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А theory ofparametric excitation of acoustic waves is constructed. It is shown that nonlinear 
attenuation is the main restriction тесhanisт for а расатешсаllу generated sound wave. The 
intensity of generated waves is directly ptoportiona1 to the difference € between the 'уа1ие of 
ритрing and bare attenuation. The ca1cu1ated proportionality coefficient depends оп the shape of 
the generated sound wave. Why an ordinary pattern does not form for acoustica1 waves is exp1ained. 
The structure of the spectrum of excited waves was studied. It is shown that this structure has 
exponentia1 asymptotic behavior at the frequency. The width of the intensity distribution depends 
оп the shape of а wave. For different cases it behaves as €'" with а = 1, 8/7, and 4/3. The 
resu1ts are compared with the experimenta\ data of Ref. [5]. 

1. INТRОDUСГЮN 

@1997 

Pararnetric excitation of waves is observed in а wide class of dynarnical systerns for waves 
with different dispersion relations [1]. These dispersion relations сап ье divided into two groups: 
nondecaying and decaying. As ап exarnple frorn the first group we have spin waves and frorn 
the second group waves оп the free surface of а liquid. For spin waves conservation laws of 
frequency and wave vector, as а rиle, do not perrnit three-wave interactions. Тhe behavior of 
spin-wave systerns in those cases is deterrnined Ьу four-wave interactions. Тhe corresponding 
theory is well developed and is described elsewhere [2, 3]. The rnain rnechanisrn for saturation of 
the arnplitude of generated wave in these systerns is the so-called dephasing rnechanisrn, i.e., 
renorrnalization of the purnping due to the interaction between secondary waves. Capillary 
waves оп the free surface of а liquid have the dispersion relation I.V <Х k 3/ 2 , where I.V is 
the frequency and k is the wave vector of the wave. Three-wave interaction is allowed for 
this dispersion relation. Тhe pattem selection and arnplitude satиration for surface wаvёs are 
deterrnined Ьу а nonlinear attenuation, as has Ьееп shown in Ref. [4]. 

The case of acoustic dispersion relation I.V <х k is the rnarginal case between these two 
possibilities. In this case the conservation laws allow three-wave interactions but only for the 
waves with collinear (parallel or antiparallel) wave vectors. This case, which we will consider 
in this paper, was not studied at аН. We will show that nonlinear attenuation is the rnain 
rnechanisrn for restriction of arnplitude of а pararnetrically generated sound wave. The intensity 
of generated waves is directly proportional to the difference between the value of purnping and 
the bare attenuation. The proportionality coefficient depends оп the shape of the excited sound 
wave. 

Тhree-wave interaction of sound waves is aIlowed оnlу if their wave vectors are alrnost 
collinear. This special interaction destroys the long-range order at ап angle between the 
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directions of propagation of waves; therefore, ordinary pattem forrnation does not occur in 
the case of acoustical waves. We wiII find the fine stucture of the spectrum of generated waves. 
It tums out that it has exponential asymptotic behavior at the frequency which is known for 
the other nonlinear systems [3]. ТЬе behavior ofthe width ofthe spectrum for acoustical waves 
differs from the опе known for spin waves. ТЬе width ofthe intensity distribution depends оп the 
shape ofthe wave. For different cases it behaves as €'" with а: = 1, 8/7, and 4/3. ТЬе results of 
this paper were compared with тапу data obtained in experiments with parametric excitation 
of the second-sound waves in liquid ЬеНuт Ьу the first-sound wave [5,6]. We obtained good 
qualitative and quantitative agreement with the experimental results. 

2. ТНЕ EFFEcrIVE АcrЮN 

It is suitabIe to use Hamiltonian approach to describe nonlinear dynamics of waves. It 
is not а simple probIem to find the corresponding canonical variabIes in general [3,7]. We 
wiII assume that this probIem has already Ьееп solved. For the dynamics of Iiquid helium the 
canonical variabIes were found in Ref. [8]. In canonical variabIes the Hamiltonian of а system 
сап Ье written as 

Н = J d3r (b*(t, r)w(V')b(t, r) + U[a*(t, r)b(t, r)b(t, r) + 

+ с.с.] + V[b*(t, r»b(t, r)b(t, r) + с.с.]) . (1) 

Here b(t, r) is the wave variabIe which describes the excited sound wave, w = с..; - V'2 is its 
dispersion relation, and с is the phase velocity of the sound wave. We wiII study parametric 
excitation of the sound wave b(t, r) Ьу the extemal wave field a(t, r) (pumping wave). ТЬе 

parameter И in Eq. (1) is the vertex of the three-wave interaction of the pumping wave and 
the excited waves, and V is the vertex of the three-wave self-interaction. 

Equation (1) is simply ап expansion over the value of the excited wave; it сап Ье used 
only if the amplitude of the excited wave is small, i.e., not far from the excitation threshold. 
In general, we сап prolong expansion (1) and take into account four-wave interaction of the 
excited waves: It is necessary ifthe three-wave interaction is not allowed due to the conservation 
laws offrequency and wave vector. As wiII Ье shown below, for the sound waves we сап consider 
only the three-wave interaction. 

