ОПТИЧЕСКИЕ И МАГНИТООПТИЧЕСКИЕ СВОЙСТВА МНОГОСЛОЙНЫХ ПЛЕНОК Fe/Cu: ВЛИЯНИЕ ПЕРИОДА МОДУЛЯЦИИ И ФАЗОВОГО ПРЕВРАШЕНИЯ ОЦК-ГЦК В ЖЕЛЕЗЕ

М. М. Кириллова, И. Д. Лобов, В. М. Маевский, Л. В. Номерованная, А. А. Махнев, Г. А. Болотин, Ф. А. Пудонин

> Институт физики металлов Уральского отделения Российской академии наук 620219, Екатеринбург, Россия

Поступила в редакцию 11 июня 1996 г.

Методом эллипсометрии и с помощью измерения экваториального эффекта Керра $(\delta_p$ -эффект) в спектральной области 0.25–7 мкм изучены оптические и магнитооптические свойства многослойных пленочных образцов системы Fe/Cu, приготовленных высокочастотным распылением на подложке Si (100). Получены зависимости оптических характеристик, плазменной ω_p и релаксационной γ_0 частот электронов проводимости и δ_p -эффекта от периода модуляции D=12.5–100 Å. Обнаружено аномальное поведение оптических и магнитооптических характеристик в короткопериодных структурах Fe/Cu. Результаты обсуждаются в рамках феноменологической теории оптических и магнитооптических свойств для слоистых структур. При анализе экспериментальных данных учитывался ряд факторов, таких как косвенное обменное взаимодействие между слоями железа, наличие переходного слоя на внутренних границах, возможное «подмагничивание» меди, а также формирование ГЦК-фазы железа в тонких слоях.

1. ВВЕДЕНИЕ

Интерес к исследованию металлических сверхрешеток с чередующимися ультратонкими магнитным и немагнитным слоями стимулируется как поиском новых электронных явлений, связанных с понижением размерности слоев (переход $3D \to 2D$), так и необходимостью углубления представлений об их магнитном состоянии. В этих сверхрешетках обнаружен гигантский магниторезистивный эффект, обусловленный антиферромагнитным типом косвенного обменного взаимодействия между магнитными слоями (см. работы [1–3] для Fe/Cr и Co/Cu). Характер межслоевого обменного взаимодействия оказывает решающее влияние также на магнитооптические свойства слоистых систем [4]. Важнейшей особенностью объектов этого класса является усиление магнитооптической активности в ультрафиолетовой области спектра (например, в Pt/Co [5]). Резонансное увеличение эффекта Керра в видимом диапазоне наблюдали на «сэндвичах» Fe/Ag/Fe и Fe/Au/Fe [6, 7]. Природа этих явлений окончательно не выяснена и активно обсуждается.

В последние годы большое внимание уделялось изучению тонкопленочных систем Fe/Cu, в частности их магнитных характеристик. Структурными исследованиями установлено, что с уменьшением толщины слоя $d_{\rm Fe}$, граничащего с медью, кристаллическая решетка железа изменяется от ОЦК (α -фаза) к ГЦК (γ -фаза), при этом критическая

толщина для $\alpha \to \gamma$ превращения оценивается как $d_{\rm Fe} \le 1.5$ нм [8, 9]. Экспериментальные сведения о магнитном состоянии γ -Fe, полученные разными методами, включая нейтронографию и спектроскопию Мессбауэра, крайне противоречивы (см. [10, 11] и обзор [12]). Теперь уже очевидно, что существует различие в магнитных состояниях γ -Fe, полученного в виде частиц в матрице меди и в виде тонких пленок в слоистой системе с медью. В первом случае реализуется антиферромагнитное состояние с температурой Нееля $T_N = 69$ K [13]. Во втором случае может реализоваться как антиферромагнитное, так и ферромагнитное состояние, причем, согласно [14], температура Кюри может достигать значений 400-578 К. Беннет с соавторами [15] наблюдали полярный эффект Керра на эпитаксиально выращенном «сэндвиче» γ -Fe/Cu/ γ -Fe при $\lambda = 0.63$ мкм и комнатной температуре. Наряду с усилением эффекта они заметили также его осцилляционную зависимость от толщины d_{Cu} . Усиление эффекта Керра в многослойной пленке α -Fe/Cu при $\lambda = 0.56$ мкм («плазменный» край поглощения в меди) замечено также в работе [16]. Имеется точка зрения, согласно которой увеличение магнитооптической активности связано с индуцированием магнитного момента в d- и p-оболочках атомов меди, граничащих с ферромагнитным железом, т. е. с эффектом «подмагничивания» меди под влиянием обменного Fe-Fe-взаимодействия. Поиску доказательств в пользу спиновой поляризации меди в системах Fe/Cu, Co/Cu в настоящее время уделяется большое внимание [17-19]. С другой стороны, ведется активный теоретический поиск изменений в электронной структуре тонких слоев, связанных с понижением их размерности. Имеющиеся экспериментальные данные по этому вопросу очень ограничены.

В настоящей работе на одной системе образцов выполнено комплексное исследование оптических и магнитооптических свойств многослойной периодической структуры Fe/Cu. Основная цель работы состояла в изучении эволюции электронных характеристик и магнитного состояния при изменении периода модуляции слоистой структуры и фазовом α - γ -превращении в слоях железа. Ставилась также задача теоретического анализа оптических и магнитооптических спектров Fe/Cu в рамках феноменологической теории, учитывающей многократные отражения от границы раздела сред.

2. ЭКСПЕРИМЕНТ

Нами исследована система многослойных пленок Fe/Cu с фиксированным отношением толщины слоев $d_{\rm Fe}/d_{\rm Cu}=2/3$: (Fe 40 Å/Cu 60 Å)₁₀, (Fe 30 Å/Cu 45 Å)₁₄, (Fe 20 Å/Cu 30 Å)₂₀, (Fe 15 Å/Cu 22.5 Å)₂₇, (Fe 10 Å/Cu 15 Å)₄₀, (Fe 8 Å/Cu 12 Å)₅₀ и (Fe 5 Å/Cu 7.5 Å)₈₀. Период модуляции $D=d_{\rm Cu}+d_{\rm Fe}$ в этих структурах изменялся в пределах 12.5–100 Å. Образцы были приготовлены при комнатной температуре методом высокочастотного распыления в атмосфере аргона с давлением $1.1 \cdot 10^{-3}$ Торр на установке, описанной в работе [20]. Скорость осаждения железа составляла 54.7 Å/мин, а меди — 36.4 Å/мин. Подложками служили пластины Si (100). Верхним слоем во всех случаях была пленка железа. В той же камере были напылены пленки чистых Fe и Cu с d=1000 Å. Толщины слоев определяли по скорости и времени напыления. Исследование поперечных сечений ряда образцов, проведенное методом просвечивающей электронной микроскопии, подтвердило периодичность многослойной пленки по толщине.

