4f30i. In the canonical quantizatiol1 procedure the substitution 

dL . d 
7Г0ifЗ = -.- --+ -t--

dAf3Q dAf3Q 
(26) 

is made. The commutation relations 

(27) 

then follow immediately, jikl are the SU(З) structure constants. 
After the standard quantization procedure the Hamiltonian ofthe system, Н = CA.JidL / dCA.Ji -

- L, is а bilinear function of the generators JiR . For the states belonging to а definite SU(З) 
irrep the rotation energy сап Ье written in the simplifIed form: 

ТЬе second order Casimir operator ofthe SU(З) group is С2(SUЗ) = {l/З)(р2+ q2+рq)+р+q, 
N is the right isospin (see Fig. 2) and р, q are the numbers of the upper and 10w indices in the 
tensor describing the ВU(3) irrep (р, q). ТЬе terrns linear in the angular velocities present in 
the Lagrangian due to the Wess-Zumino-Witten term асе cancelled in the Hamiltonian, but 
they lead to the quantization condition discussed in the previous section. Corrections of the 
order of 8~5/8~ and (8N - 8з)/8N have Ьееп neglected in (28). Note that YJ['in сап take 
arbitrary noninteger values because it is а quantity similar to the strangeness content С s [17], 
not а quantum l1umber. У R is а quantum number and сап take опlу integer values. ТЬе usual 
spatiaI angular momentum is J = О here. ТЬе correct description of the usual spatial rotations 
demands the introduction of а second set of collective coordinates, as it was done previously [11] 
for the case of flavor ВU(2). It was shown that the states of the Iowest energy Ьауе J = о. 
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It is clear from expression (28) that for 68 -+ О the right hypercharge satisfies YR = YJ['in = 
= 2L;: z / У'З, othetwise the quantum correction due to UJg wi11 Ье infinite. For solitons located 
in (и, d) ВU(2) we have 68 = О and YR = 2L;:Z / У'З = В, the quantization condition [13,18] 
with N c = 3. 

Forthe skyrmion molecule [16] we have L;:z ~ -у'З/2, orYJ['in ~ -1, as was explained 
аЬоуе. The last term in (25) is absent for YR = -1, and because of the evident constraints 

р+ 2q q + 2р 
-->YR >---3 - - 3 

(29) 

the following 10west ВU(3) multiplets are possible: octet, (р, q) = (1,1), decuplet (3, О) and 
antidecuplet (О, 3), Fig. 2. The sum ofthe classical mass ofthe soliton and rotational energy for 
the В = 20ctet, 10 and (О is equal to '" 3.53, 3.74 and 3.89 GeV for YR = -1 (the flavor-sym­
metric FS-case). The whole FSB mass term described in the following section, дМ + 8MFS, 
should Ье added to these numbers. When the FSB mass term is included in the classical mass 
the sum Мсl + E rot equals 4.23, 4.59 and 4.84 GeV for the octet, decuplet and (О. Only the 
mass splitting part oftIle mass term, 8MFSB, should Ье added to these numbers (see ТаЫе 2 
below). The octets with YR = О and 1 have МС! + E rot + дМ equal to 4.61 and 4.73 ОеУ 
according to (28) (the FS scheme of calculation). The ВU(3) singlet with YR = О has energy 
equal to МВ = Мсl + 3/868 which, according to ТаЫе 1 equals с::: 3.38 GeV in the FS case. 
This сап Ье compared with the ВО(3) hedgehog mass, МН = 3.272 GeV for the same values 
of the parameters [12]. 