It is useful to make Fourier transforrn of the wave field: 

(2) 

We сап then write the Hamiltonian as 

Н= J (~:~3 [W(k)b(k)b*(k) + J (~:~з(U(k,q)[а*(k)ь(q)Ь(k-q)+с.с.]+ 
+ V(k, q)[b*(k)b(q)b(k - q) + с.с.]) ] . (3) 

Here w and k are the frequency and the wave vector ofthe sound wave, and w(k) is its dispersion 
relation. The expansion in (3) is ап ordinary hydrodynamic expansion and its parameter is ,;w Ь. 
It means that the vertices И and V are proportional to 
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(4) 

We will use complex canonical variables, in which the dynamical equations Ьауе the form 

iatb(k) = 8:~k) , -iatb*(k) = 8~~)' (5) 

In ош case we Ьауе 

iatb(k) = UJ(k)b(k) + J (~:~з (2Ua(k + q)b*(q) + V[2b(q)b*(q - k) + b(q)b(k - q)]). (6) 

ТЬе second equation is а complex conjugated equation (6). 
Equation (6) is а conservative equation to which а dissipative term must ье added. In 

general, this term is proportional to 

2 8Н 
v' 8b*(t, k) 

(7) 

and small in the hydrodynamic parameter in comparison with the term ,,-,Ь in Eq. (6). It means 
that we сап ignore nonlinear terms in the dissipation part of the dynamical equation. Тhus, 
to take into account the dissipation terms it is necessary to replace in Eq. (6) UJ(k) -+ UJ(k)­
-i''Уо(k), where "Yo(k) = Dk2• 

It is suitable to use for our problem the dynamic diagram technique proposed Ьу Wyld [9] 
and developed Ьу de Dominicis [10] and Jannsen [11]. Textbook description ofthis technique 
сап ье found in Ref. [12]. ТЬе corresponding effective action сап ье written in the form 

1 = i J ~~~~~ { (p*(k)[UJ(k) - iat - i"Yo(k)]b(k) + л ехр (-iшоt)р*(k)Ь*( -k) + 

+ J (~:~з Vp* (k)b(q)[2b* (q - k) + b(k - q)]) + С.с. + T~~;P*(k)P(k)}. (8) 

Here we Ьауе introduced ап auxiliary field p(t, r), which is conjugated to the wave field b(t, r); 
л == 2аU is the pumping field, and Т is the temperature in units of energy. We assumed that 
the pumping wave is а monochromatic wave with а frequency шо. For simplicity we will ignore 
below the nonzero value of the wave vector of the pumping wave. It is possible if the velocity 
of the pumping wave is significantly greater than the velocity of excited waves. 

Тhe equations of тоНоп (6) with dissipation terms сап ье obtained as the extremum 
conditions for the effective action: 

8I =0 
8p*(t, k) , 

Various averages сап ье found as 

~=o. 
8p(t,k) 

(f(t, k)} = J !»р!»р* !»Ь!»Ь* f(t, k)eil . 
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3. ТНЕ CORRELATION FUNCТIONS 

The quadratic part of the effective action (8) determines the bare correlation functions. 
There are three types of correlation functions in the Wyld diagram technique. The first (рЬ) is 
the Green's function, which is the response function оп the external field. The second (ЬЬ) is the 
correlation function .. The last average (рр) equals zero. In our system there are normal Green's 
and correlation functions, which are determined Ьу the term with the coefficient w - i'Yo, and 
the аЬпопnаl functions, which are determined Ьу the term with the pumping, л = 2аU. Let 
us make Fourier transform over time: 

b(t, k) = J ~ b(w, k)e-i"'t. 

Further, for simplicity we introduce the notation 

к, == {w, k}, К, == {2wo - w, -k}, (;; = w - wo. 

It is suitable to determine the Green's functions (Ьр) in the following way: 

where 

(Ь(к,)Р*(к,I)) = (21r)48(w - Wl)8(k - k1)G1(W,k), 

(Ь(к,)Р(к,I)} = (21r)48«(;; + (;;1)8(k + k1)G2(W, k). 

For the Green's functions (рЬ) we have 

The bare Green's functions сап Ье found as 

Gol(k,)='(Ck-W\~i'Уо(k) л ) 
л ck + w - ШО + i'Yo(k) , 

(10) 

(ll) 

(12) 

(13) 

where 'Yo(k) is а bare decrement ofthe sound wave. It is easy to obtain the following expressions 
for the bare Green's functions from (13): 

(14) 

Here 

~(к,) = ~*(к,). (15) 

ТЬе off-diagonal components of the Green's function are essential оnIу for w '" Wo and 
k '" ko == wo/ с. Far from this region it is possible to use for the Green's function the expression 

4 ЖЭТФ, N25(1l) 

а\(к,) = [ck - w - i'Yo(k)]-\. 
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The [иll Green's function сап Ье found as а solution of the Dyson equation in the [оrm 

(17) 

where 1:(к) is а self-energy function. The self-energy matrix has the same properties as а; i.e., 
it сап ье written in the [оrm 

The Ьате value of 1:(к) equals zero. 
The correlation function F has а matrix structure also. It сап Ье determined as 

where 

(b(K)b*(KI») = (271')48("", - wl)8(k - kl)F1 (w, k), 

(b(K)b(KI») = (271')48(с.;:, + wl)8(k + kl)F2(w, k) . 