Кристаллическая структура образцов изучалась методом рентгеновской дифракции на аппарате ДРОН-3М в K_{α} -Cu-излучении. Исследования показали, что во всех образцах кристаллическое состояние Fe и Cu выражено достаточно четко. В ультракоротких слоях ($d < 10 \, \text{Å}$) зерно сильно измельчается, при этом происходит частичное нарушение дальнего порядка. Однако «гало» на рентгенограммах, свидетельствующее о наличии аморфной фазы, не было обнаружено. Форма дифракционных рефлексов указывает на наличие напряжений в кристаллической решетке железа, которые нарастают по мере уменьшения толщины слоев. Полученные нами данные подтвердили результаты ранних рентгенографических исследований, согласно которым медные слои имеют хорошо определенную ГЦК решетку с минимальным искажением, не зависящим от толщины слоев и отношения $d_{\text{Fe}}/d_{\text{Cu}}$, а кристаллическая решетка железа с уменьшением толщины слоя испытывает фазовый переход ОЦК-ГЦК. Известно [11], что стабилизация γ -фазы Fe в системе Fe/Cu во многом определяется условиями напыления, включая температуру подложки. Проведенный нами анализ показал, что в (Fe 15 Å / Cu 22.5 Å) $_{27}$ имеются только «следы» γ -Fe. В образцах (Fe 10 Å/Cu 15 Å)₄₀ и (Fe 8 Å/Cu 12 Å)₅₀ фракции α - и γ -фазы почти равноценны, а \mathbb{R} (Fe 5 Å/Cu 7.5 Å)₈₀ вклад γ -Fe становится преобладающим (~ 80%).

Измерения эффективных показателя преломления n_{eff} и коэффициента поглощения k_{eff} были выполнены на автоматизированном эллипсометре с одним ($\lambda=0.25$ –2.5 мкм) и двумя ($\lambda=2.5$ –7 мкм) отражениями от образца. Угол падения света на образец составлял $\varphi_1=76\,^\circ$ при длинах волн $\lambda<1.5$ мкм и $\varphi_2=81\,^\circ$ при $\lambda>1.5$ мкм. На этой же установке измерялись оптические свойства железа и меди. Погрешность в измерении n_{eff} и k_{eff} составляла 2–5%. Значения n_{eff} и k_{eff} были использованы для вычисления эффективных значений действительной ε'_{eff} и мнимой ε''_{eff} частей диэлектрической проницаемости, а также оптической проводимости σ_{eff} .

Измерения экваториального эффекта Керра (нечетного по намагниченности эффекта относительно изменения интенсивности отраженного света $\Delta I/I$ при экваториальном намагничивании образца и p-поляризации падающей волны) выполнены на установке [21] в диапазоне спектра 0.3–2.4 мкм при угле падения света на образец $\varphi = 70\,^{\circ}$. Полевые зависимости экваториального эффекта Керра изучены при $\lambda = 0.6$ мкм и полях $H \leq 9$ кЭ.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

3.1. Оптические свойства

Определение оптических постоянных и диэлектрической проницаемости металла эллипсометрическим методом основано, как известно, на различии коэффициентов отражения для света, поляризованного в плоскости падения (p-поляризация) и перпендикулярно ей (s-поляризация). При отражении света от границы металла под углом φ амплитудные коэффициенты отражения r_p и r_s даются формулами Френеля, а комплексный показатель преломления N выражается через отношение r_p/r_s :

$$N = \sin \varphi \left[1 + \operatorname{tg}^2 \varphi \left(\frac{1 - r_p / r_s}{1 + r_p / r_s} \right)^2 \right]^{1/2}. \tag{1}$$

Если среда является слоистой, то соотношение (1) по измеренной величине r_p/r_s определяет эффективный комплексный показатель преломления N_{eff} [22].

Обсуждение экспериментальных данных по частотной зависимости эффективной диэлектрической проницаемости $\varepsilon_{eff}=N_{eff}^2(\omega)$ будет проведено в рамках теории, исходящей из простой модели сверхрешетки, состоящей из чередующихся слоев двух металлов с возможным включением переходного слоя на границе между ними. Независимо от величины периода модуляции оптические свойства многослойной периодической структуры с учетом макроскопических размеров образцов по толщине могут быть описаны на основе введения макроскопической характеристики — диэлектрической проницаемости $\varepsilon(z)$, где z — поперечная к плоскости слоев координата. При решении задачи отражения допустимо перейти к моделированию неоднородной среды с периодической зависимостью диэлектрической проницаемости от координаты z, рассматривая повторяющийся фрагмент многослойной периодической структуры в виде совокупности слоев с индивидуальными проницаемостями ε_i . При этом толщины выделяемых слоев d_i должны соответствовать участкам относительной однородности $\varepsilon_j(z)$. Если исходить из простейшего случая бислойной периодической структуры, то расчет коэффициентов отражения r_p и r_s , выполненный с учетом многократных отражений на границах раздела сред и набегов фаз на толщине слоев [22] при условиях, что диэлектрические проницаемости велики, а толщины слоев малы по сравнению с глубиной скин-слоя в данном материале,

$$|\varepsilon_j| \gg 1, \quad \frac{\omega}{c} |\sqrt{\varepsilon_j}| d_j \ll 1$$
 (2)

 $(\omega$ — частота, c — скорость света в вакууме), приводит с использованием соотношения (1) к следующему выражению для эффективного показателя преломления:

$$N_{eff} = \left[\frac{1}{D}(\varepsilon_1 d_1 + \varepsilon_2 d_2)\right]^{1/2} + \frac{i\omega}{2c}(\varepsilon_1 - \varepsilon_2)\frac{d_1 d_2}{D},\tag{3}$$

где $D=d_1+d_2$ — период бислойной сверхрешетки, i — мнимая единица. Второе слагаемое в (3), определяемое разностью диэлектрических проницаемостей слоев, в силу неравенств (2) является малой поправкой, и в указанных приближениях (малые толщины слоев по сравнению с глубиной скин-слоя) металлическая сверхрешетка в оптическом отношении представляет собой эффективную среду со средневзвешенной по толщинам диэлектрической проницаемостью

$$\varepsilon_{eff}(\omega) = \frac{1}{D} \sum_{j} \varepsilon_{j} d_{j} \tag{4}$$

