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A theory of parametric excitation of acoustic waves is constructed. It is shown that nonlinear
attenuation is the main restriction mechanism for a parametrically generated sound wave. The
intensity of generated waves is directly proportional to the difference ¢ between the ‘value of
pumping and bare attenuation. The calculated proportionality coefficient depends on the shape of
the generated sound wave. Why an ordinary pattern does not form for acoustical waves is explained.
The structure of the spectrum of excited waves was studied. It is shown that this structure has
exponential asymptotic behavior at the frequency. The width of the intensity distribution depends
on the shape of a wave. For different cases it behaves as ¢ with a = 1, 8/7, and 4/3. The
results are compared with the experimental data of Ref. [5].

1. INTRODUCTION

Parametric excitation of waves is observed in a wide class of dynamical systems for waves
with different dispersion relations [1]. These dispersion relations can be divided into two groups:
nondecaying and decaying. As an example from the first group we have spin waves and from
the second group waves on the free surface of a liquid. For spin waves conservation laws of
frequency and wave vector, as a rule, do not permit three-wave interactions. The behavior of
spin-wave systems in those cases is determined by four-wave interactions. The corresponding
theory is well developed and is described elsewhere [2, 3]. The main mechanism for saturation of
the amplitude of generated wave in these systems is the so-called dephasing mechanism, i.e.,
renormalization of the pumping due to the interaction between secondary waves. Capillary
waves on the free surface of a liquid have the dispersion relation w o< k%/2, where w is
the frequency and k is the wave vector of the wave. Three-wave interaction is allowed for
this dispersion relation. The pattern selection and amplitude saturation for surface waves are
determined by a nonlinear attenuation, as has been shown in Ref. [4].

The case of acoustic dispersion relation w o k is the marginal case between these two
possibilities. In this case the conservation laws allow three-wave interactions but only for the
waves with collinear (parallel or antiparallel) wave vectors. This case, which we will consider
in this paper, was not studied at all. We will show that nonlinear attenuation is the main
mechanism for restriction of amplitude of a parametrically generated sound wave. The intensity
of generated waves is directly proportional to the difference between the value of pumping and
the bare attenuation. The proportionality coefficient depends on the shape of the excited sound
wave.

Three-wave interaction of sound waves is allowed only if their wave vectors are almost
collinear. This special interaction destroys the long-range order at an angle between the
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directions of propagation of waves; therefore, ordinary pattern formation does not occur in
the case of acoustical waves. We will find the fine stucture of the spectrum of generated waves.
It turns out that it has exponential asymptotic behavior at the frequency which is known for
the other nonlinear systems [3]. The behavior of the width of the spectrum for acoustical waves
differs from the one known for spin waves. The width of the intensity distribution depends on the
shape of the wave. For different cases it behaves as ¢ witha = 1, 8/7, and 4/3. The results of
this paper were compared with many data obtained in experiments with parametric excitation
of the second-sound waves in liquid helium by the first-sound wave [5, 6]. We obtained good
qualitative and quantitative agreement with the experimental results.

2. THE EFFECTIVE ACTION

It is suitable to use Hamiltonian approach to describe nonlinear dynamics of waves. It
is not a simple problem to find the corresponding canonical variables in general [3,7]. We
will assume that this problem has already been solved. For the dynamics of liquid helium the
canonical variables were found in Ref. [8]. In canonical variables the Hamiltonian of a system
can be written as

H= /d3r (b*(t,r)w(V)b(t, r) + Ula*(¢, r)b(t, r)b(t,r) +
+ c.c.] + V[b*(t,r))b(t, r)b(t,r) + c.c.]) . 1)

Here b(t,r) is the wave variable which describes the excited sound wave, w = ¢v/—V?2 is its
dispersion relation, and ¢ is the phase velocity of the sound wave. We will study parametric
excitation of the sound wave b(¢,r) by the external wave field a(t,r) (pumping wave). The
parameter U in Eq. (1) is the vertex of the three-wave interaction of the pumping wave and
the excited waves, and V is the vertex of the three-wave self-interaction.

Equation (1) is simply an expansion over the value of the excited wave; it can be used
only if the amplitude of the excited wave is small, i.e., not far from the excitation threshold.
In general, we can prolong expansion (1) and take into account four-wave interaction of the
excited waves: It is necessary if the three-wave interaction is not allowed due to the conservation
laws of frequency and wave vector. As will be shown below, for the sound waves we can consider
only the three-wave interaction.