It is easy to see that F1*(K) = F1(K) and Р2(К) = Р2(к). Therefore, we сап write 

The Wyld correlation functions сап Ье ca1culated as 

Р(к) = G(к)Ф(к)G(к) , 

(18) 

(19) 

(20) 

(21) 

where С(К) is determined Ьу (12), and Ф(к) is а [отсе function. Its Ьате value ФО is determined 
Ьу а casual [отсе correlator, i.e., 

,o(k) 
Фо(к) = ГоЕ, Го = т w(k) , 

where Е is а unit 2 х 2 matrix. For the Ьате correlation functions we obtain 

F ( ) - (ck + w - 2WO)2 + ,~(k) + Iлl 2 F ( ) _ 2л[сk - ""'о + i,o(k)] 
10 К - Го 20 К - - ~o ---='--....,.......,....:....----=.:...:.....~ 

~(K)~*(K)' ~(K)~*(K)' 

The [orсе function Ф(к) сап ье written in the [оrm 

(22) 

(23) 

(24) 

The force functions Ф(к), Ьу analogy with Р(к), have the properties ФI(К) = Фj(к) and 
Ф2(К) = Ф2(К). 
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4. SAТURATION OF ТНЕ EXCIТEO WAVE 

In this section we omit the term proportional to the temperature. In this case the 
fluctuations ofthe phase of the parametrically excited wave сап Ье ignored and we сап assume 
that there appears а nonzero value of average (Ь) if the pumptng is over the threshold. The 
equations for this nonzero average coincide with (6). If we disregard the nonlinear terms оп 
Ь, these equations will ье linear equations with zero right-hand side: 

С- 1 ( Ь(К) ) = о 
Ь(к') . (25) 

They сап Ьауе а nonzero solution only if the main determinant of the system ~(K), which is 
determined Ьу (15), equals zero: 

(26) 

This equation сап flfSt ье satisfied for waves with UJ = UJo апд k = ko = UJo/ с. ТЬе threshold 
value of pumping is Iлl = 'Yo(ko) == 'УО; i.e., 

'аl = 'Уо/2U . (27) 

If Iлl > 'Уо, the nonzero value of average (Ь) appears. In order to determine its value, 
we must consider the nonlinear corrections. In а tree approximation it is necessary to take 
into account the corrections for the self-energy function, shown in Fig. 1. Solid lines in Fig. 1 
correspond to field Ь, dashed lines - to field р, and points - to vertices V. This diagram for 
k' ~ k gives the contribution to the diagonal part of the self-energy function and determines 
the nonlinear correction to the decrement 'У. The diagram in Fig. 1 for k' ~ -k corrects the 
off-diagonal terms of the self-energy function; it renormalizes the рuтрing л. 

ТЬе Green's function of the diagram in Fig. 1 has frequency near Шо only if k' ~ k ~ kI 

апд has frequency near zero for all other cases. Таking into account Eq. (4), it is easy to 
see that in the first case the correction is greater than that in the second case Ьу а factor of 
UJo/'Yo, In particи1ar, this means that for acoustic waves the nonlinear attenuation is significantly 
more important than renormalization of pumping. This resи1t agrees with the corresponding 
conclusion for the surface waves, where the three-wave interactions are allowed [4]. 

In general, the average of the wave field b(t, r) has the form 

(b(t,r») = J d~В(О,<р)ехР(-iUJоt+ikоег), (28) 

where е == е( О, <р) is the unit vector in the direction which is determined Ьу the angles О, <р, and 
do. == dOd<psinO. We see that it is possible to disregard the renormalization ofthe pumping for 
the sound waves. We will also see that there is по standard pattern formation for sound waves. 
This means that we сап choose а real amplitude В апд а real pumping л. The correction for 
the self-energy function in Fig. 1 сап Ье written as 
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(29) 

In Eq. (29) О is а polar angle between the wave vectors k and k1, and <р is the azimuthal angle. 
Since we use the tree approximation in this section, it is possible to replace 

It is easy to see that the integral in (29) is determined Ьу the small region at the angle О, 

tl(} == 4-/'0/1.1.)0. In this region it is possible to replace V(O, <р) and В(О, <р) Ьу its values for 
О = О and use instead of sinO the approximate expression sinO == О. As а result, we obtain 
l.I.)(k + k1) == 21.1.)0(1 - 02/8). ТЬе real and the imaginary parts of ~ are of the same order 
of magnitude. Since 1.1.)0 ~ ,О, it is possible to ignore the real part of~, which gives а small 
correction for the sound velocity. ТЬе imaginary part of~ gives the correction for the decrement ,: 

,= ,О + Im~. (30) 

For the imaginary part of ~ we Ьауе 

Im~(l.I.)o, koe) == l.ш(е), n(е) = в2(е) , 

J.l = 4V2jdOd<P ,o(2ko)sinO 
[1.I.)(k + k1) - 21.1.)0]2 + ,~(2ko) , 

(31) 

where V == V(O = О). ТЬе equilibrium value ofthe amplitude ofthe excited wave is defined as 

(32) 

Therefore, the equilibrium density n of the parametrically excited wave propagating in а given 
direction е is proportional to Е. 