независимо от числа слоев в повторяющемся фрагменте. Средневзвешенными величинами являются, следовательно, действительная ε'_{eff} и мнимая ε''_{eff} проницаемости, а также эффективная оптическая проводимость

$$\sigma_{eff}(\omega) = \frac{\omega}{4\pi} \operatorname{Im} \varepsilon_{eff}. \tag{5}$$

Перейдем к обсуждению экспериментальных данных. Рассмотрим оптический отклик системы Fe/Cu в инфракрасной области $\lambda=3$ –7 мкм, где наблюдается монотонный рост ε'_{eff} и ε''_{eff} с увеличением λ . В условиях, когда длина свободного пробега

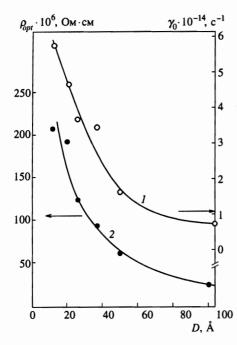


Рис. 1. Зависимость частоты релаксации электронов проводимости (1) и оптического сопротивления (2) от периода модуляции в системе Fe/Cu с отношением $d_{\rm Fe}/d_{\rm Cu}=2/3$

электрона в поле световой волны сравнима или больше толщины слоев $(l \geq d_j)$, на величину ε_j оказывают влияние размерные эффекты. Поэтому использование объемных значений диэлектрических проницаемостей Fe и Cu в выражении (4) становится некорректным. В связи с этим моделирование ε_{eff} в инфракрасной области нами не проводилось. Однако друдевский характер спектральных зависимостей ε'_{eff} и ε''_{eff} дает возможность оценить параметры электронов проводимости — плазменную ω_p и релаксационную γ_0 частоты — и проследить за их эволюцией с изменением периода модуляции D. Значения ω_p были получены нами из прямолинейного участка графика

$$1/(1-\varepsilon_{eff}')=\omega^2/\omega_p^2+\gamma_0^2/\omega_p^2$$

(вкладом от виртуальных электронных переходов при этом пренебрегалось). Как и ожидалось, изменение ω_p с уменьшением D оказалось незначительным. Для толстослойных образцов ОЦК-Fe/Cu (D=50–100 Å) среднее значение $\hbar\omega_p$ составляет 4.4 эВ. В структурах с ультратонкими слоями ($D\leq 37.5$ Å), в которых фракция ГЦК-Fe составляет 50–80%, величина $\hbar\omega_p$ снижается до 3.8 эВ. Зависимость частоты релаксации $\gamma_0(D)$ имеет существенно другой характер (рис. 1). Наблюдаемый резкий рост γ_0 указывает на дополнительное рассеяние электронов от внутренних межслоевых границ, число которых на глубине скин-слоя увеличивается с уменьшением периода многослойной структуры. Увеличению γ_0 способствует также дополнительное рассеяние электронов от границ зерен вследствие их сильного измельчения, особенно в образцах со значениями $D\leq 20$ Å. На рисунке 1 представлены также данные об оптическом сопротивлении $\rho_{opt}=4\pi\gamma_0/\omega_p^2$, рассчитанном в низкочастотном пределе $\omega\to 0$ по значениям ω_p и γ_0 . Можно заключить, что характерная зависимость $\rho_{opt}(D)$ в тонкослойных многослойных периодических структурах определяется, главным образом, процессами рассеяния электронов проводимости.

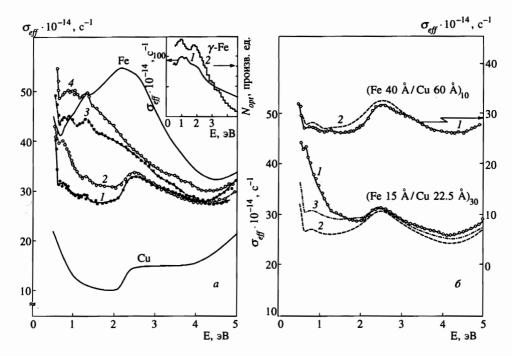


Рис. 2. Дисперсия оптической проводимости σ_{eff} : a-1— (Fe 30 Å / Cu 45 Å)₁₄, 2— (Fe 20 Å / Cu 30 Å)₂₀, 3— (Fe 8 Å/Cu 12 Å)₅₀, 4— (Fe 5 Å/Cu 7.5 Å)₈₀. На вставке: 1— оптическая проводимость γ -Fe, 2— гистограмма плотности оптических межзонных переходов в γ -Fe. 6— 1— Экспериментальные данные для σ_{eff} , 2— расчет в модели резких границ, 3— расчет по модели с переходным слоем $d_0 = 4$ Å

Теперь обратимся к рассмотрению оптического отклика системы Fe/Cu на участке спектра 0.5–5 эВ. Дисперсионные кривые σ_{eff} для образцов Fe/Cu и оптические проводимости чистых железа и меди приведены на рис. 2а, б. В рассматриваемой области спектра оптические свойства железа определяются межзонным механизмом поглощения света. В оптическом спектре ОЦК-Fe формируется интенсивная полоса поглощения с максимумом при 2.2 эВ. Численными расчетами оптических свойств ферромагнитного α -Fe, выполненными в одноэлектронном приближении (см., например, работы [23, 24]), установлено, что эта полоса образуется наложением нескольких парциальных вкладов от межзонных переходов внутри 3d-подзоны с направлением спина против намагниченности (\downarrow) (переходы d–d, p-типа). Вклад в $\sigma_{\rm Fe}$ от межзонных переходов в системе зон со спинами по направлению намагниченности (↑) незначителен из-за почти полной заполненности $3d_{\uparrow}$ -зоны и резкого сокращения фазового объема для возбуждения электронов. В меди при энергиях фотона E < 2 эВ оптические свойства определяются внутризонным механизмом поглощения света. Край межзонного поглощения при $E \approx 2.1$ эВ обусловлен возбуждением электронов с вершины 3d-зоны в зону проводимости (переход $L_3 \to L_2'$ (E_F)). В рамках рассмотренной выше модели эффективной среды (выражение (4)) высокая оптическая проводимость α -Fe будет «разбавляться» по мере увеличения толщины слоя меди меньшими по величине вкладами $\sigma_{Cu}(\omega)$. Ввиду большого контраста оптических свойств этих металлов результирующие спектры σ_{eff}

приобретают новые черты дисперсии. В частности, как уже отмечалось в работе [25], доминирующей особенностью кривой σ_{eff} становится пик поглощения при 2.4–2.6 эВ, который образуется наложением вкладов от межзонных переходов электронов как в слоях железа, так и в слоях меди.