It is useful to make Fourier transform of the wave field:

_ [ 2k ik
b(t,r) = Wb(t, k)e™ . )
We can then write the Hamiltonian as
_ &’k N d3q .
H= / @y [w(k)b(k)b (k) + @)’ (U k, 9)[a* (k)b(@)b(k — @) + c.c.]+
+ V(k, g)[b* (k)b(q)b(k — q) + C~C~])] : 3)

Here w and k are the frequency and the wave vector of the sound wave, and w(k) is its dispersion
relation. The expansion in (3) is an ordinary hydrodynamic expansion and its parameter is 1/w b.
It means that the vertices U and V' are proportional to

1631



A. R. Muratov XOT®, 1997, 112, ewn. 5(11)

Vw(k)w(k)w(ks). Q)

We will use complex canonical variables, in which the dynamical equations have the form

SH_ o= S
om0’ —10;b” (k) 5o (5)

10;b(k) =
In our case we have

d’q
(2m)

i0b(K) = w(k)o) + [ 25 (Walk + b @ + VI@H @~ W+ H@bk - D]) . (©

The second equation is a complex conjugated equation (6).

Equation (6) is a conservative equation to which a dissipative term must be added. In
general, this term is proportional to

, 6H
56 (¢, K) M

and small in the hydrodynamic parameter in comparison with the term wb in Eq. (6). It means
that we can ignore nonlinear terms in the dissipation part of the dynamical equation. Thus,
to take into account the dissipation terms it is necessary to replace in Eq. (6) w(k) — w(k)—
—ivo(k), where yo(k) = Dk2.

It is suitable to use for our problem the dynamic diagram technique proposed by Wyld [9]
and developed by de Dominicis [10] and Jannsen [11]. Textbook description of this technique
can be found in Ref. [12]. The corresponding effective action can be written in the form

C[dtdk [, o o
=1 Gny {(” (®)w(k) — i3, — i70(k)Ib(K) + Aexp (—i2uwot)p* (K)b*(—k) +
LY e : 20k
(2:)3 Vp* (k)b(q)[2b* (q — k) + bk — q)]) +c.c. + T#k)p (k)p(k)} . ®)

Here we have introduced an auxiliary field p(t,r), which is conjugated to the wave field b(¢, r);
A = 2aU is the pumping field, and T is the temperature in units of energy. We assumed that
the pumping wave is a monochromatic wave with a frequency 2w,. For simplicity we will ignore
below the nonzero value of the wave vector of the pumping wave. It is possible if the velocity
of the pumping wave is significantly greater than the velocity of excited waves.

The equations of motion (6) with dissipation terms can be obtained as the extremum
conditions for the effective action:

61 61
e O Hew

Various averages can be found as

(it k) = / DDy DDV (2, 0. ©)
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3. THE CORRELATION FUNCTIONS

The quadratic part of the effective action (8) determines the bare correlation functions.
There are three types of correlation functions in the Wyld diagram technique. The first (pb) is
the Green’s function, which is the response function on the external field. The second (bb) is the
correlation function. The last average (pp) equals zero. In our system there are normal Green’s
and correlation functions, which are determined by the term with the coefficient w — iy, and
the abnormal functions, which are determined by the term with the pumping, A = 2aU. Let
us make Fourier transform over time:

b(t, k) = / iw—b(w,k)e"""‘.
27
Further, for simplicity we introduce the notation
k={wk}, i={2w—w,—k}, W=w—-uw.

It is suitable to determine the Green’s functions (bp) in the following way:

_ [ Gi(k) Gaw)
6= (Gih Gheey) (19
where

(b(r)p* (K1) = 27m)*6(w — w1)6(k — k1)Gy(w, k), an

(b()p(k1)) = 2m)*6(@ + @1)6(k + k;)Ga(w, k) .

For the Green’s functions (pb) we have

o (Gl GaR)
Glr) = (G%(n) Gl(fc)) : (12)

The bare Green’s functions can be found as
iy [ ek —w— ino(k) A \
GO (K') ( A ck +w— 2(.0() + z,yo(k) ) ) (13)

where v,(k) is a bare decrement of the sound wave. It is easy to obtain the following expressions
for the bare Green’s functions from (13):

Gro(k) = AN (K)[ck + w — 2wp + iyo(k)], Gu(k) = —2A7 (k). (14)
Here
A(K) = (ck — wo)? — [w — wy +in(k)* — | A,  AR) = A*(k). (15)

The off-diagonal components of the Green’s function are essential only for w ~ wy and
k ~ ko = wp/c. Far from this region it is possible to use for the Green’s function the expression

Gi(k) = [ck — w — ivo(k)] . (16)
4 XITD, Ne5(11) 1633
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The full Green’s function can be found as a solution of the Dyson equation in the form
G™'(k) = Gy (k) — Z(K), 17)

where Z(k) is a self-energy function. The self-energy matrix has the same properties as G; i.e.,
it can be written in the form

—_ [ Zi(k) Za(k)
(k) (Z;(F:) Ef(k)) . (18)

The bare value of (k) equals zero.
The correlation function F' has a matrix structure also. It can be determined as

_ [ Fi(k) Fi(k)
F(""')_ (F;(F&) Fl*(k/)) ) (19)

where

(b(k)b* (k1)) = (2m)*6(w — w18k — k1) F1(w, k),
(b(R)b(k1)) = 2m)*8(@ + @1)8(k + k) Fa(w, k) .