4. MASS SРLIТПNG WIТНIN ВU(3) MULTIPLETS OF DIBARYONS 

The mass splittings inside ВU(3) multiplets are defined as usual Ьу the FSB part of the 
mass terms in the Lagrangian density: 

F 2m 2 р2 т2 _ F 2m 2 
L M = "16 " Tr(U + ut - 2) + к к 24 " 7г Tr(1 - VзЛ8)(U + ut - 2). (30) 

Whel1 ('и, d) ВU(2) solitons are rotated in the «strange,) direction Ьу means of tIle matrix 
U4 = ехр( -iVЛ4), (30) lead~ to the substitution 

Р;т; -+ Р;т; + Si1l2 v(F](m}( - Р;т;) 

[4,11]. For the ansatz (11), after averaging over аН phases ill the matrix A(t) except v, we 
сап rewrite the mass term in the energy density in the foHowing form: 

or, for рк = р" 

F 2m 2 
M.t.=~x 

4 

х [(3 - V\ - V2 - VЗ) (~ + (:t -1) СВ) + (:t -1) (2vз - V\ - 1J2) sin; v]. (31b) 
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Here Vl, V2 and Vз are real parts ofthe diagonal matrix elements ofthe matrix И, depending 
оп the functions !i and qi. For the ansatz (11) we have (ЬО = О) 

(32а) 

ао and ЬО are the asymptotic values of the functions а, Ь. For the local minimum found 
recent1y [16] , ао = ЬО = о. In tllis case (32а) simplifies to 

Vl = са(съ!о _. sъ!з), 

V2 = ca(cbqo + sъqз). 
(32Ь) 

Here VЗ is given Ьу (32а) since it does not depend оп ао, Ьо . If ао, ЬО are different from zero 
the ansatz (11) should Ье written 

to ensure the correct behaviour of U(r) at r ~ 00. For example, if а = ао = 7г /2, Ь = ЬО = О 
then Vl = 1, V2 = Vз = !oqo - !зqз - !lql - !2q2, i.e., the skyrmion is located in the (d, s) 
ВU(2) subgroup. 

In the FS case the part of tlle mass term 

(33) 

is included in the classical mass M cl which is minimized. In the FSB case the second part, 

(34) 

also is included iп minimized M cl , see ТаЫе 1. lп the FS case tlM :::::: 1016 МеУ, while iп 
FSB case it is squeezed rv 3 times. . 

The mass sрlittiпg inside ВU(3) multiplets is defined Ьу the term 

(35) 

which is поt included iп M cl and is considered as а реrturЬаtiоп in both cases. Here v is the 
апglе of rotation in the «попstгапgе,) direction. For two undeformed hedgehogs at large relative 
distances we have Vl + V2 - 2vз ~ 2(1 - cos F) where F is the profile function of the В = 1 
hedgehog, and the coefficient of sin2v is the same as for the rotated В = 1 (и, d) hedgehog. 
Note that iп the case of а strange skуrmiоп molecule with stгапgепеss content close to 0.5 the 
tenn (35) dеfiпiпg the mass splitting within multiplets is negative - direct1y opposite to the 
case whеп the попstгаngе ВU(2) sоlitопs are used as starting сопfigurаtiопs and are rotated in 
the «strange,) direction. The quantity 8М should Ье added to the sum of M cl + Erot calculated 
at the end of Section 3, and tlM should Ье added in the FS case. 
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ТаЫе 2 
ТЬе values of 1, (lj2)shr V, the mass splitting БМ (in MeV) and the masses М (in GeV) for 
the octet, decuplet and antidecuplet of dibaryons in the flavor-symmetric and flavor-symmet­
ry-broken cases. ТЬе binding епеrю' of the configuration Е = (М• + М2 - M)j(Ml + М2) 
relative to the final state F.st. is presented. MFS = Mcl,FS + Ef'ot,FS + АМ + БМFS, 

MFSB = Mcl,FSB + Ef'ot,FSB + БМFSВ 

Ip,Q;Y,T) 1 _(sin2 v/2) БМFS MFS БМFSВ M FSB F.st. €FS 

18,1,1/2) -2/10 -4/10 -385 4.16 -124 4.10 AN 0.14 
18, 0,1) -1/10 -11/30 -353 4.19 -114 4.11 ЗN 0.15 
18, О, О) 1/10 -3/10 -289 4.26 -93 4.13 АА 0.14 