Результаты моделирования оптических спектров многослойных периодических структур с использованием выражения (4) и значений оптических постоянных, полученных нами на толстопленочных образцах железа и меди, приведены на рис. 26. Видно, что теория, учитывающая многократные отражения световой волны от резкой границы между средами, вполне удовлетворительно описывает дисперсию σ_{eff} слоистой системы с «толстыми» металлическими слоями. Таким примером служит образец (Fe 40 Å/Cu 60 Å)10. Однако для образцов с более тонкими слоями ОЦК-Fe и меди соответствие между опытными и модельными кривыми σ_{eif} сохраняется только при энергиях фотона $E \ge 2$ эВ. В качестве примера мы приводим модельные кривые оптической проводимости для образца (Fe 15 A/Cu 22.5 A)₂₇. Рисунок 26 показывает, что в области спектра $E \le 1.5$ эВ расчетные кривые предсказывают более низкое оптическое поглощение по сравнению с наблюдаемым на опыте. Вполне закономерно связать это расхождение с наличием в реальных объектах переходного слоя между железом и медью, который может представлять собой смесь ОЦК- и ГЦК-фракций железа и меди. Как оказалось, учет переходного слоя толщиной $d_0 = 4\,$ A, оптические постоянные которого соответствуют данным для образца (Fe 5 A/Cu 7.5 A)80, улучшает согласие между экспериментальной и модельной кривыми σ_{eff} в указанной области спектра, однако расхождение в амплитуде поглощения сохраняется. С уменьшением D отличие в дисперсии опытных и модельных кривых σ_{eff} существенно нарастает.

Можно ожидать, что усиление низкоэнергетического поглощения в короткопериодных структурах Fe/Cu обусловлено влиянием внутризонного механизма поглощения. Однако оценки вкладов σ_{intra} , полученные с использованием приведенных выше параметров ω_p и γ_0 , показали, что в интересующей нас спектральной области E=0.5-2 эВ это влияние незначительно. Так, при энергиях фотона E=1 эВ величина σ_{intra} в образцах с периодом модуляции $100 \leq D \leq 12.5$ Å изменяется от $1.7 \cdot 10^{14}$ до $6 \cdot 10^{14}$ с $^{-1}$, в то время как наблюдаемый на опыте рост оптической проводимости составляет $\Delta \sigma_{eff} = 26 \cdot 10^{14}$ с $^{-1}$.

Одной из причин возникновения дополнительного низкоэнергетического поглощения, на наш взгляд, является модификация электронной структуры в тонких слоях железа и меди, в частности, формирование поверхностных электронных состояний вблизи уровня Ферми E_F . Для бислойных образцов Fe/Cu и «сэндвичей» Cu/Fe/Cu этот вопрос был детально исследован в [12] в рамках самосогласованных вычислений энергетических зон железа линейным APW-методом. В толстых пленках роль поверхностных состояний в формировании оптических спектров невелика, однако с утоньшением слоев вклад поверхностных состояний электронов в процессы низкоэнергетического межзонного возбуждения значительно возрастает. Именно такая тенденция прослеживается в поведении оптических спектров Fe/Cu (рис. 2a).

Еще более существенная трансформация кривой оптической проводимости замечена нами при фазовом α - γ -превращении в слоях железа. Так, для образца (Fe 8 Å/Cu 12 Å)₅₀ с почти равноценными фракциями α - и γ -железа наблюдается усиление межзонного поглощения в ближней инфракрасной области спектра (рис. 2a, кривая 3), в результате чего основной пик поглощения центрируется при энергиях E=0.7-1.4 эВ. Дальнейшее увеличение фракции γ -Fe в (Fe 5 Å/Cu 7.5 Å)₅₀ приводит к росту ин-

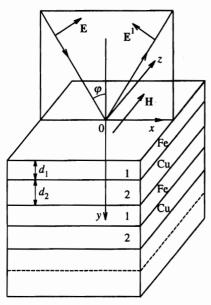


Рис. 3. Схема измерения экваториального эффекта Керра на многослойной периодической структуре. Вектор электрической напряженности падающего луча ${\bf E}$ лежит в плоскости xy (рполяризация). Намагничивающее поле ${\bf H}$ параллельно оси z. φ — угол падения света

тенсивности этого пика (рис. 2a, кривая 4). Формула (4) была применена нами к двум тонкопленочным образцам с D=12 и 20 Å для определения спектральной зависимости оптической проводимости γ -Fe. Хотя процедура вычитания вкладов σ_{Cu} и $\sigma_{\alpha\text{-Fe}}$ из результирующей кривой σ_{eff} является приближенной, спектральный профиль $\sigma_{\gamma\text{-Fe}}$ оказался практически идентичным в обоих случаях. Таким образом, при фазовом $\alpha - \gamma$ -переходе, сопровождающемся увеличением параметра кристаллической решетки железа примерно на 26%, максимум основной полосы межзонного поглощения смещается от энергии 2.2 эВ к энергии 1.1 эВ. Форма кривой $\sigma_{\gamma\text{-Fe}}$ хорошо коррелирует с энергетической зависимостью плотности оптических переходов N_{opt} , полученной с помощью формулы Спайсера [26]. Для расчета N_{opt} использовались данные о плотности электронных состояний N(E) в тонких ферромагнитных слоях ГЦК-Fe, обладающих двумерной трансляционной симметрией [27]. К вопросу о характере магнитного упорядочения γ -фазы в наших образцах мы вернемся в следующем разделе при обсуждении магнитооптических данных.