It is easy to see that F}*(k) = Fi(x) and F3(k) = F3(k). Therefore, we can write

_ ( Fi(r) Fx(k)
Fix)= (Fz*(n) Flo‘e)) : (20)

The Wyld correlation functions can be calculated as
F(k) = G(r)®(x)G(k), 1)

where G‘(n) is determined by (12), and ®(k) is a force function. Its bare value @, is determined
by a casual force correlator, i.e.,

o) = LE, To=T2E) 22)
w(k)
where E is a unit 2 x 2 matrix. For the bare correlation functions we obtain
(ck + w — 2wg)? + (k) + |\ 2 [ck — wo + ivo(k)]
F, =T = —T 23
10(k) = To AL (R) » Fa(k) 0 AN () (23)

The force function ®(x) can be written in the form

= [ Pu(k) Px(K)
%)= (ol) o)) @49

The force functions ®(k), by analogy with F(x), have the properties ®;(k) = ®}(x) and
Dy(K) = Dy(K).
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4, SATURATION OF THE EXCITED WAVE

In this section we omit the term proportional to the temperature. In this case the
fluctuations of the phase of the parametrically excited wave can be ignored and we can assume
that there appears a nonzero value of average (b) if the pumping is over the threshold. The
- equations for this nonzero average coincide with (6). If we disregard the nonlinear terms on
b, these equations will be linear equations with zero right-hand side:

o f b(w) _
G ‘(b(k)> =0. (25)

They can have a nonzero solution only if the main determinant of the system A(k), which is
determined by (15), equals zero:

A(K) = (ck — wp)? — [w — wp + in(k))* — A = 0. (26)

This equation can first be satisfied for waves with w = wy and k = ky = wp/c. The threshold
value of pumping is |A| = (ko) = 70; i.e.,

la| = v0/2U . (27)

If |A| > 7, the nonzero value of average (b) appears. In order to determine its value,
we must consider the nonlinear corrections. In a tree approximation it is necessary to take
into account the corrections for the self-energy function, shown in Fig. 1. Solid lines in Fig. 1
correspond to field b, dashed lines — to field p, and points — to vertices V. This diagram for
k' ~ k gives the contribution to the diagonal part of the self-energy function and determines
the nonlinear correction to the decrement . The diagram in Fig. 1 for k' ~ —k corrects the
off-diagonal terms of the self-energy function; it renormalizes the pumping .

The Green’s function of the diagram in Fig. 1 has frequency near 2w, only if k' ~k ~ k,
and has frequency near zero for all other cases. Taking into account Eq. (4), it is easy to
see that in the first case the correction is greater than that in the second case by a factor of
wo/~vo. Inparticular, this means that for acoustic waves the nonlinear attenuation is significantly
more important than renormalization of pumping. This result agrees with the corresponding
conclusion for the surface waves, where the three-wave interactions are allowed [4].

In general, the average of the wave field b(¢,r) has the form

(b(t,1)) = / dQB(8, p) exp (—iwot + ikger) , (28)

where e = e(0, ¢) is the unit vector in the direction which is determined by the angles 8, ¢, and
dQ = dfdypsinf. We see that it is possible to disregard the renormalization of the pumping for
the sound waves. We will also see that there is no standard pattern formation for sound waves.
This means that we can choose a real amplitude B and a real pumping ). The correction for
the self-energy function in Fig. 1 can be written as

Kk Fig. 1. Tree correction for the self-energy
function
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duw,dk |
Heo k) = 4/ G VR kDG + m) =

2 2 .
=4/d0d90 V6, 9)B(6, p)sinf

ok T k) — 2w — 7k )| (29)

InEq. 29)0isa poiar angle between the wave vectors k and ki, and ¢ is the azimuthal angle.
Since we use the tree approximation in this section, it is possible to replace

(b(r)b* (k1)) = (b(K))}{b* (k1)) .

It is easy to see that the integral in (29) is determined by the small region at the angle &,
A6 ~ 4./~ /wo. In this region it is possible to replace V (6, ¢) and B(, @) by its values for
= 0 and use instead of sin@ the approximate expression sinf ~ 8. As a result, we obtain
wk + k) ~ 2wyl — 62 /8). The real and the imaginary parts of T are of the same order
of magnitude. Since wy > 7, it is possible to ignore the real part of X, which gives a small
correction for the sound velocity. The imaginary part of X gives the correction for the decrement
~:
Yy=7+ImX. 30)
For the imaginary part of £ we have

Im X(wo, koe) = pn(e), n(e) = B*(e),

2ko) sin @
=4v? [ dod 202k
. / P ok T k) — 200l + 72(2Kko)

(31)

where V' = V(8 = 0). The equilibrium value of the amplitude of the excited wave is defined as
A=y(l+e)=v+un, n=ye/p. (32)

Therefore, the equilibrium density n of the parametrically excited wave propagating in a given
direction e is proportional to €.