18,-1,1/2) 3/10 -7/30 -224 4.32 -73 4.15 АЗ 0.14 

110,1,3/2) -1/8 -3/8 -361 4.40 -117 4.47 'f.N 0.11 
110,0,1) О -1/3 -320 4.44 -104 4.48 ЗN 0.11 

110,-1,1/2} 1/8 -7/24 -280 4.48 -91 4.50 АЗ 0.11 
110, -2, О) 1/4 -1/4 -240 4.53 -78 4.52 ~.: 0.10 

110, 2, О) -1/4 -5/12 -401 4.52 -130 4.72 NN 0.04 
110,1,1/2) -1/8 -3/8 -361 4.55 -117 4.72 AN 0.06 
110,0,1) О -1/3 -320 4.59 -104 4.74 ЗN 0.07 

110, -1,3/2) 1/8 -7/24 -280 4.63 -91 4.75 'f.S 0.09 

То obtain the mass splitting within ВU(3) multiplets we should calculate, as usual, the 
matrix elements of the function 

- Sln V = -(1 - Dgg(v») = -(1 - 1) (1'2) 1 1 
2 3 3 

for each component of the ВU(3) multiplets described Ьу the ВU(3) D-functions. Then the 
quantity 1 is equal to 

1 = '"" с8;(р.ч);(р.ч)., с8;(р,ч);(р,ч)., 
L...J О,О,(};У,Т,'l,;У,Т,Т, O,O,O;YR,N,M;YR.,N,M' (36) 

expressed through the Clebsch-Gordan coefficients of the ВU(3) group [22}. lп the case of а 
strange molecule we have YR = -1, N = 1/2 for the octet and decuplet, N = 3/2 for (О. 
The values of «1/2)sin2 v) and the mass splittings are shown in ТаЫе 2. 

For the octet the allowed strangeness of states is -1, -2, -3, for the decuplet it ranges 
from -1 to -4, and the nonstrange dibaryons appear in (О, 27-plet, etc. (Fig. 2). The rnasses 
of the dibaryons calculated according to the FS and FSB schemes differ, but not very much 
since the increase ofthe total mass term in the FS case is compensated Ьу the decrease of E rot 

in comparison with the FSB case. The states 110, -2, О) and 11-0,2, О) are supposed to have 
J = 1 and the corresponding energy is added, rougbly estimated according to оur previous 
results [11 J. 

When FSB mass terms are included in the minimized static епещу M cl theyare squeezed 
Ьу а factor ......, 3 due to the smal1er dimensions of the kaon cloud in comparison with the pion 
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cloud [16], therefore, the moments of inertia are greater and Erot is smaller in the FS case 
(see ТаЫе 1). The absolute values oftlle masses are controlled Ьу the Casimir energy [23-26], 
which has the order of magnitude '" -1 GeV for В = 1 [25,26] and '" -2 GeV for В = 2 
molecules. 

For the 27-plet the value of the difference of 1 for states with maximum and minimum 
hypercharge is 3/8, just as for decuplet and antidecuplet. The relative binding f is shown in 
ТаЫе 2 because it is less sensitive to the method of ca1culation. М1 and М2 are the masses 
of the final baryons available due to strong interactions, ca1culated within the same approach 
(theory-to-theory comparisol1). l11clusion of configuration mixing usua11y leads to ап increase 
of tlle mass splitting Ьу '" 0.3-0.4 [27]. Since the results for the mass splitting shown in ТаЫе 
2 depend оп the starting configuration, and both FS and FSB ca1culation schemes are 110t 
consistent Ьу themselves, опе should use some interpolating procedure, e.g., similar to the 
slow- rotator approximation used successfully in [4] for the description of the hyperon mass 
splitting. 