3.2. Магнитооптические свойства

а) Теория экваториального эффекта Керра для многослойной периодической структуры

Схема наблюдения экваториального эффекта Керра показана на рис. 3. Будем считать, что все среды в многослойной периодической структуре имеют симметрию не ниже кубической и однородно намагничены. При заданной толщине d_j в линейном по намагниченности приближении каждый слой описывается тензором диэлектрической проницаемости

$$\hat{\varepsilon} = \varepsilon_j \begin{pmatrix} 1 & -iQ_j & 0 \\ iQ_j & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad j = 1, 2,$$
 (6)

где ε_j — диагональная диэлектрическая проницаемость и Q_j — магнитооптический параметр среды, пропорциональный ее намагниченности насыщения ($|Q_j|\ll 1$). В

модели резких границ величина экваториального эффекта Керра при отражении p-поляризованного света от бесконечной многослойной периодической структуры (с числом периодов $N \to \infty$) находится, согласно [22], из выражения

$$\delta_p = \frac{\Delta I}{I} = 2 \operatorname{Im} \frac{\left[(G^2 - G_1^2) a_2 + (G_2^2 - G^2) a_1 \right] \sin 2\varphi}{(\cos^2 \varphi - G^2)(G_1^2 - G_2^2)},\tag{7}$$

где φ — угол падения света,

$$G_j = \frac{g_j}{\varepsilon_j}, \quad a_j = \frac{Q_j \cos \beta_j}{\varepsilon_j}, \quad g_j = \sqrt{\varepsilon_j - \sin^2 \varphi},$$
 (8)

 β_j — угол между вектором намагниченности j-го слоя и осью z (экваториальный угол). Параметр G в (7) определяется выражением

$$G = \frac{(1 - r_p)\cos\varphi}{1 + r_p},\tag{9}$$

где r_p — коэффициент отражения от многослойной периодической структуры в отсутствие намагниченности, который может быть рассчитан по формулам, приведенным в [22] и [28]. Отметим, что бесконечность многослойной периодической структуры означает фактически, что ее полная толщина превосходит толщину эффективного скинслоя.

Рассмотрим многослойные периодические структуры (рис. 3), в которых отношение толщин слоев d_2/d_1 постоянно. Обычно в многослойных периодических структурах выполняются условия $d_j/\lambda \ll 1$, где λ — длина световой волны в вакууме. Если в разложении разностей вида $1-\exp(-i4\pi g_j d_j/\lambda)$ по степеням d_j/λ ограничиться линейным и квадратичным членами, то формула (7) может быть представлена в виде

$$\delta_p = \operatorname{Im}\left(\sum_{j=1}^2 \frac{d_j}{D} A_j Q_j \cos \beta_j + \frac{D}{\lambda} \sum_{j=1}^2 B_j Q_j \cos \beta_j\right),\tag{10}$$

где D — период структуры, а коэффициенты A_j и B_j являются функциями диэлектрических проницаемостей ε_1 , ε_2 , угла падения света φ и отношения d_1/d_2 . Явные выражения коэффициентов A_j и B_j приведены в [22]. Таким образом, в линейном по d_j/λ приближении (приближении Друде) величина экваториального эффекта Керра содержит член, не зависящий от D, и линейную по D/λ (или d_j/λ) поправку.

Однако можно ожидать, что в реальных объектах из-за изменения электронной структуры и магнитных характеристик в тонкослойных периодических структурах может формироваться более сложная зависимость экваториального эффекта Керра от периода D.

б) Полевая и спектральная зависимость δ_p -эффекта

На рисунках 4 и 5 приведены полевые зависимости экваториального эффекта Керра, характеризующие процессы намагничивания структуры Fe/Cu в магнитном поле H, параллельном плоскости пленки. Можно отметить, что образцы с $d_{\rm Fe} > 10$ Å, содержащие железо в ОЦК-фазе, намагничиваются до насыщения в слабых полях ~ 50 Э, аналогично толстому ($d \approx 1000$ Å) слою ОЦК-Fe. В то же время у образца с $d_{\rm Fe} = 8$ Å, в

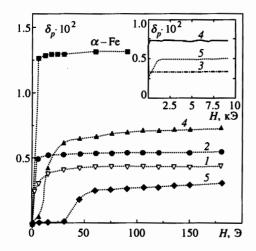
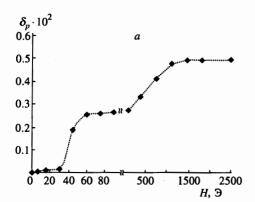
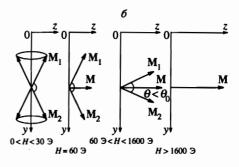




Рис. 4. Зависимость экваториального эффекта Керра для образцов Fe/Cu (кривые *I*–5) и для толстой пленки ОЦК-железа от намагничивающего поля *H*: 1— (Fe 30 Å/Cu 45 Å)₁₄, 2— (Fe 20 Å/Cu 30 Å)₂₀, 3— (Fe 10 Å/Cu 15 Å)₄₀, 4— (Fe 8 Å/Cu 12 Å)₅₀, 5— (Fe 5 Å/Cu 7.5 Å)₈₀

Рис. 5. Зависимость экваториального эффекта Керра для образца (Fe 5 Å/Cu 7.5 Å) $_{80}$ от намагничивающего поля H (a) и модель магнитной структуры образца в процессе его намагничивания (δ)

котором железо присутствует в смеси α - и γ -фаз, поле насыщения возрастает до 300 Э. Совершенно особый вид (рис. 5a) имеет полевая зависимость у структуры (Fe 5 Å/Cu 7.5 Å)₈₀, содержащей железо преимущественно в γ -фазе. На кривой намагничивания отчетливо выделяются три области: начальный участок 0–30 Э, где δ_p -эффект мало отличен от нуля, интервал полей 30–60 Э, в котором эффект резко возрастает, и, наконец, участок пологого роста $\delta_p(H)$ вплоть до полного насыщения при H=1600 Э.

Обсудим полученные результаты исходя из предположения о влиянии косвенного обменного взаимодействия между ферромагнитно упорядоченными слоями железа на магнитную структуру данного образца. Существование такого взаимодействия в периодических многослойных системах Fe/Cu подтверждено результатами измерений магнитосопротивления [29]. Кроме того, в работе [4] в рамках модели биквадратичного обмена было показано, что в магнитных сверхрешетках (типа Fe/Cr) косвенное обменное взаимодействие (зависящее от толщины немагнитной прослойки) приводит в некоторой области значений констант обменного взаимодействия к неколлинеарному упорядоче-