In further calculations it is necessary to make some assumptions about the shape of
parametrically excited wave. If we ignore the nonzero value of the wave vector of the pumping
wave and if the system is isotropic (in particular, if the vertex U of the interaction of the pumping
wave with the excited waves depends only slightly on the angles), the excited wave will be a
spherical wave (three-dimensional):

(b(t,7))s =B / dQ exp (—iwpt + 2kger) . (33)
In this case the coefficient y is
ps = 8wVt (34)
The total density of the excited wave is
N3 =4rB?= — e (35)

It is interesting to compare this result with the corresponding answer for spin waves [2].
Saturation of the amplitude of the excited spin wave occurs due to the renormalization of
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pumping by the four-wave interaction (dephasing mechanism). The corresponding result for
the density of the wave is n o< y/e. Estimate for the proportionality coefficient in this equation
coincides with the estimate for the coefficient in (34) but it turns out that the coefficient
for the four-wave interaction is greater numerically. Besides near the threshold ¢ < +/e,
so the nonlinear attenuation due to the three-wave interaction is more important than the
renormalization of pumping by the four-wave interaction.

If the system has axial symmetry or if the pumping wave is a standing wave, as is the case
in Ref. [5], it is possible that the excited wave will be a cylindrical wave:

(b(t,r)), =B / dy exp [—iwopt + 1ko(z cosp + ysinyp)]. (36)

In this case the coefficient 1 and the total density of the wave will be

2 :
= 93/2 v = 2 _ ~3/2 [0 Yoo
p2 =2 e N, =2rB°=2 W VT €. 37)

A further decrease of the symmetry can render an excited wave flat. In this case the
corresponding equations will be

2
(b2, )1 = 2B exp (—iwut) cos(hoz), i = 47—, Ny =B2=2000%0 (38)
Yo wy 4V2
For the last two cases the restriction of the sound-wave amplitude by nonlinear attenuation
is stronger than the corresponding saturation due to the dephasing mechanism by a factor of
v/70/wo for a cylindrical wave and by a factor of v, /wy for a flat wave.

The total intensity of parametrically excited sound wave is maximal for a spherical wave
and minimal for a flat wave. This situation for sound waves is quite different from the situation
for spin waves, where the integral intensity of parametrically excited wave depends only slightly
on its shape. In general, it is natural to expect that a nonlinear system will try to have maximal
full intensity and corresponding dissipation. This means that it is possible to expect transitions
from a less symmetric shape to a more symmetric shape of the sound wave (for example, flat
— cylindrical — spherical) as the intensity of the pumping wave increases. This means that it
is necessary to expect the appearance of a sound wave with the maximum possible symmetry
near the threshold.

Sound waves interact essentially only if the angle between their wave vectors is smaller than
Af ~ 4, /7y /wo. This peculiar property of the interaction destroys the long-range order at an
angle between the sound waves and leads to the absence of an ordinary pattern formation.
Specific patterns which must appear over the threshold of excitation of sound waves have
approximately equal intensities of the waves propagating in the range from —Af# to A6. In
an anisotropic system the shape of parametrically excited wave is determined mainly by the
shape of the pumping wave, by the properties of the interaction vertex between the pumping
wave and the excited waves, and by the boundary conditions.

5. THERMAL BROADENING

Let us consider the influence of thermal fluctuations on the spectrum of a parametrically
generated sound wave. It is necessary to take into account the diagram in Fig. 2, which
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Fig. 2. One-loop correction for
the normal self-energy function
k k

contributes to the self-energy function Z;(k). Analytical expression for this diagram is
determined by (29), where now the function F) is irreducible. The matrix structure of the
correlation functions is essential only for the frequencies near wy. For the diagram in Fig. 2 it
is therefore necessary to take into account the nondiagonality of the function F; and use for
it the expression (23). The Green’s function G has the frequency w ~ 2wy, so we can use for
it the expression (16). Equation (29) now can be rewritten as

dw,dk Fo(kr) (cky +w| — 20.1())2 + ’72 + A2
Q2m)* " (wi — i7)? — (cki — wo)? + A2

T(w, k) = 4V? / dQG (k). (39)
The last integration in Eq. (39) must be made over all angles. For a flat wave it is absent, for
a cylindrical wave it is an integral over an angle 8, and for a spherical wave it is an integral
over dQ = dfdpsinf. In Eq. (39) the first integral is real and the imaginary part of the second
integral is determined by (31). The integral from the correlation function F over k; determines
the spectral density of excited sound waves. This density can be determined from the equation

1 [ dwdk
n= /dwn(w) = 5 WF](U),I() . (40)
Here n and n(w) are the integral and spectral densities of the sound waves, which propagate
in a given direction. The factor Q in (39) and (40) depends on the shape of the wave. For a
spherical wave Q = 4, for a cylindrical wave Q = 27 and for a flat wave Q = 1. The spectral
density of a wave is introduced in such a way that the total density N of the sound wave is

N=Qn.