5. CONCLUSIONS AND DISCUSSION 

The quantization scheme for the ВU(3) skyrmions has Ьееп presented and the quantization 
condition knowl1 previously [13] is generalized for skyrmions with arbitrary strangeness content, 
which allows опе to investigate the consequences of the existence of different local minima in 
ВU(3) configuration space. Tlle quапtizаtiоп condition (8) is valid for а11 known В = 2 local 
minima shown in Fig. 1. It is proved rigorously in several cases; in other cases it was confirmed 
Ьу numerical ca1culation. However, some corrections to relation (8) cannot Ье exc!uded. The 
moments of inertia of arbitrary ВU(3) skyrmions сап Ье caIcu!ated with the help of formu!as 
(16), (17). Both static and rotationa! energies as well as the baryon number density of ВU(3) 
skyrmions are presented in а form which makes apparent their symmetry in different ВU(2) 
subgroups of ВU(3). 

For the dipole-type configuration Witll Cs = 0.5 ош resu!ts are in qualitative agreement 
with those obtained iп [28] for the interaction potential of two strange baryons located at !arge 
distances. The absolute values ofthe masses ofbotll В = 1 and В = 2 states are controlled Ьу the 
Casimir епегgiеs, which make а contribution of order N~ to the masses ofthe configurations [22-
25]. However, the dipo!e-type configuration does not differ much [roт the В = 2 configuration 
within the product ansatz which we used as а stаrtiпg point in ош caIculations [16]. For this 
reason the Casimir energy ofthe ciipo!e сап Ье close to twice that [ог the В = 1 so!iton and сап 
сапсе! in the binding епегgiеs of dibaryons. We conclude therefore that а new branch of strange 
diЬаryопs iп addition to those kпоwп previous!y [8,9,11] is predicted with а small uncertainty 
in the absolute va!ues of masses due to the Casimir energy, re!ative to the corresponding В = 1 
states. The va!ues of masses al1d bil1dings we оЬtаiпеd here cannot, however, Ье taken too 
seriously, поt 0111y because the Casimir el1ergy is poor!y known but a!so because the 110n-zero 
mode contributions c!ose!y connected with the Casimir energy (principally the breathing and 
vibrational modes) have not Ьееп taken into account. These effects not only decrease the Ыпdiпg 
energies [6,7], but сап make тапу of the states listed in ТаЫе 2 uпЬоuпd. 

The prediction Ьу chiral so!iton mode!s of а rich spectrum of baryonic states with different 
values of stгапgепеss геmаiпs опе of the intriguing properties of such models. The comparison 
with predictions of the quark or quark-bag mode!s [29,30] is of specia! interest. Some of such 
111Ode!s predict the existence ofbound strange baryonic states [зо], simi!ar to the chiral so!iton 
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approach. 
It is difficult to observe these states, especially those which аге аЬоуе the threshold [ог 

decay due to strong interactions. The searches [ог the Н -dibaryon predicted at first within the 
MIТ quark-bag model [29] Iшvе Ьееп undertaken in difТerent experiments, without success 
till now. It SllOUld Ье noted that observation of the H-dibaryof1 сап Ье especially difficuJt Ьу 
the folIowing reasons. First, its dimensions аге small in the framework of the cblra! soliton 
approach [12,111, R H ,...., 0.5-0.6 Fm. Therefore, estimates of the H-dibaryon production 
cross section based оп the assumption that its dimensions аге close to the dimensions of the 
deuteron тау Ье too optimistic. 

Second, it is not clear how tlle transition from ап H-dibaryon to two В = 1 solitons 
сап proceed. Schwesinger proposed а nontrivial parametrization allowing [ог tlle transition 
from the ВО(3) В = 2 hedgehog to the В = 2 SИ(2) toms (described in [31]). Witl1in 
this parametrization the two cOl1figurations аге separated Ьу а potel1tial Ьатег; тогеоуег, 
t!le Ьеlшviоur of some function in this parametrization is singular. So, if such а transition is 
not possible with smooth fUl1ctiol1s, it would Ье difficu!t to find H-dibaryol1 il1 coalescel1ce 
experimel1ts. However, further il1vestigations of the predictions of efТective field theories 
providing а new approach to the description of the fundamental properties of matter аге of 
interest. Tlle l1еаг-thгеsllОld еl1lшпсеmепt in рЛ system wilich was observed тапу years ago 
il1, e.g., the reactiol1 рр --> рЛК+ [32] al1d confirmed il1 recent investigations [33] тау Ье а 
cOl1firmatiol1 of soliton modeJ predictions, because withil1 tllis approach there is по difТerence 
between геа! al1d virtual levels. 