нию магнитных моментов соседних ферромагнитных слоев, т.е. к их развороту на угол θ_0 , отличный от 0° и 180°. В этой же работе [4] была предложена методика, по которой из измерения экваториального эффекта Керра на сверхрешетках Fe/Cr с легкоплоскостным намагничиванием были определены величины угла θ_0 , лежащие в интервале 80°-144°. Применим аналогичный подход при объяснении формы кривой намагничивания образца (Fe 5 Å/Cu 7.5 Å)₈₀. На рисунке 5 δ схематически представлена модель магнитной структуры образца в основном состоянии (H=0) и ее изменение в процессе намагничивания в поле H, приложенном вдоль оси z (рис. 3). При H=0 магнитные моменты M_1 и M_2 соседних слоев ГЦК-железа развернуты на угол θ_0 , зависящий от энергии обменного взаимодействия. При этом можно предположить, что связка векторов M_1 и M_2 лежит в плоскости, параллельной оси y. Нарисованный конус иллюстрирует тот факт, что при H=0 вектор средней намагниченности $\mathbf{M}=(1/2)(\mathbf{M}_1+\mathbf{M}_2)$ для различных доменов имеет изотропию направлений, так что проекция результирующей намагниченности \mathbf{M}_R на ось z равна нулю. Основанием для такой модели послужили данные, полученные для многослойных периодических структур и трехслойных структур γ -Fe/Cu/ γ -Fe [6, 14, 30]. В этих работах показано, что тонкие слои γ -Fe ($d_{\text{Fe}} \leq 5.5 \,\text{A}$) ферромагнитны при T < 400 K и имеют перпендикулярную анизотропию. Кроме того, в трехслойных структурах на кривых зависимости полярного эффекта Керра и поля насыщения (H_s) от толщины прослойки меди обнаружены максимумы, которые были интерпретированы как проявление косвенного обменного взаимодействия антиферромагнитного типа между магнитными моментами соседних слоев железа. В слабых полях 0–30 Э, меньших поля магнитной анизотропии H_A , эта структура, в основном, сохраняется (возникает лишь небольшая составляющая M_{Rz}), в связи с чем значения экваториального эффекта Керра в этой области близки к нулю. В интервале полей 30-60 Э $(H > H_A)$ происходит быстрый поворот векторов M всех доменов вокруг оси y, так что при H = 60 Э все они оказываются направленными вдоль поля H. Если энергия обменного взаимодействия значительно превосходит энергию магнитной анизотропии, то можно считать в первом приближении, что этот поворот происходит без изменения угла θ_0 . На последнем участке 60–1600 Э возрастание поля приводит только к уменьшению угла разворота θ моментов M_1 и M_2 от значения θ_0 при 60 Э до 0 ° при поле насыщения 1600 Э. Согласно [4] величина экваториального эффекта Керра на этом участке кривой намагничивания определяется выражением

$$\delta_p(H) = A\cos\frac{\theta(H)}{2},\tag{11}$$

где коэффициент A не зависит от H. По формуле (11) из значений δ_p (60 Θ) и δ_p (1600 Θ) был найден угол θ_0 для структуры (Fe 5 Å/Cu 7.5 Å)₈₀, который оказался равным 120°.

Результаты спектральных измерений экваториального эффекта Керра на структурах Fe/Cu, полученные в полях насыщения при $\varphi=70\,^\circ$, представлены на рис. 6, где приведена также зависимость $\delta_p(\lambda)$ для толстой ($d\approx1000\,$ Å) пленки ОЦК-железа. Видно, что спектральные кривые для четырех длиннопериодных многослойных периодических структур с $d_{\rm Fe}>10\,$ Å, содержащих железо только (или в основном) в α -фазе (D=37.5– $100\,$ Å), образуют отдельную группу. Эти кривые близки между собой, а их характерные особенности (минимум при $\lambda=0.3\,$ мкм, максимум в районе 0.55– $0.60\,$ мкм, переход через нуль и второй слабо выраженный максимум в области $1.5\,$ мкм) повторяют спектральное поведение экваториального эффекта Керра для чистого ОЦК-железа. Последнее означает, что вид кривых $\delta_p(\lambda)$ для структур Fe/Cu определяется, главным

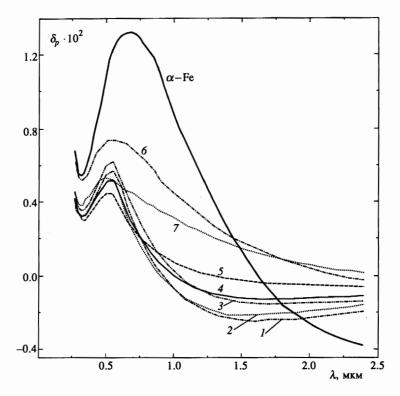


Рис. 6. Спектральные зависимости экваториального эффекта Керра для образцов Fe/Cu (кривые I–I) и для толстой пленки ОЦК-железа: I — (Fe 40 Å/Cu 60 Å)₁₀, I — (Fe 30 Å/Cu 45 Å)₁₄, I — (Fe 20 Å/Cu 30 Å)₂₀, I — (Fe 15 Å/Cu 22.5 Å)₂₇, I — (Fe 10 Å/Cu 15 Å)₄₀, I — (Fe 8 Å/Cu 12 Å)₅₀, I — (Fe 5 Å/Cu 7.5 Å)₈₀

образом, дисперсией недиагональной диэлектрической проницаемости $\varepsilon_{xy}(\lambda)$ железа. От указанной группы существенно отличаются спектральные зависимости экваториального эффекта Керра для короткопериодных образцов с $d_{\text{Fe}} \leq 10 \text{ Å}~(D=12\text{--}25 \text{ Å})$, в которых в значительных количествах присутствует γ -фаза железа.

Особенно заметно это различие при сравнении экспериментальных кривых с результатами теоретического расчета экваториального эффекта Керра. На рисунке 7 на примере двух структур, представляющих длиннопериодные и короткопериодные образцы, дано сравнение экспериментальных кривых с теоретическими, рассчитанными по формуле (7) с использованием объемных значений $\varepsilon_{\text{Cu}}(\lambda)$, $\varepsilon_{\text{Fe}}(\lambda)$, $Q_{\text{Fe}}(\lambda)$, найденных из измерений на толстых ($d\sim 1000\,$ Å) пленках металлов. Сравнение показывает, что в то время как для первой группы имеется достаточно хорошее согласие расчета и эксперимента, для короткопериодных образцов опытные данные существенно превышают расчетные значения δ_p .