The first integral in Eq. (39) contains the function F', which is singular on w;, k;, and
smooth function f dQG. Itis possible to write instead of the second integral the expression (31)
and consider it as a constant factor. Thus the renormalized attenuation rate of the sound wave
is

Y= +ImE ImI=pun. 41)

Here n is the total spectral density of the excited sound waves, which propagate in a given
direction, obtained with allowance for thermal broadening. Calculating the first integral in (39),
we obtain the equation for the damping rate . We can consider this equation as self-consistent
equation for «, which means that we have summed the set of diagrams in Fig. 2:

y=y+KTy/v, v=+/v"=A%. (42)
For simplicity it is useful to choose real A. The coefficient K is
k(2 + %)
1672cy
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Fig. 3. One-loop correction for
the normal force function
k k

Now the value of v must be found from Eq. (42). We see that v > 0 for all values of the
pumping A. The width of the distribution n(w) is determined by the position of the singularity
nearest to the real axis in the integral f dw  Fy. For A > o this width is of the order of v. If
A> 7@,/fﬁc value of « can be determined from the equation

___Kry
TR

We see that thermal width of the spectrum leads to zero if A — oo. It is easy to determine
the spectral distribution n(w). We have
RG2S / dk

Qnr)e |c2k? + (y +iw)? — N2|2°

(44)

n(w) =To (45)

The poles of the integrated function are k = *iay, where ax = /(v £iw)? - A2 Hfw<
< v? /2, than these poles lie near the real axis at a distance of the order of v. If w > v?/27,
the corresponding distance is about yw/1/+4? + A2. The main part of the integral is produced
from the first region. Calculating this part, we obtain

2

f=) = % Vri+l—z=2, r?=./(1-z2w-2)2+4y2220~4.  (46)

For spectral distribution of the sound waves we have

=_"
2 f(@)’

K m(*+X\) o
Q2r)c 23 f(@)'

n(w) = 47)

Let us compare Egs. (41) and Eq. (32), which was obtained for the distribution of zero
width. Let (Aw)r be the thermal width of the spectrum. For A — vy > (Aw)r we have
v —X < 7. Therefore, integrating the distribution n(w) over w, we obtain the integral intensity
of excited sound waves, which coincides with the previous result (32) for the intensity.

In a one-loop approximation it is necessary to take into account the correction to the force
function, which can be represented by the diagram in Fig. 3. The analytical expression for this
correction is '

V2 [ dwidk
(0] ~— | ——F; Fi(k+K1). 48
(@1(K)h a any 1(k)Fi(k + K1) (48)
Here the first function F) has a frequency near wy and the second function F) has a frequency
near 2wg. We can calculate (48) as an analogous expression for X,. For the second function
F| we can use the expression

2Ty,
wo { [w(k + ki) = w = ] + 232k }

1639
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We can then write Eq. (48) in the form

dw,dk
@ ~ o [ Tt e / dQF (s + 1) (50)
The first integral was found in (39); for the second integral we have
- Tu
/dQF(n +K) = Vi (51)
Thus, for the force function we have
Tn
Q) ~Vi—— 52
(D1 W, (52)
and
@) pnT wo (53)

Py wo Ty

This correction is small near the excitation threshold. Therefore, in a one-loop approximation
it is possible to consider only the broadening of parametrically excited waves due to thermal
fluctuations. Thermal width of the spectrum is very small, and its dependence on pumping does
not agree with the experiment. This means that it is necessary to use a two-loop approximation
in order to describe the experimentally observed broadening of the spectrum.

6. TWO-LOOP CORRECTIONS

To study the broadening of excited sound waves due to their scattering we must take into
account the two-loop corrections for the mass operators: the self-energy function £ and the
force function ®. These corrections for £; and £, can be represented by the diagrams in Fig. 4.

Their analytical representation is

d‘n;d“n;
=gy4 [ 2~
Ti(k) =28 / 2 )8

+ 2G (K1) Fa(k2) F5 (k1 + K2 = K)G(K1 + K2)G(K — K2)]

[GT (k) Fi(k)Fi(k1 + & — K)G(k + £1)G* (6 + K1) +

(54

e [(dridie |,
(k) = 8V onF (G (k) Fa(k) Fa(k1 + K — K)G(K + K£1)G(—K — K1) +

+ 2Gy(k1)Fi(K) Filk1 + k2 — K)G(K1 + k2)G* (K2 — K)] .

A
]
A
A
A

Fig. 4. Two-loop corrections for the normal self-energy function
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kz
| ' £| k. | Lk
k (‘ k, W k . ",2 _,k2/

Fig. 5. Two-loop corrections for the normal force function

Q E] . kJ -kll ..k
kl¥ —k -k L k; J

Fig. 6. Two-loop corrections for the abnormal force function

t

The corresponding diagrams for ®; and @, are presented in Figs. 5 and 6. Analytically,
we have

4 14
0 = 87* [ LECE R () FilkaFilw + K = )G + k)G (6 + )
+ 2F1 (k) Fak2) Fy (k1 + Ky — K)G(Ky + K2)G* (K — K2)], 55)
4. 4
o) = 8V [ LR s B ) Py + k= k)Gl + K1) Gl— — p)+

(2m)®
+ 2R (K)Fi(K)F (k1 + Ky — K)G(K1 + K2)G (K2 — K)].