The problem ofthe H-dibaryon discussed iп [8] is that ofparity doublil1g: the ВО(3) soliton 
has по definite parity, so а special symmetrization procedure should Ье done [8]. А similar 
problem exists for tlle strange molecules also. For tlle classical configuration of molecular type 
we have difТerent В = I skyrmions il1 difТerent parts of space and in difТerent SИ(2) subgroups 
of SИ(3). The molecule has по definite parity, but these configurations аге invariant under 
tlle combined operation of parity transformation and interchange of SИ(2) subgroups. Tlle 
electric dipole momentum of the molecule is difТerent from zero (this was noted Ьу М. Luty). 
(Anti)symmetrization should Ье performed, similar to the Н -particle case, providing а s1ate of 
definite parity and removing the e.d.m. of the quantized s1ate. 

1 ат thal1kful 10 Bernd Schwesinger [ог valuable discussions and suggestions il1 the il1itial 
st.ages of the work. 1 ат il1debted also to G. Holzwarth and Н. Walliser for their il1terest in 
tlle problems of SИ(3) skyrmions and useful discussions during ту visits to Siegen Ul1iversity, 
aI1d to В. Е. Stern [ог llelp in the l1umerical computations. 1 appreciate also the support Ьу 
Volkswagenstiftung, FRG at the begiI1ning of the present work. 

Tlle work supported Ьу the Russian FoundatioI1 [ог FUI1damental Research, grant 95-02-
03868а. 

APPENDIX 

Неге we sketch the expressions [ог the matrix elements Rik which COI1nect the rotation 
angular velocities in body-fixed and rotated coordinate systems: 

V = ИL(u,s)ехр(iаЛ2), т = ехр(iЬлз)UR(d,s), UО = VT. 
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Definitions of UL(U, s) and UR(d, s) in terms of fиnctions 10, 000' 1з and qo, 000' qз are given 
following expression (12)0 

We use the notations: 

Н2 = н + f;, q~2 = q~ + q~, Р1+ = fofl + 12fз, Р1- = fofl - f2fз, 
Р2+ = fof2 + 111з, Р2- = 10f2 - 11/з, Fз+ = fо/з + 11/2, Fз- = 101з - 1112, 

Q: = qOQl + q2qз, Ql = qOql - q2qз, Q~ = QOq2 + qlqз, Q2 = qoq2 - qlqз, 

sbbo = sin(b - Ьо ), Qe = CbQ2 + sbQ:, Qs = SbQ2 - CbQ~, 

др = IJ + It - li - 11, Ьр = Л - If + й - 11, с+ = Cb+bo(qi - q~) - 2Sb+boqlq2, 

в+ = sbHo(q~ - q~) + 2CHboqlq2, с- = Cbbo(q5 - q~) + 2sььо qоqз, 
в- = sbbo(q5 - qj) - 2сььоqоqзо (А.l) 

Here ао and ЬО are asymptotic values of fиnctions а and Ьо For the strange тоlесиlе [16] 
we have ао = ЬО = 00 When, eogo, а = ао = 7r /2, Ь = Ьо = О hold, the matrix И сопеsропds 
to solitons located in the (d, s) ВU(2) subgroup of SU(З)о 

R II = S2aos2a(l - It2/2) + C2aoC2alo - C2b-2Ьо qО - S2Ь-2ьоqз, 
R!2 = С2ао!З + 82Ь-2ЬЛО - С2Ь-2ЬЛЗ, 

R 13 = S2aoc2a(l - It2/2) - C2aoS2alo, 

R I4 = s2aocaF; - c2aosa/2 + C2bo-bq2 + S2bo-bq\, 

R 15 = -s2аосаFI- + c2aosaf! - C2bo-bql + S2bo-bq2, 

R 16 = s2aosaF2+ + c2aocal2, R I7 = -S2сц,SаFt- - C2ao Ca!l, R t8 = -VЗSао Ссц,!t2' 
R 2t = -С2аlз - S2b-2Ь,qО + С2Ь-2ьо qз, 