Имеется несколько возможных причин этого расхождения. Из них отметим следующие: перестройка электронной структуры металлов при переходе к сверхтонким слоям, формирование ГЦК-фазы железа, эффект «подмагничивания» меди и образование переходного слоя на границах железо-медь. Нами предпринята попытка оценить влияние двух последних факторов. С этой целью был выполнен расчет экваториального эффек-

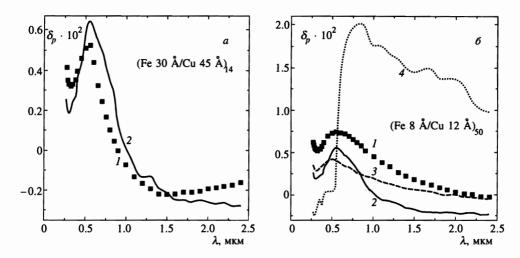
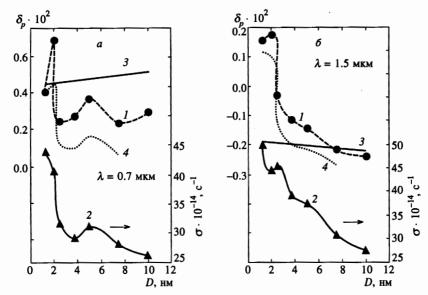



Рис. 7. Сравнение измеренных спектральных зависимостей экваториального эффекта Керра для (Fe 30 Å/Cu 45 Å)₁₄ (a) и (Fe 8 Å/Cu 12 Å)₅₀ (б) с теорией: 1 — эксперимент, 2 — расчет по формуле (7), 3 — расчет с учетом переходного слоя, 4 — расчет в предположении подмагничивания меди в модели свободных электронов

та Керра для образца (Fe 8 Å/Cu 12 Å) $_{50}$ с учетом возможного подмагничивания меди, для чего в формулу (7) вводился магнитооптический параметр меди $Q_{\text{Cu}}=i\varepsilon_{xy}/\varepsilon_{xx}$, где недиагональная диэлектрическая проницаемость меди ε_{xy} вычислялась по модели свободных электронов аналогично тому, как это делалось, например, в работе [31] при анализе магнитооптических спектров пленок Fe/Ag. Приведенные на рис. 76 результаты расчета показывают, что предположение о подмагничивании слоя меди (в модели свободных электронов) приводит к резкому расхождению с экспериментальными данными. Введение переходного слоя также не обеспечивает полного согласия с экспериментом, особенно в видимой области спектра.

В заключение рассмотрим толщинную зависимость оптических и магнитооптических свойств системы Fe/Cu в исследованном нами спектральном диапазоне. На рисунке 8 для двух длин волн приведены значения экваториального эффекта Керра и эффективной оптической проводимости σ_{eff} в зависимости от периода модуляции D. Там же приведены графики зависимости $\delta_p(D)$, рассчитанные по формуле (7) с использованием объемных параметров ε_{Cu} , ε_{Fe} и Q_{Fe} . Анализ полученных результатов показывает, что экспериментальные зависимости $\delta_p(D)$ существенно отличаются от теоретических и в интервале длин волн 0.3-1 мкм имеют резко немонотонный (осциллирующий) вид (рис. 8a). При $\lambda > 1$ мкм осцилляции сглаживаются и зависимость экваториального эффекта Керра от D становится монотонно убывающей (рис. 86). Выше уже отмечалось, что при исследовании «сэндвичей» Fe 6 Å/X/Fe 6 Å (X = Au, Ag) были обнаружены осцилляции полярного эффекта Керра с изменением толщины слоя X в соответствующих интервалах спектра E = 2.5–3.8 эВ и E = 2.8–4.5 эВ [7]. Аналогичная толщинная зависимость полярного эффекта Керра наблюдалась авторами работы [15] на «сэндвиче» γ -Fe/Cu/ γ -Fe при λ = 0.628 мкм. Аномальное поведение магнитооптического эффекта в «сэндвичах» железа с благородными металлами в последнее время связывают с формированием в зонном спектре ультратонких пленок состояний квантовых ям [7, 32]. Влияние последних на полную плотность состояний и осциллирующую зависимость

Рис. 8. Зависимости δ_p -эффекта и σ_{eff} образцов Fe/Cu от периода модуляции D для $\lambda=0.7$ мкм (a) и $\lambda=1.5$ мкм (b): $1-\delta_p$ -эффект (эксперимент), $2-\sigma_{eff}$ (эксперимент), 3— расчет δ_p -эффекта по формуле (7), 4— расчет δ_p -эффекта по формуле (12) с учетом значений σ_{eff}

магнитного момента в парамагнитном пространстве меди для системы Fe/Cu/Fe рассмотрено в [32] на основе первопринципных вычислений. Указанный подход к интерпретации магнитооптических данных является, по-видимому, наиболее предпочтительным. Результаты настоящей работы показывают, что в системе Fe/Cu осцилляционная толщинная зависимость свойственна также оптическим характеристикам (рис. 8, кривые 2). Поскольку значения экваториального эффекта Керра измерены при магнитном насыщении, можно предположить, что толщинная зависимость δ_p -эффекта отражает (хотя бы частично) немонотонную зависимость оптических свойств структуры Fe/Cu от периода модуляции. Для проверки был выполнен расчет экваториального эффекта Керра Fe/Cu по формуле для массивного образца

$$\delta_p = -4 \operatorname{Im} \frac{\varepsilon_{eff} Q_{Fe} \operatorname{tg} \varphi}{(\varepsilon_{eff} - 1)(\varepsilon_{eff} - \operatorname{tg}^2 \varphi)} \frac{d_{Fe}}{D}, \qquad (12)$$

где $Q_{\rm Fe}$ — объемный магнитооптический параметр α -железа. Результаты расчета (рис. 8, кривая 4) подтверждают справедливость такого предположения. Более общий вывод состоит в том, что немонотонность толщинных зависимостей магнитооптических эффектов связана, очевидно, с изменением всего тензора диэлектрической проницаемости слоистой системы.

4. ЗАКЛЮЧЕНИЕ

Совместный анализ экспериментальных зависимостей $\sigma_{eff}(D,\lambda)$ и $\delta_p(D,\lambda)$ для образцов Fe/Cu и сравнение с результатами расчета в рамках феноменологической теории для металлических сверхрешеток позволяют сделать вывод о том, что с уменьше-

нием периода модуляции происходит изменение всего тензора диэлектрической проницаемости (его диагональной ε_{xx} и недиагональной ε_{xy} компонент) слоистой системы. Это изменение связано как с наличием в образцах с D < 25 Å фракций железа в ГЦК-фазе, так и с общей перестройкой электронной структуры металлических слоев вследствие понижения их размерности и влияния квантовых размерных эффектов.

Перечислим основные результаты работы.