It is easy to test that the expressions for ®((x) and ®,(k) satisfy the properties ®;(x) = @7 (k)
and @,(k) = ®y(K).

The corrections for the Green’s functions and for the correlation functions, represented
by the second terms in Eqgs. (54) and (55), can be disregarded. In fact, it is necessary to take
into account only the diagrams, which contain the correlation functions F(w) with w ~ wy
and the Green’s functions G(w) with w ~ wg or w ~ 2. It is impossible to satisfy these
conditions for the corrections mentioned above. The first correction term for @, (Z,) will then
be significantly smaller than the corresponding term for @, (Z;), because the distance between
the poles of the corresponding Green’s functions is of the order of 2wy in the first case and of
the order of 8+, in the second case. This means that we can rewrite Egs. (54) and (55) in the
form

Zyk) = 3V4/ d (’;d)sﬁza'(ﬂl)Fl(ﬁz)Fl(m +t K~ £)G(k + k)G (K + Ky), (56)

22(K) ~0
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and

4
LoD 82 ) Fy(s) Pyl + 5 — )Gl + )G (s + 1)

— ot
®u(k) 8V/ @ry? 57)

®y(k) ~ 0.

Here and below the functions G (k) have the frequencies w ~ 2wy; therefore, we can use for
them expression (16).

Equations (56) and (57) mean that in a two-loop approximation we have a situation similar
to a one-loop approximation. It turns out that the corrections for the abnormal self-energy and
for the abnormal force functions are significantly smaller than the corresponding corrections for
the normal functions. The corrections for the self-energy functions can be taken into account
if we replace '

Yo(k) = Y(K) = 7o(k) + pn + (ImZ1(K))2 (58)

and if we use Egs. (14) and (15). Here we took into account the tree correction for the self-
energy function, shown in Fig. 1. Analogously, the corrections for the correlation functions
can be taken into account if we replace

To(k) — T(k) = To(k) + ®1(k) (59)

and if we use Eq. (23). In the last equation it is possible to ignore both the first term and the
one-loop correction for the force function ®;, because they are very small.

Thus, we obtain the following equation for the two-loop correction for the self-energy
functions:

e d*kid*ky (cky + wy — 2wp)? + 92 — A2
(@y), = -8V / (2m)3 A(k1)A* (K1)
x y(k1)Fi(k2)Fi(k1 + & — K2)G(k + K))G* (K + K)) . (60)

The corresponding equation for the force function has the form

d4K,1d4K,2

= 4 ——
I'(k) =8V any

Fi(k)Fi(k)Fi(k1 + K — K2)G(k + K1)G* (K + K1) . (61)

First, let us consider the case in which the excited sound wave is spherical. It is easy
to integrate in (60) and (61) over the angles 9¥(k;,k) and ¢(k;,k). The only factor in these
expressions, which depends on the angle 9, is G(k + k1)G*(k + k). For the integral we have

dd(k;, K)dp(k;, k)sind  _ x?
[wk+k) —w—wP+1602 2wy

(62)

Note that it is proportional to ~, ! and therefore this expression is significantly greater than
the analogous term for the direct fourth vertex. This statement is true independently of the
shape of the excited sound wave. This means that broadening of the spectrum of parametrically
excited acoustic wave is determined by the three-wave interaction.

Substituting expression (62) in (60) and (61), we obtain the system of equations
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dw,dkdw,dk,df sin 0
Y(K) =0 + pn — C/ — (22”)82 v(k1) %
ki + wy — 2wp)? + 4% — A2
(e “’j\(m,:i’zm)v Fi(k2)Fi(s1 + k= K2),
63)
dw,dkdw,dk,d6 sinf
I(k)=C / o 2 Ak Fu(k)Fi(ry + K — K2),

where 6 = 0(k, +k, ky), C = u3V2kj/2v.

As we will see, the two-loop correction for the damping rate « is not very important. So
first let us consider the correction for the force function. It is necessary to use the integrals over
ki, ka2, and 6. Experiment shows that broadening of parametrically excited waves is significantly
smaller than v ~ \. Therefore, we can write

k) =N =1, v, AKk)=(ck—w)*—@*+12 - 2v0. (64)

The characteristic value of ck — wy is of the order of v and the characteristic value of w is of
the order of v2/2y < v. It is easy to see that the dependence of I'(w, k) on the wave vector k is
smooth, while its dependence on the frequency w is singular. Therefore, integrating in (63) over
k1, ka2, and 8, we can assume I' to be a constant, and the corresponding integrals are determined
by the poles of A(k)A*(k). The integral over the angle dQ = dfd¢sin# is

(7 + A?) Twi + w — wp)
2wor? f© ’

where f(¢) and r are determined by (46). For { ~ v?/2y the function f can be written as

/dQF,(k1+k—k2)= (=w+w-—w —uw, (65)

f© = %\/ 1+ (27@—2)2[ V1t @y(v2)+1). (66)

It is easy to see that f({) is an even function and that f(0) = 1.
The integral over k,; gives