R 22 = 10 - C2b-2ЬоЧо - S2Ь-2ЬЛЗ, 

R2з = S2а1з, R 24 = Sa/l + C2bo-bql - S2bo-ьq2, 

R 25 = Sal2 + S2bo-bqt + C2bo-bq2, R 26 = -ca!t, R 27 = -Са !2, R 28 = 00 

RЗ1 = S2aC2ao(l - Н2/2) - C2a S2ao!O, RЗ2 = -S2ао!З, 
Rзз = C2ac2ao(l - Н2/2) + S2aS2ao!O - 1 + q~2/2, 
RЗ4 = СаС2аоР2+ + sas2cц,12, RЗ5 = -сас2аоFI- - sas2ao/l' 

RЗ6 = 8аС2аоР2+ - CaS2ao!2 - Qe, RЗ7 = -sас2аоFI- + cas2ao/l - Qs, 

vГз 2 2 
R 38 = -т(С2ао!I2 + qI2), 

~! = -S2асаоF2- + saoc2a/2 - S2b-boq! - С2Ь-ЬЛ2, 

~2 = -8ао !1 - С2Ь-ЬЛI + S2Ь-ЬЛ2, ~з = -Сао С2аР2- - sao s2a12, 

~4 = СаоСадр + saosalo - СььоЧо + sььоqз, 
R 45 = 2сао саFз+ + SаоSа!з + sbboqo + Сьь./з, 
~6 = Caos ailp - 8ao calo, R 47 = 2саоs аFз+ - 8аоСа !З, ~8 = -VЗсаоF2- о 
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R S2 = -SаJ2 - S2b-Ьoq! - C2b~boq2, Rsз = Cao C2aF l+ + Sao S2a!l, 

R S4 = -2саосаFз- - SаоSаfз - sbboqo - сььоqз, 

R 55 = саосаБF + SaoSa!O - cbboqo + 8ььо qз, 

R 56 = - 2сао sаFз- + 8ао Са !З, R57 = Сао 8аБ F - 8аоСа !О, R S8 = ...;3cao F1+, 

R 61 = -ВаоВ2аР2- - Сао С2а!2, R 62 = Сао !" 
R6з = -Sаос2аF2- + cao s2af2 + CboQ~ + SboQi, 

R 64 = Sa"Cat.F - СаоВа!О, 1Ц,S = 28аосаFз+ - СаоSа!З' 
R 66 = SaoSat.F + СаОСа!О - с- - С+, 1Ц,7 = 2sао sаFз+ + Саос...!з - s- - s+, 

R68 = -...;3[s аоF2- + CboQ~ + SьД,]. 

R 71 = Sao S2a FI+ + Сао С2а!', R 72 = Сао !2, 
R 73 = Sao c2a F ,+ - Cao S2a!1 - CboQi + SbQ;, 

R 74 = -2Sа,,саFз- + Сао са lз, R 75 = SаоСаБр - CaoSa!O, 

R76 = -2sао sаFз- - СаоСа!З + s- - S+, R 77 = s"",Sa6p + с...оСаlо - с- + С+, 

R 78 = V3[sa"F1+ - SboQ~ + СЪДi], 
_v'З 2 _v'З 22 r;; + 

R8] - -2S2aI12, R 82 = О, Rsз - -2(C2a!12 + Q'2)' Rв4 = V 3c"F2 , 

R 85 = -...;3саF1-, R 8fJ = V3sa(F2+ + Qc), 

3 
R 87 = -...;3Sа(F1- - Qs), R 88 ;:; 2(q;2 - !t2)' (А.2) 

The R8i do not depend оп ао, Ьо because the matrices >'2, >'3 commute with ).S. ТЬе 

orthogonality of the real matrices R(V} and R(T) сап ье checked immediately from these 
expressions. 
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