In further calculations it is necessary to make some assumptions about the shape of 
parametrically excited wave. If we ignore the nonzero value of the wave vector of the pumping 
wave and ifthe system is isotropic (in particular, ifthe vertex и ofthe interaction ofthe pumping 
wave with the excited waves depends only slight}y оп the angles), the excited wave will Ье а 
spherical wave (three-dimensional): 

(Ь(t,r»)з = В j dQ exp(-il.l.)ot + ikoer). (33) 

In this сме the coefficient J.l is 

(34) 

ТЬе total density of the excited wave is 

2 2 ,01.1.)0 
Nз = 41ГВ =;;: 4V2 Е. (35) 

It is interesting to compare this result with the corresponding answer for spin waves [2]. 
Saturation of the amplitude of the excited spin wave occurs due to the renormalization of 
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pumping Ьу the four-wave interaction (dephasing mechanism). ТЬе corresponding result for 
the density of the wave is n сх уЕ. Estimate for the proportionality coefficient in this equation 
coincides with the estimate for the coefficient in (34) but it turns out that the coefficient 
tor the four-wave interaction is greater numerically. Besides near the threshold f « уЕ, 
so the nonlinear attenuation dueo to the three-wave interaction is more important than the 
renormalization of pumping Ьу the four-wave interaction. 

If the system has аЮal symmetry or if the pumping wave is а standing wave, as is the сме 
in Ref. [5], it is possibIe that the excited wave will Ье а cylindrical wave: 

(b(t, Г»)2 = в J d'P ехр [-i"-'ot + iko(x cos 'Р + У sin'P)]. (36) 

In this сме the coefficient J.L and the total density of the wave wiII ье 

_ 23/2 1Гv2 
М2- --, 

J"-'o"{o 
N - 2 в2 - 2З / 2f!0 "{о"-'о 2- 1г - ---Е. 

"-'о 4V2 
(37) 

А further decrease of the symmetry сап render ап excited wave flat. In this case the 
corresponding equations will Ье 

(b(t, г»)! = 2В ехр (-i"-'ot) cos(kox) , 
V2 

м!=4-, 
"{о 

(38) 

For the last two cases the restriction of the sound-wave amplitude Ьу nonlinear attenuation 
is stronger than the corresponding saturation due to the dephasing mechanism Ьу а factor of 
";"{о/"-'о for а cylindrical wave and Ьу а factor of "{о/"-'о for а flat wave. 

ТЬе total intensity of parametrically excited sound wave is maximaI for а spherical wave 
and minimal for а flat wave. This situation for sound waves is quite different from the situation 
for spin waves, where the integral intensity of parametrically excited wave depends оnlу slightly 
оп its shape. In general, it is natural to expect that а nonlinear system wiIl try to Ьауе maximal 
fuП intensity and corresponding dissipation. This means that it is possibIe to expect transitions 
from а less symmetric shape to а more symmetric shape of the sound wave (for example. flat 
--+ cylindrical --+ spherical) as the intensity of the pumping wave increases. This means that it 
is necessary to expect the appearance of а sound wave with the таЮтит possibIe symmetry 
near the threshold. 

Sound waves interact еsseпtiаПу оnlу if the angle between their wave vectors is smaller than 
М ~ 4";,,{0/"-'0. This peculiar property of the interaction destroys the long-range order at ап 
angle between the sound waves and leads to the absence of ап ordinary pattem formation. 
Specific patterns which must appear over the threshold of excitation of sound waves Ьауе 
approximately equal intensities of the waves propagating in the range from -М to М. In 
ап anisotropic system the shape of parametrically excited wave is determined mainly Ьу the 
shape of the pumping wave, Ьу the properties of the interaction vertex between the pumping 
wave and the excited waves, and Ьу the boundary conditions. 

5. THERМAL BROADENING 

Let us consider the influence of thermal fluctuations оп the spectrum of а parametrically 
generated sound wave. It is necessary to take into account the diagram in Рщ; 2, which 
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_____ ~---+__( _-_" _~J+---=-k ... _ 
Fig. 2. One-loop correction for 

the nonnal self-energy function 

contributes to the self-energy function 1:, (k). Analytical expression for this diagram is 
determined Ьу (29), where now the function Р, is irreducibIe. ТЬе matrix structure of the 
correlation functions is essential only for the frequencies near (.&)0. For the diagram in Fig. 2 it 
is therefore necessary to take into account the nondiagonality of the function Р, and use for 
it the expression (23). ТЬе Green's function G has the frequency (.&) '" 2(.&)0, so we сап use for 
it the expression (16). Equation (29) now сап ье rewritten as 

- 2 J Шv,dk, (ck, + (.&), - 2(.&)0)2 + ,2 + ,\2 J 
1:,«(.&),k)-4V -(2 )4 ro (k')I( ')2 (k )2 \212 dПG,(,..). 

П 1г (.&), - t, - С , - (.&)0 + л (39) 

ТЬе last integration in Eq. (39) must Ье made over аll angles. For а flat wave it is absent, for 
а cylindrical wave it is ап integral over ап angle В, and for а spherical wave it is ап integral 
over dП = dBdr.p sin В. In Eq. (39) the first integral is real and the imaginary part of the second 
integral is determined Ьу (31). ТЬе integral from the correlation function F over k, determines 
the spectral density of excited sound waves. This density сап ье determined from the equation 

(40) 

Here n and n«(.&) are the integral and spectral densities of the sound waves, which propagate 
in а given direction. ТЬе factor П in (39) and (40) depends оп the shape of the wave. For а 
spherical wave П = 41Г, for а cylindrical wave П = 21Г and for а flat wave П = 1. ТЬе spectral 
density of а wave is introduced in such а way that the total density N of the sound wave is 

N=Пn. 

