ДИФФУЗИЯ И УСИЛЕНИЕ МАГНИТНОГО ПОЛЯ В ТУРБУЛЕНТНОЙ СРЕДЕ СО СПИРАЛЬНОСТЬЮ

Н. А. Силантьев

Главная астрономическая обсерватория Российской академии наук 196140, Санкт-Петербург, Россия Instituto National de Astrofisica, Optica y Electronica, Puebla, Mexico

Поступила в редакцию 15 апреля 1997 г.

Рассмотрена связь точных формул для коэффициентов турбулентной диффузии D_T и альфа-эффекта α_T для магнитного поля в лагранжевом и эйлеровом представлениях. Показано, что квадратичный по α_T член в коэффициенте диффузии, выведенном Моффатом и Крайчнаном, ошибочен и должен быть отброшен. Впервые дано численное решение нелинейного уравнения (DIA-equation) для тензора Грина, описывающего перенос магнитного поля, для случая несжимаемой, однородной, изотропной и стационарной турбулентности, обладающей спиральностью. На основе этих решений вычислены стационарные коэффициенты D_T и α_T для различных значений параметров $\xi_0 = u_0 \tau_0 / R_0$, $a = H_0/u_0^2 p_0, \tau_0/\tau_1, R_0/R_1,$ где u_0, τ_0 и R_0 — характерные скорость, время жизни и масштаб турбулентных пульсаций, а H_0 , τ_1 и R_1 — аналогичные величины, описывающие спиральность среды $h(1,2) = \langle \mathbf{u}(1) \text{ rot } \mathbf{u}(2) \rangle$, параметр a характеризует степень спиральности. Сравнение DIA-значений D_T и α_T с самосогласованными значениями этих величин, вычисленных с использованием тензора Грина в диффузионном приближении, показало их качественное совпадение. Показано, что для всех рассмотренных типов турбулентности коэффициент турбулентной диффузии всегда положителен. Даны нестационарные значения $D_T(t)$ и $\alpha_T(t)$, вычисленные самосогласованным способом.

1. ВВЕДЕНИЕ

Проблема переноса и усиления магнитного поля в турбулентных проводящих средах изучается в магнитной гидродинамике, астрофизике и геофизике уже много лет. Подробный обзор работ по различным аспектам этой проблемы содержится в известных монографиях [1-4]. Очевидная сложность проблемы, обусловленная векторным характером магнитного поля, привела к использованию при вычислениях тех или иных правдоподобных предположений относительно поведения усредненного магнитного поля $(B(\mathbf{r}, t))$. В частности, широкое использование получило диффузионное приближение, когда предполагается, что $(\mathbf{B}(\mathbf{r},t))$ — достаточно гладкая функция на характерных масштабах R_0 и временах τ_0 корреляции поля турбулентных скоростей **u**(**r**, t) проводящей среды. Наличие средней ненулевой спиральности $H_0 = \langle \mathbf{u}(\mathbf{r}, t) \operatorname{rot} \mathbf{u}(\mathbf{r}, t) \rangle \neq 0$ приводит к усилению первоначально имевшегося магнитного поля (так называемый α -эффект). Ненулевая спиральность турбулентных движений может быть вызвана наличием общего вращательного движения проводящей среды (вращение Земли, Солнца и т. д.). Кинематическая постановка задачи, когда магнитное поле считается достаточно малым, не влияющим на известное турбулентное движение жидкости или газа, в турбулентной среде со спиральностью пригодна лишь в течение того времени, пока энергия растущего магнитного поля не сравняется с кинетической энергией движущихся элементов газа.