24 )2 :
/dkl Fi(k) = % 1}% . (67)

Thus we obtain the following equation for n(u'z):

3P+ %)

f@)nw) = Cs / durdus n(@Dm(@)n(ws +w —wy), Cs =Y . (68)

83

where p; is determined by (34).
Analogous equation was obtained for the distribution of parametrically excited spin
waves [3]. It is easy to solve this equation for f(z) = 1 + (z/n)?. In this case the solution is

n(w) = (\/2037; ch(ro /2n)) -

General consideration shows that for our functions f(x), which have no singularities in the
close vicinity of the real axes, the solution of Eq. (68) has a symmetrical form with the center
at w = 0 and exponential frequency asymptotics. The characteristic width of the distribution
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can be estimated in a following way. Since n = f dwn(w) =~ /2/Cs and using the equation
for equilibrium density of the sound wave (32), we obtain

_ 167003
Kan = eyp = \/ TN (69)

Numerical coefficient in this equation cannot be found analytically; it is of the order of unity.
Thus,

2 2432\ /3
v~ (7—°86- 7 > A ) . (70)
We obtain
1 2432\
(Aw)z = v, (’7062’y > ) . (71)

Analogously, it is possible to obtain the corresponding equations for the excited cylindrical
sound wave. The equation for n is

f@n(w) = Cy / dwrdws n(w))n(w)nlw + w — w2) F(C),

302+ 2 1, 7
_ B0 foy= L 2
A v 1OV T A

where u, is determined by (37) and r is determined by (46). Equation (72) has the same
asymptotic form as the corresponding Eq. (68) for a spherical wave. This means that the
asymptotic properties of the solution of this equation are the same as for Eq. (68). By analogy
with Egs. (69)-(71), we can obtain for an excited cylindrical sound wave

2 2 (D) (2422
= ~ YL - ’ 7
pan = €0 = 4(yov’) %y | AN (Aw)y Ty 4y ( 2 ) 7

Let us consider the one-dimensional case of a flat sound wave. In this case the dependence
of T on k is not smooth. We can obtain the following equation for n(w, k):

fw, kyn(w, k) = C, /dkldwldkzdwz n(wy, k)n(ws, kp)n(w; +w —wy, ki + k —ky),

_ 2 2 -\ 2 2 .2
Fo byl ) = [1+ (ck VuJo) ] . (m) g =t + )2 .

v 32 4

where y; is determined by (36). Equation (74) means that

1 ;
= ~ 2 ——————
wmn = ey ~ 8v ”72_’_/\2. (75)

For the width of a sound spectrum we have’
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(Aw); ~ %\/72 AL, (76)

Note that numerical coefficients in expressions (71), (73), and (76) are not correct; these
equations determine only estimates for the corresponding widths. It is necessary to solve the
corresponding nonlinear equations numerically in order to determine accurate values of the
coefficients.

Let us now estimate the two-loop correction for the self-energy function. It is easy to
obtain from the first equation in (63):

(Ay)2 _1__ 1/7

@ " 16 n

We see that the two-loop correction is small numerically and that it does not change the general
~ picture essentially. This result is logical, because the conservation laws allow us to obtain a
not small one-loop correction for the self-energy function. It turns out that the corresponding
two-loop correction is not essential. For the force function the one-loop correction is small.
It is therefore necessary to take into account the two-loop corrections.

7. COMPARISON WITH THE EXPERIMENT

Let us compare the theory with the experiment {5,6]. Experimental studies {5, 6] were
performed for parametric generation of a second-sound wave by a first-sound wave in liquid
helium near the superfluid transition temperature. The canonical variables for this system
were found by Pokrovskii and Khalatnikov {8], who calculated the triple vertex U of the first-
and second-sound interaction (the correct vertex is greater than that found by Pokrovskii and
Khalatnikov by a factor of 2, in agreement with the result of Lebedev [13]). The correct
expression for this vertex is

1 w_?{_l._lj?i_ﬁ(a"’s)]. (78)

a {32 |p T, ps\0p)/,
Here p and p, are the total and the superfluid density of liquid helium, P and T are the
pressure and temperature, w, is the frequency of the first sound, ¢, its velocity, ¢ = S/p;
T, = (0T /00),, etc. For experimental conditions of Refs. [5] and [6], it is possible to ignore

the weak dependence of this vertex on the angle between the wave vectors, which is small as
ps/p- Expression (78) can be rewritten in the variables P, T in the following way:

1 [ W}
U=s—(/5- U +), (79
Cy 32p

0 (Ce 06 Br 06\ L (3, B0
U J¢<T 8P+p6T)’ Va=r (6T+nT8P>' (80)

where

Here we introduce the notation
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Ps pBP prCp 1 (3p)
= —1 = _—1 J - /_ - k) K = - a_ b
é . Y 7 By =23 .

8o ( Oo dp
T =—pl|l=—=]| =
o= (5), 4= (35), == (),
Here w, and c¢; are the frequency and the velocity of the second sound. These equations permit
us to use the results of Ref. [14] to calculate this vertex.