ТЬе first integral in Eq. (39) contains the function Р, which is singular оп (.&)" k" and 
smooth function J dП а. It is possible to write instead ofthe second integral the expression (31) 
and consider it as а constant factor. Thus the renormalized attenuation rate of the sound wave 
is 

, =,0 + Im1:, Im1: = /1n. (41) 

Here n is the total spectral density of the excited sound waves, which propagate in а given 
direction, obtained with allowance for thermal broadening. Calculating the first integral in (39), 
we obtain the equation for the damping rate ,. We сап consider this equation as self-consistent 
equation for " which means that we Ьауе summed the set of diagrams in Fig. 2: 

, ='0 + KrO/II, 11:=../,2-..\2. (42) 

For simplicity it is useful to choose real ..\. ТЬе coefficient К is 

(43) 
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• 
k t • 

-----~--c J ___ !t __ ----

Fig. З. One-loop correction for 
the поnnаl force function 

• 

Now the value of, must ье found from Eq. (42). We see that , > о for аП values of the 
pumping л. ТЬе width of the distribution n(lJ.J) is determined Ьу the position of the singularity 
nearest to t}le real axis in the integral J dlJ.JtFt. For л > ,о this width is of the order of v. If 
л » l~e value of, сап Ье determined from the equation 

(44) 

We see that thermal width of the spectrum leads to zero if л -+ 00. It is easy to determine 
the spectral distribution n(IJ.J). We have 

(45) 

ТЬе poles of the integrated function are k = ±ia±, where а± = ../(, ± ilJ.J)2 - Л2 • If IJ.J < 
< v2/2" than these poles lie near the reaI axis at а distance ofthe order of v. If IJ.J > v2/2" 
the corresponding distance is about ,IJ.J / ../,2 + Л 2. ТЬе main part of the integraI is produced 
from the first region. Calculating this part, we obtain 

(46) 

For spectral distribution of the sound waves we have 

kб 11"(,2 + л2) ГО 
n(lJ.J) = (211")ЗС 2vЗ f(C;) . (47) 

Let us compare Eqs. (41) and Eq. (32), which was obtained for the distribution of zero 
width. Let (&;)т ье the therrnal width of the spectrum. For л -,о » (&;)т we have 
,- л ~ ,О. Therefore, integrating the distribution n(lJ.J) over IJ.J, we obtain the integral intensity 
of excited sound waves, which coincides with the previous result (32) for the intensity. 

In а one-loop approxirnation it is necessary to Шkе into account the correction to the force 
function, which сап ье represented Ьу the diagram in Fig. 3. ТЬе anaIyticaI expression for this 
correction is 

(48) 

Here the first function Р1 Ьаз а frequency near IJ.JO and the second function Р1 Ьаз а frequency 
near шо. We сап caIculate (48) as an anaIogous expression for 1:1. For the second function 
Р1 we сап use the expression 

2Т,о 
F1(", + "'1) = 2' 

1J.J0 { [IJ.J(lk + kll) - IJ.J - IJ.Jt] + ,б (2ko) } 
(49) 
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We сап then write Eq. (48) in the form 

v2 J Шvldkl J (Ф\(II:»1 '" Q (21Г)4Р1(lI:l) dQF(1I: + 11:1). (50) 

ТЬе first integral was found in (39); for the second integral we Ьауе 

J TJL 
dQF(1I: + 11:1) = <..JoV2 . (51) 

ТЬиэ, for the force function we Ьауе 

(52) 

and 

(Фl)1 JLnT <..Jo 
-- '" -- - сх: f. • 
ФI0 (,)0 Т"!о 

(53) 

This correction is sтаП near the excitation threshold. Therefore, in а one-Ioop approximation 
it is possibIe to consider only the broadening of раrатеtriсаПу excited waves due to therrnal 
fluctuations. ТЬеrmаl width ofthe spectrum is very smaH, and its dependence оп pumping does 
not agree with the experiment. Тhiэ means that it is necessary to use а two-Ioop approximation 
in order to describe the experimenta11y observed broadening of the spectrum. 

6. 1WO-LOOP СОRREСГЮNS 

То study the broadening of excited sound waves due to their scattering we must take into 
account the two-loop corrections for the mass operators: the self-energy function 1: and the 
force function Ф. These corrections for 1:1 and 1:2 сап Ье represented Ьу the diagrarns in Fig. 4. 

Their analytical representation is 

1:1(11:) = 8V4 J d4(;:~1I:2 [G~(II:I)F,(1I:2)Fl(lI:, + 11: - 1I:2)G(1I: + II:,)G*(II: + 11:1) + 

+ 2G, (II:,)Р2 (II:2)Р2*(II:, + 11:2 - II:)G(II:, + 1I:2)G(1I: - 11:2)] , 

4 J d411:1 d4 11:2 [ * 1:2(11:) = 8V (21Г)8. G2 (1I:,)F2(1I:2)F2(lI:l + 11: - 1I:2)G(1I: + II:,)G( -11: - 11:,) + 

(54) 

+ 2G2(1I:,)F,(1I:2)F1(lI:l + 11:2- II:)G(lI:l + 1I:2)G*(1I:2 - 11:)]. 