В диффузионном приближении эволюция $\langle \mathbf{B}(\mathbf{r}, t) \rangle$ в изотропной турбулентной среде описывается известным уравнением:

$$\left(\frac{\partial}{\partial t} - D_m \nabla^2\right) \langle \mathbf{B}(\mathbf{r}, t) \rangle = \operatorname{rot} \alpha_T(\mathbf{r}, t) \langle \mathbf{B}(\mathbf{r}, t) \rangle - \operatorname{rot} D_T(\mathbf{r}, t) \langle \mathbf{B}(\mathbf{r}, t) \rangle, \tag{1}$$

где $D_m = c^2/4\pi\sigma$ — молекулярный коэффициент диффузии, σ — проводимость среды, D_T — коэффициент турбулентной диффузии, α_T — коэффициент, описывающий усиление $\langle \mathbf{B}(\mathbf{r},t) \rangle$ за счет действия α -эффекта. В приложениях обычно используются оценки $D_T \cong u_0 R_0$ и $\alpha_T \cong u_0$, которые оставляют большой произвол в конкретных расчетах эволюции среднего магнитного поля. В этой связи представляют интерес попытки более строгого вычисления D_T и α_T при заданных ансамблях турбулентной скорости $\mathbf{u}(\mathbf{r},t)$ в эйлеровом представлении. По-видимому, первое точное значение $D_T = u_0\tau_0/3$ было получено в работе [5] для короткокоррелированного во времени поля скоростей (коррелятор $\langle u_i(\mathbf{r},t)u_j(\mathbf{r}',t') \rangle \propto \delta(t-t')$). Более общее рассмотрение проблемы вычисления коэффициента D_T , с учетом также и сжимаемости среды, представлено в работе [6].

Обычно коэффициент $D_m \ll D_T$ и может не учитываться при нахождении D_T и α_T . В этом случае легко получить точные выражения для D_T и α_T , используя лагранжево представление поля скоростей $\mathbf{v}(\mathbf{a}, t)$. Здесь \mathbf{a} — координата жидкой частицы в начальный момент времени t = 0. Уравнения переноса скалярной примеси с концентрацией $n(\mathbf{r}, t) = \langle n \rangle + \mathbf{n}' (\langle \mathbf{n}' \rangle = 0)$ и уравнение для индукции магнитного поля $\mathbf{B}(\mathbf{r}, t) = \langle \mathbf{B} \rangle + \mathbf{B}' (\langle \mathbf{B}' \rangle = 0)$ в случае $D_m = 0$ принимают вид

$$\partial n(\mathbf{r},t)/\partial t = \nabla \left[\mathbf{u}(\mathbf{r},t)n(\mathbf{r},t) \right],$$
(2)

$$\partial \mathbf{B}(\mathbf{r},t)/\partial t = \operatorname{rot}\left[\mathbf{u}(\mathbf{r},t)\mathbf{B}(\mathbf{r},t)\right], \quad \operatorname{div}\mathbf{B} = 0, \quad \operatorname{div}\mathbf{u} = 0.$$
 (3)

Решение этих уравнений при заданном лагранжевом поле скоростей v(a, t) имеет вид [1,4]

$$n(\mathbf{r},t) = n_0 \left(\mathbf{r} - \mathbf{X}(\mathbf{a},t)\right) / D(\mathbf{a},t) \equiv n_0(\mathbf{a}) / D(\mathbf{a},t), \tag{4}$$

$$B_{i}(\mathbf{r},t) = \frac{\partial x_{i}}{\partial a_{j}} B_{j}^{(0)}(\mathbf{r} - \mathbf{X}(\mathbf{a},t)) \equiv \frac{\partial x_{i}}{\partial a_{j}} B_{j}^{(0)}(\mathbf{a}),$$
(5)

где $\mathbf{r} = (x_1, x_2, x_3)$ и

$$\mathbf{r} = \mathbf{a} + \mathbf{X}(\mathbf{a}, t) \equiv \mathbf{a} + \int_{0}^{t} d\tau \, \mathbf{v}(\mathbf{a}, \tau), \quad \partial \mathbf{r} / \partial t \equiv \mathbf{u}(\mathbf{r}, t) \equiv \mathbf{v}(\mathbf{a}, t), \tag{6}$$

$$D_{ij}(\mathbf{a},t) = \partial x_i / \partial a_j, \quad D(\mathbf{a},t) = \det D_{ij}, \quad \dot{D}_{ij} \equiv \partial D_{ij} / \partial t, \quad \dot{D} / D = \operatorname{div} \mathbf{u}(\mathbf{r},t),$$

$$D_{sp}\dot{D}_{pq}^{-1} = -\frac{\partial v_s}{\partial a_a}, \quad d\mathbf{r} = D(\mathbf{a}, t)d\mathbf{a}.$$
 (7)