- 1. Не замечено снижения величины экваториального эффекта Керра в короткопериодных структурах Fe/Cu при фазовом превращении ОЦК-ГЦК в слоях железа, что позволяет сделать вывод о ферромагнитном упорядочении полученной фракции ГЦК-Fe.
- 2. Плазменная частота электронов проводимости ω_p слабо зависит от периода модуляции и структурного состояния железа. В короткопериодных многослойных структурах (D < 37.5 Å) происходит рост частоты релаксации γ_0 , указывающий на усиление рассеяния электронов проводимости на межслоевых и межзеренных границах.
- 3. В широком спектральном диапазоне $\lambda=0.3-1.5$ мкм впервые обнаружены немонотонные (осциллирующие) зависимости как магнитооптических (δ_p -эффект), так и оптических (σ_{eff}) свойств Fe/Cu от периода D. Анализ магнитооптических данных, проведенный нами в модели свободных электронов, не подтвердил версию об однородном «подмагничивании» слоев меди в данных объектах. Природа усиления магнитооптической активности в Fe/Cu с ультратонкими слоями и осциллирующих зависимостей $\sigma_{eff}(D)$ и $\delta_p(D)$ требует дальнейшего исследования.
- 4. Особый вид полевой зависимости экваториального эффекта Керра для образца (Fe 5 Å/Cu 7.5 Å) $_{80}$ интерпретирован нами как проявление косвенного обменного взаимодействия, приводящего к неколлинеарному упорядочению магнитных моментов \mathbf{M}_1 и \mathbf{M}_2 в соседних слоях железа. На основе предложенной модели магнитной структуры образца определен начальный угол разворота этих моментов $\theta_0 = 120$ °.

Авторы выражают благодарность В. А. Сазоновой за проведение рентгеноструктурного анализа образцов.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 96-02-16370).

Литература

- 1. S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990).
- E. E. Fullerton, M. J. Conover, J. E. Mattson, C. H. Sowers, and S. D. Bader, J. Appl. Phys. 75, 6461 (1994).
- D. S. Mosca, F. Petroff, A. Fert, P. A. Schroeder, W. P. Pratt, and R. Laloel Jr., J. Magn. Mat. Mat. 94, L1-L2 (1991).
- В. В. Устинов, М. М. Кириллова, И. Д. Лобов, В. М. Маевский, А. А. Махнев, В. И. Минин, Л. Н. Ромашев, А. Р. Дель, А. В. Семериков, Е. И. Шредер, ЖЭТФ 109, 477 (1996).
- 5. D. Weller, W. Reim, and K. Spörl, J. Magn. Magn. Mat. 93, 183 (1991).
- 6. A. Fuß, S. Demokritov, P. Grünberg, and W. Zinn, J. Magn. Magn. Mat. 103, L221 (1992).
- 7. T. Katayama, Y. Suzuki, M. Hayashi, and A. Thiaville, J. Magn. Magn. Mat. 126, 527 (1993).
- 8. N. Tanaka, O. Katayama, and T. Kizuka, J. Magn. Magn. Mat. 126, 55 (1993).
- 9. K. B. Hathaway, S. F. Cheng, and A. N. Mansour, J. Magn. Magn. Mat. 126, 79 (1993).

- F. Badia, G. Fratucello, B. Mastinez, D. Fioran, A. Labarta, and J. Tejada, J. Magn. Magn. Mat. 93, 425 (1991).
- S. F. Cheng, A. N. Mansour, J. P. Teter, K. B. Hathaway, and L. T. Kabacoff, Phys. Rev. B 47, 206 (1993).
- 12. C. L. Fu and A. J. Freeman, Phys. Rev. B 35, 925 (1987).
- 13. Y. Tsunoda, S. Imada, and N. Kunitomi, J. Phys. F: Met. Phys. 18, 1421 (1988).
- 14. M. Doyama, M. Matsui, H. Matsuoka, S. Mitani, and K. Doi, J. Magn. Magn. Mat. 93, 374 (1991).
- 15. W. R. Bennet, W. Schwarzacher, W. F. Egelhoff, Jr., Phys. Rev. Lett. 65, 3169 (1990).
- 16. T. Katayama, H. Awano, and Y. Nishihara, J. Phys. Soc. Jap. 55, 2539 (1986).
- S. Pizzini, A. Fontaine, Chr. Giorgetti, E. Dastyge, J. F. Bobo, M. Piecuch, and F. Baudelet, Phys. Rev. Lett. 74, 1470 (1995).
- Y. B. Xu, M. Lu, Q. Y. Jin, C. Hu, Y. Z. Miao, Y. Zhai, Q. S. Bie, H. R. Zhai, G. L. Dunifer, R. Naik, and M. Ahmad, J. Appl. Phys. 75, 6190 (1994).
- M. G. Samant, J. Stöhr, S. S. Parkin, G. A. Held, B. D. Hermsmier, F. Herman, M. Van Schilfgaarde, L.-C. Duda, D. C. Mancini, N. Wassdane, and R. Nakajima, Phys. Rev. Lett. 72, 1112 (1994).
- 20. А. Ф. Плотников, Ф. А. Пудонин, В. Б. Стончанский, Письма в ЖЭТФ 46, 443 (1987).
- И. Д. Лобов, А. В. Дружинин, С. Л. Веремеенко, А. А. Махнев, Деп. № 2324, ВИНИТИ, Новосибирск (1988).
- 22. Г. А. Болотин, В. М. Маевский, ФММ 79, 8 (1995).
- 23. D. G. Laurent, J. Callaway, and C. S. Wang, Phys. Rev. B 20, 1134 (1979).
- 24. Ю. А. Успенский, С. В. Халилов, ЖЭТФ 95, 1022 (1989).
- Ю. В. Кудрявцев, О. Ю. Бжестовский, Л. Слардз, ФММ 76(1), 65 (1993).
- 26. C. N. Berlund and W. E. Spicer, Phys. Rev. A 136, 1044 (1964).
- 27. D. Guenzburger and D. E. Ellis, Phys. Rev. B 52, 13390 (1995).
- 28. А. В. Ржанов, К. К. Свиташев, А. С. Мардежов, В. А. Швец, ДАН СССР 298(4), 862 (1988).
- 29. M. Doi, T. Kanbe, and M. Matsui, J. Magn. Magn. Mat. 126, 443 (1993).
- J. F. Cochran, J. M. Rudd, M. Form, B. Heinrich, W. Bennett, W. Shwarzacher, and M. F. Egelhoff, Jr., Phys. Rev. B 45(9), 4676 (1992).
- 31. Y. B. Xu, H. R. Zhai, M. Lu, Q. Y. Jin, and Y. Z. Miao, Phys. Lett. A 168, 213 (1992).
- 32. W. Geerts, Y. Suzuki, T. Katayama, K. Tanaka, K. Ando, and S. Yoshida, Phys. Rev. B 50, 12581 (1994).
- 33. A. M. N. Niklasson, S. Mirbt, H. L. Skriver, and B. Johansson, Phys. Rev. B 53, 8509 (1996).