Using the Pokrovskii-Khalatnikov equations for the canonical variables, we obtain the
following expression for the triple vertex of the second-sound interaction:

_ ) Tys 1 (dps
V) = /—IF/)TU{_T—;-FZ (6a>p[cos(20)—2cos0]}, (82)

where 6 is the angle between the wave vectors of the second-sound waves. This vertex can be
written in the variables P, T as

(81)

3 . R
V@)= %2/) X, X = \/i{-)lzD(X) + éD(q&) [cos(28) — 2cos9]} , (83)
where
_ PKT - ﬁp
=75 P= aT kT OP

It is possible to compare the experimental results with theory for three parameters: the
threshold of the second sound excitation, the equilibrium intensity of the second-sound over
the threshold, and the form of the spectrum of the excited waves. The ratio of the velocities
of the pumping first-sound wave and the excited second sound waves was about 102 in [5].
The pumping wave was a standing wave. These facts lead to a generation of cylindrical (or
perhaps flat) but not a spherical second-sound wave. It is possible to see that an accurate
comparison of the data on the excitation threshold with Egs. (27), (79), and (80) gives a good
agreement, significantly better than that in Ref. [5]. It is necesary to point out, however, that
for the experiment [5] Eq. (27) must be modified. A special geometry of the experimental cell
and pumping by a standing wave lead to the following modified equation for the excitation
threshold:

la] = 20/v2U .

A correlation of the second-sound waves for intermediate angles between the wave vectors
was not observed experimentally. This result agrees with our statement about the absence of
long-range order on the angle for parametrically generated sound waves.

The thermal width near the threshold can be easily estimated for a given experiment [5].
In fact,

KTy woYoT' woyol'

Aw)r = ~ ~ .
(Aw)r X H 4n2c) 70471'20%11

(84)

The value of n can be found from the second-sound intensity I:

I =cuwm,
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and we have

2
(@hr = 20220 }‘g . (85)
For the values
Y~25s"! A~107*m, I~10"5w/m’, kT ~3-1072]
we obtain
(Aw)r
Yo

~ 1078,

which is negligible. In a real experiment there are always other sources of noise except
temperature. Estimate (85) determines the condition under which it is necessary to take into
account such noise source.

Experimental shape of the second-sound spectrum strongly fluctuates. For good
experimental results it can be universally described as a symmetrical spectral line with
exponential tails. The width of this spectral line is proportional to ¢ with @ ~ 1-1.2. This
result agrees well with Egs. (73)—(76).

The results for the intensity of the second-sound waves are not yet fully understood.
Experimental values are significantly smaller than theoretical expressions (37) and (38). The
reason for this discrepancy is not known. It was shown, in particular, that the intensity of the
excited sound wave depends strongly on its shape. The excited second-sound wave in Ref. [5] is
not spherical due to the pumping by a standing wave. Unfortunately, experimental information
does not allow us to draws definite conclusion about the shape of a parametrically generated
sound wave.

8. CONCLUSIONS

The theory of parametric excitation of sound waves considered by us differs significantly
from the standard theory of spin waves [3]. The most important difference is that three-
wave interaction is allowed for sound waves. This three-wave interaction produces nonlinear
attenuation of the sound wave and determines the saturated value of the amplitude of an excited
wave. The intensity of a parametrically excited sound wave is proportional to the difference
between the value of pumping and bare attenuation rate of a sound wave, ¢ = A/ — 1.

Three-wave interaction between sound waves is essential only if the angle between their
wave vectors is smaller than 4/~ /w. This property destroys long-range order over the angle
between waves and accounts for the absence of ordinary pattern formation. The total intensity
of a parametrically excited sound wave crucially depends on the shape of the wave. It is maximal
for a spherical wave and minimal for a flat wave. The shape of an excited wave is determined
by the symmetry of the system (boundary conditions), by the shape of the pumping wave, and
by the properties of the interaction vertex between the pumping wave and the sound waves. It
is expected that the symmetry of an excited sound wave will be the same as the symmetry of
a system due to the peculiar interaction between sound waves.

The spectrum of parametrically excited sound waves is similar to the spectrum of other
waves. Thermal broadening of the spectrum is negligible for the experiment in Ref. [6].
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Significant broadening of the spectrum of excited waves takes place due to their scattering. The
structure of a nonlinear integral equation, which determines the shape of the spectrum of sound
waves, is similar to the structure of analogous equations for waves with other dispersion relations.
This fact leads to universal shape of the spectrum with exponential asymptotic behavior over the
frequency. The width of the spectrum essentially depends on the shape of the wave. Roughly,
it is estimated as Aw ~ ~Y0€* /4n. Here 7, is the bare damping rate of a sound wave, and the
value of the parameter o depends on the shape of the wave. For a flat wave o = 1, for a
cylindrical wave o = 8/7, and for a spherical wave a = 8/6, whereas the corresponding index
for spin waves is equal to 2/3 [3].
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