Как обычно, по повторяющимся индексам подразумевается суммирование. Величины $n_0(\mathbf{a})$ и $\mathbf{B}^{(0)}(\mathbf{a})$ означают концентрацию и магнитное поле в начальный момент времени. Уравнение (4) выражает собой закон сохранения числа примесных частиц

6 ЖЭТФ, №4 (10)

 $(n(\mathbf{r}, t)d\mathbf{r} = n_0(\mathbf{a})d\mathbf{a})$ при их переносе вдоль трубки тока переменного сечения. Выражение (5) описывает изменение вмороженного в элемент жидкости магнитного поля в несжимаемой среде за счет конвективного переноса, а также деформаций и вращений элемента жидкости или газа. Задание случайного поля лагранжевых скоростей $\mathbf{v}(\mathbf{a}, t)$ определяет ансамбль реализаций турбулентных течений, по которому надо усреднить решения (4) и (5), чтобы получить уравнения для средних $\langle n(\mathbf{r}, t) \rangle$ и $\langle \mathbf{B}(\mathbf{r}, t) \rangle$. При фиксированных **r** и t величина $\mathbf{a} \equiv \mathbf{r} - \mathbf{X}(\mathbf{a}, t)$ является случайной величиной и задача сводится к усреднению известных функций $n_0(\mathbf{a})$ и $\mathbf{B}^{(0)}(\mathbf{a})$ от случайного аргумента **a** со случайными же весовыми множителями $1/D(\mathbf{a}, t)$ и $D_{ij}(\mathbf{a}, t)$. Переход к диффузионному приближению предполагает гладкость $n_0(\mathbf{a})$ и $\mathbf{B}^{(0)}(\mathbf{a})$ на характерных длинах $R_0 \cong \sqrt{\langle X^2 \rangle}$ и использование разложения Тейлора в ряд по $\mathbf{X}(\mathbf{a}, t)$ [7,8]. В результате получаем точные выражения для D_T и α_T . Для скалярного примесного поля в изотропной среде имеем

$$D_T = \frac{1}{3} \int_0^t d\tau \langle \mathbf{v}(\mathbf{a}, t) \mathbf{v}(\mathbf{a}, \tau) / D(\mathbf{a}, t) \rangle, \qquad (8)$$

где скобка () означает усреднение по ансамблю реализаций скоростей. Для несжимаемой среды ($D(\mathbf{a}, t) \equiv 1$) формула (8) была получена еще в 1921 году Тейлором [9]. Формулы для D_T и α_T для магнитного поля были получены гораздо позже [7,8]:

$$D_{T}(t) = \frac{1}{3} \int_{0}^{t} d\tau \langle \mathbf{v}(\mathbf{a}, t) \mathbf{v}(\mathbf{a}, \tau) \rangle + \frac{1}{6} \int_{0}^{t} d\tau \int_{0}^{t} d\tau' \left[\langle \mathbf{v}(\mathbf{a}, t) \mathbf{v}(\mathbf{a}, \tau) \frac{\partial v_{i}(\mathbf{a}, \tau')}{\partial a_{i}} \rangle - \langle v_{i}(\mathbf{a}, t) \frac{\partial}{\partial a_{i}} \mathbf{v}(\mathbf{a}, \tau) \mathbf{v}(\mathbf{a}, \tau') \rangle \right] + \alpha_{T}(t) \int_{0}^{t} d\tau \alpha_{T}(\tau),$$
(9)

$$\alpha_T(t) = -\frac{1}{3} e_{ijm} \int_0^t d\tau \langle v_i(\mathbf{a}, t) \frac{\partial v_j(\mathbf{a}, \tau)}{\partial a_m} \rangle \equiv -\frac{1}{3} \int_0^t d\tau \langle \mathbf{v}(\mathbf{a}, t) \operatorname{rot}_a \mathbf{v}(\mathbf{a}, \tau) \rangle.$$
(10)