Fig. 4. Two-loop corrections for the norrnal self-energy function 
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Fig. 5. Two-Ioop corrections for the normal force function 

-k -.. -

Fig. 6. Two-Ioop corrections for the abnormal force function 

ТЬе corresponding diagrams for Ф, and Ф2 are presented in Figs. 5 and 6. Analytically, 
we have 

41 d4""d4"'2 * Ф,(",) = 8V (21Г)8 [Р'("")Р'("'2)Р,("" + '" - "'2)0(", + ",,)0 ('" + "'д+ 

+ 2Р'("")Р2("'2)Р2*("" + "'2 - ",)0("" + "'2)0*(", - "'2)], 

41 d4""d4"'2 * Ф2("') = 8V (21Г)8 [Р2 ("")Р2 ("'2)Р2 ("" + '" - "'2)0(", + "'1)0(-", - "")+ 

(55) 

+ 2F2("'I)F, ("'2)Р,*("" + "'2 - ",)0("" + "'2)0("'2 - ",)]. 

lt is easy to test that the expressions for Ф,(",) and Ф2("') satisfy the properties Ф,(",) ::::; Фj("') 
and Ф2("') ::::; Ф2(к.). 

ТЬе corrections for the Green's functions and for the correIation functions, represented 
Ьу the second terrns in Eqs. (54) and (55), сап ье disregarded. In fact, it is necessa1Y to Шkе 
into account only the diagrams, which contain the correlation functions F(IJ.)} with IJ.) ,..., IJ.)O 

and the Green's functions O(IJ.) with IJ.) '" IJ.)O or IJ.) '" шо. It is impossible to satisfy these 
conditions for the corrections mentioned above. Тhe first correction term for Ф2 (~) will then 
ье significantly smaller than the corresponding term for Ф, (I,,), because the distance between 
the poles of the corresponding Green's functions is of the order of шо in the first case and of 
the order of 8'0 in the second case. This means that we сап rewrite Eqs. (54) and (55) in the 
form 

I"(,,,) = 8V4 1 ~~:;8"'20~("'I)FI("'2)FI("'1 + '" - "'2)0(", + "'1)0*(", + "'д, 
~(",) ~ о 
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and 

4 J crк,ld4 к,2 * ФI(к,) = 8V (211')8 F1 (к,I)F1 (к,2)F1 (к,1 + К, - к,2)а(к, + к,да (к, + "'I), 
(57) 

Ф2(к,) :::: О. 

Here and below the functions а(к,) Ьауе the frequencies VJ '" шо; therefore, we сап use for 
them expression (16). 

Equations (56) and (57) mеап that in а two-Ioop approximation we Ьауе а situation similar 
to а one-Ioop approximation. It turns out that the corrections for the abnormal self-energy and 
for the abnormal force functions are significantly smaller than the corresponding corrections for 
the normal functions. ТЬе corrections for the self-energy functions сап ье Шkеп into account 
if we replace 

(58) 

and if we use Eqs. (14) and (15). Here we took into account the tree correction for the self­
energy function, shown in Fig. 1. Analogously, the corrections for the correlation functions 
сап Ье Шkеп into account if we replace 

(59) 

and if we ше Eq. (23). In the last equation it is possib1e to ignore both the first term and the 
one~loop correction for the force function ФI, because theyare уесу small. 

Thus, we obtain the following equation for the two-Ioop correction for the self-energy 
functions: 

(60) 

(61) 

First, let us consider the case in which the excited sound wave is spherical. It is easy 
to integrate in (60) and (61) over the angles 19(kl,k) and rp(kl,k). ТЬе оn1у factor in these 
expressions, which depends оп the angle 19, is а(к, + "'1)G*(f>, + "'I)' For the integral we Ьауе 

J d19(kl , k)drp(k l , k) sin 19 11'2 

[VJ(k + kl ) - VJ - VJI]2 + 161'5 = 2VJol'0 . 
(62) 

Note that it is proportional to 1'01 and therefore this expression is significantly greater than 
the analogous term for the direct fourth vertex. This statement is true independently of the 
shape ofthe excited sound wave. This means that broadening ofthe spectrum ofparametrically 
excited acoustic wave is determined Ьу the three-wave interaction. 

Substituting expression (62) in (60) and (61), we obtain the system of equations 
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с J ш..v, dk, ш..v2dk2d(} sin (} (k) 
')'(к,) = ')'0 + JLn - (21Г)8· ')' , Х 

(ck, + w, - 2wo)2 + ')'2 _ >.2 
х ( ) *() Л(к,2)F,(IЧ + К, - к,2), 

!J. ",,!J. к" 

J ш..v,dk,ш..v2dk2d(} sin(} 
Г(к,) = С (21Г)8 Р,(к")Р,(к,2)Р,(к,, + к, - к,2), 

(63) 

where (} == (}(k, + k, k2), с = JLз V 2kri!2')'o. 
As we wil1 see, the two-loop correction for the damping rate ')' is not very important. So 

first let us consider the correction for the force function. It is necessary to use the integrals over 
k" k2, and (}. Experiment shows that broadening of parametrically excited waves is significantly 
smaller than ')' '" >.. Therefore, we сап write 

ТЬе characteristic value of ck - wo is of the order of v and the characteristic value of с; is of 
the order of v2/2')' « v. It is easy to see that the dependence ofr(w, k) оп the wave vector k is 
smooth, while its dependence оп the frequency w is singular. Therefore, integrating in (63) over 
k" k2 , and (}, we сап assume Г to ье а constant, and the corresponding integrals are deterrnined 
Ьу the poles of !J.(k)!J.*(k). ТЬе integral over the angle dQ = d(}dфsiп(} is 

J d F (k + k _ k ) = 1Г2 (')'2 + >.2) r(w, + w - (2) 

Q " 2 2wоvЗ f«() , ( = w, + w - W2 - WO , (65) 

where Л() and r are determined Ьу (46). For ( '" v2 /2')' the function f сап ье written as 

(66) 

It is easy to see that f«() is ап even function and that f(O) = 1. 
ТЬе integral over k, gives 

J dk, Р, (k) = 1Г(')'2 + >.2) Г(~,) . 
2сvЗ f(w,) 

(67) 

Thus we obtain the folIowing equation for n(~): 

(68) 

where JLз is determined Ьу (34). 
Analogous equation was obtained for the distribution of parametricalIy excited spin 

waves [3]. It is easy to solve this equation for f(x) = 1 + (x/'fJ)2. In this case the solution is 

General consideration shows that for our functions Лх), which have по singularities in the 
close vicinity ofthe real axes, the solution of Eq. (68) has а symmetrical form with the center 
at С; = О and exponential frequency asymptotics. ТЬе characteristic width of the distribution 
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сап Ье estimated in а following way. Since n = J dw n(Ц) ~ J2/Сз and using the equation 
for equi1ibrium density of the sound wave (32), we obtain 

(69) 

Numerical coefficient in this equation cannot ье found analytically; it is of the order of unity. 
Thus, 

(70) 

We obtain 

(71) 

Analogously, it is possible to obtain the corresponding equations for the excited cylindrical 
sound wave. ТЬе equation for n is 

(72) 

~+~ 
r v2 f«() , 

where М2 is deterrnined Ьу (37) and r is deterrnined Ьу (46). Equation (72) Ьм the same 
asymptotic forrn as the corresponding Eq. (68) for а spherical wave. This means that the 
asymptotic properties of the solution of this equation are the same as for Eq. (68). Ву analogy 
with Eqs. (69)-(71), we сап obtain for ап excited cylindrical sound wave 

(73) 

Let us consider the one-dimensional сме of а flat sound wave. In this сме the dependence 
of Г оп k is not smooth. We сап obtain the following equation for n(Ц), k): 

where МI is deterrnined Ьу (36). Equation (74) means that 

J.Lln = <=)'0 ~ 8v2V)'2 ~ А2' 
For the width of а sound spectrum we have' 
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(76) 

Note that numerical coefficients in expressions (71), (73), and (76) are not correct; these 
equations determine only estimates for the corresponding widths. It is necessary to solve the 
corresponding nonlinear equations numerically in order to determine accurate values of the 
coefficients. 

Let us now estimate the two-loop correction for the self-energy function. It is easy to 
obtain from the first equation in (63): 

(77) 

We see that the two-loop correction is small numerically and that it does not change the general 
picture essentially. This result is logical, because the conservation laws allow us to obtain а 
not small one-loop correction for the self-energy function. It turns out that the corresponding 
two-loop correction is not essential. For the force function the one-loop correction is small. 
It is therefore necessary to take into account the two-loop corrections. 

7. COMPARISON WПН ТНЕ EXPERIMENТ 

Let us compare the theory with the experiment [5,6]. Experimental studies [5,6] were 
performed for parametric generation of а second-sound wave Ьу а first -sound wave in liquid 
helium near the superfluid transition temperature. The canonical variables for this system 
were found Ьу Pokrovskii and Кhalatnikov [8], who ca1culated the triple vertex и of the first­
and second-sound interaction (the correct vertex is greater than that found Ьу Pokrovskii and 
Кhalatnikov Ьу а factor of 2, in agreement with the result of Lebedev [13). The correct 
expression for this vertex is 

и = ~ г:;г [~PO'eт _ ~ (aPs ) ] . 
С! V 32р Р ТО' Ps др о' 

(78) 

Here р and Ps are the total and the superfluid density of liquid helium, Р and Т are the 
pressure and temperature, (.V1 is the frequency of the first sound, С! its ve!ocity, u = S/ Р; 
Тет = (дТ /au)p, etc. For experimental conditions of Refs. [5] and [6], it is possible to ignore 
the weak dependence of this vertex оп the ang!e between the wave vectors, which is small as 
Ps/ р. Expression (78) сап ье rewritten in the variables Р, Т in the following way: 

(79) 

where 

и = _ ~ ( ер дф + jЗ р дФ ) 
1 Jф Т дР Р дТ ' 

и = -1 (д'Ф + jЗр д'Ф) 
2 Р дТ к,т дР . (80) 

Here we introduce the notation 
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ф= Ps, 
Р 

.1. = р(3р 
0/ J' 

J = р",тСр _ (3р2 1 (дР) 
"'т=- - , 

т ' Р дрт 

(3р = _р ( дО-) = _~ (дР) . 
\дР т Р дТ р 

(81) 

Here r..J2 and С2 are the frequency and the velocity ofthe second sound. These equations perrnit 
us to use the results of Ref. [14] to calculate this vertex. 

Using the Pokrovskii-Кhalatnikov equations for the canonica1 variables, we obtain the 
following expression for the triple vertex of the second-sound interaction: 

~{T"" 1 (aPs ) о} V(O) = V 16рТu Т" + Ps до- р [cos(20) - 2cos] , (82) 

where О is the angle between the wave vectors of the second-sound waves. This vertex сап ье 
written in the variables Р, т as 

where 

~ 
V(O) = у тlpx, { 1' 1· } Х = vx xD(x) + фD(Ф) [cos(20) - 2cosO] , 

Р"'т 
х=т' 

• д (3р д 
D=-+--. 

дТ "'т дР 

(83) 

It is possible to compare the experimeJ1tal results with theory for three parameters: the 
threshold of the second sound excitation, the equi1ibrium intensity of the second-sound over 
the threshold, and the form of the spectrum of the excited waves. ТЬе ratio of the velocities 
of the pumping first-sound wave and the excited second sound waves was about 10-2 in [5]. 
ТЬе pumping wave was а standing wave. These facts lead to а generation of cylindrical (or 
perhaps flat) but not а spherical second-sound wave. It is possible to see that ап accurate 
comparison of the data оп the excitation threshold with Eqs. (27), (79), and (80) gives а good 
agreement, significantly better than that in Ref. [5]. It is necesary to point out, however, that 
for the experiment [5] Eq. (27) must ье modified. А specia1 geometry ofthe experimental сеll 
and pumping Ьу а standing wave lead to the following modified equation for the excitation 
threshold: 

lal = 'Yo/v'2u . 
А сопеlаtiоп of the second-sound waves for intermediate angles between the wave vectors 
was not observed experimentally. This result agrees with our statement about the absence of 
long-range order оп the angle for parametrically generated sound waves. 

ТЬе thermal width near the threshold сап Ье easily estimated for а given experiment [5]. 
In fact, 

(84) 

ТЬе value of n сап ье found from the seсопd-sоuпd intensity 1: 
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and we have 

(85) 

Por the values 

we obtain 

(&.i)T ,....., 10-8 
')'0 ' 

which is negligibIe. In а real experiment there are always other sources of noise except 
temperature. Estimate (85) determines the condition under which it is necessary to take into 
account such noise source. 

Experimental shape of the second-sound spectrum strongly fluctuates. For good 
experimental results it сап ье universally described as а symmetrical spectral line with 
exponential tails. The width of this spectral line is proportional to f<> with Q ,....., 1-1.2. This 
result agrees well with Eqs. (73)-(76). 

The results for the intensity of the second-sound waves are not yet [иllу understood. 
Experimental values are significantly smaller than theoretical expressions (37) and (38). The 
reason for this discrepancy is not known. It was shown, in particular, that the intensity ofthe 
excited sound wave depends strongly оп its shape. The excited second-sound wave in Ref. [5] is 
not spherical due to the pumping Ьу а standing wave. Unfortunately, experimental information 
does not allow us to draws definite conclusion about the shape of а parametrically generated 
sound wave. 

8. CONCLUSIONS 

The theory of parametric excitation of sound waves considered Ьу us differs significantly 
from the standard theory of spin waves [3]. The most important difference is that three­
wave interaction is allowed for sound waves. This three-wave interaction produces nonlinear 
attenuation ofthe sound wave and determines the saturated value ofthe amplitude ofan excited 
wave. The intensity of а parametrically excited sound wave is proportional to the difference 
between the уаlие of pumping and bare attenuation rate of а sound wave, f = )./')'0 - 1. 

Three-wave interaction between sound waves is essential оnlу if the angle between their 
wave vectors is smaller than 4.)')'0/1.1.). This property destroys 10ng-range order over the angle 
between waves and accounts for the absence of ordinary pattem formation. The total intensity 
of а parametrically excited sound wave crucially depends оп the shape of the wave. It is таЮrnal 
for а spherical wave and minimal for а flat wave. The shape of ап excited wave is determined 
Ьу the symmetry of the system (boundary conditions), Ьу the shape of the pumping wave, and 
Ьу the properties of the interaction vertex between the pumping wave and the sound waves. It 
is expected that the symmetry of an excited sound wave will ье the same as the symmetry of 
а system due to the peculiar interaction between sound waves. 

The spectrum of parametrica!ly excited sound waves is similar to the spectrum of other 
waves. Thermal broadening of the spectrum is negligibIe for the experiment in Ref. [6]. 
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Significant broadening of the spectrum of excited waves takes place due to their scattering. The 
structure of а nonlinear integral equation, which determines the shape of the spectrum of sound 
waves, is similar to the structure of analogous equations for waves with other dispersion relations. 
This fact leads to universal shape of the spectrum with exponential asymptotic behavior over the 
frequency. The width of the spectrum essentially depends оп the shape of the wave. Rougbly, 
it is estimated as !:ш.J '" "Уа 1" О: /41Г. Here "Уа is the bare damping rate of а sound wave, and the 
уаluе of the parameter Q depends оп the shape of the wave. For а flat wave Q = 1, for а 
cylindrical wave Q = 8/7, and for а spherical wave Q = 8/6, whereas the corresponding index 
for spin waves is equal to 2/3 [3]. 

1 ат deeply grateful to У. Lebedev for тапу useful discussions. 1 wish to thank О. Rinberg, 
У. Steinberg, and G. Falkovich for тапу discussions ofthe various aspects ofthe experimental 
studies [5,6] and for their hospitality. This work was supported, in part, Ьу the Minerva Center 
for Nonlinear Physics, INTAS (grant No. 94-4078) and Russian Foundation for Basic .Research 
(grant No.96-02-18235). 
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