Здесь $e_{ijn} = -e_{jin} = -e_{inj}$ — единичный псевдотензор ($e_{123} = 1$ и т.д.). Первый член в (9) совпадает с D_T для скалярной примеси и обусловлен чисто конвективным переносом примеси вместе с элементом жидкости или газа. Второй член в (9) определяет вклад в диффузию деформаций и вращений элемента среды. Особо следует сказать о смысле третьего члена в (9), пропорционального α_T^2 . Этот член возникает вследствие учета увеличения среднего магнитного поля за счет действия α -эффекта. При его выводе использовалось решение уравнения (1) с отброшенными диффузионными членами (члены с D_m и D_T). Само это приближенное решение пригодно лишь при малых временах, когда $\alpha_T \propto t$ и $D_T \propto t$, т.е. член с α_T^2 дает пренебрежимо малую поправку $\propto t^3$. Далее мы покажем, что при больших временах этот член вообще не существует. Формальное использование этого члена при $t \to \infty$ приводит к неограниченному увеличению D_T ($D_T \propto \alpha^2 t \to \infty$), т.е. к абсурдному с физической точки зрения результату.

Заметим также, что Паркер [4], усредняя (5), пренебрегал зависимостью $\mathbf{B}^{(0)}(\mathbf{a})$ от **X**(\mathbf{a}, t) и получил для изотропной среды, где $\langle \partial x_i / \partial a_j \rangle = \delta_{ij}$, соотношение $\langle \mathbf{B}(\mathbf{r}, t) \rangle = \langle \mathbf{B}^{(0)}(\mathbf{a}) \rangle$, полностью аналогичное выражению $\langle n(\mathbf{r}, t) \rangle = \langle n_0(\mathbf{a}) \rangle$ для скалярной примеси в несжимаемой среде. Это привело его к неверному заключению, что D_T для магнитного поля в изотропной среде должно точно совпадать с D_T для скалярной примеси. Из общих соображений можно ожидать, что усреднение более сложных выражений, входящих во второй член в (9), даст меньший вклад в D_T , чем первый конвективный член. То есть можно ожидать, что в основном коэффициент турбулентной диффузии магнитного поля (в отсутствие спиральности среды) действительно близок к D_T скалярной примеси.

Формулы (9) и (10) были использованы Крайчнаном [8, 10] для вычисления $D_T(t)$ и $\alpha_T(t)$ для двух моделей турбулентности с узким спектром энергии. Процесс численного моделирования траекторий жидких частиц доводился до времен $t = 4t_0$, где $t_0 = R_0/u_0 = 1/u_0p_0$ — время обращения жидкого вихря. Вычисления подтвердили близость D_T к коэффициенту турбулентности диффузии скалярной примеси для значений параметра $\xi_0 = u_0\tau_0/R_0 = u_0\tau_0p_0 \le 1$. Для случая «замороженной» и спиральной турбулентности, когда $\tau_0 \gg t_0$ ($\xi_0 = \tau_0/t_0 \to \infty$), начиная с $t \cong 3t_0$ значения D_T оказались отрицательными. Наши вычисления (см. ниже), проведенные в эйлеровом представлении, всегда приводят к положительным D_T . Случай $\xi_0 \to \infty$ наиболее труден для численного моделирования, и видимо поэтому в [10] получился этот неверный результат.

Формулы (9) и (10) требуют знания лагранжевых скоростей $v(\mathbf{a}, t)$ в гурбулентной среде, в то время как обычно измеряются корреляторы компонент эйлеровых скоростей $\mathbf{u}(\mathbf{r}, t)$. Переход от $\mathbf{u}(\mathbf{r}, t)$ к $v(\mathbf{a}, t)$ связан с решением системы дифференциальных уравнений, и до сих пор в общем случае эта проблема не решена. Поэтому необходимо иметь точные формулы для вычисления D_T и α_T в эйлеровом представлении. Впервые такие формулы для стационарной, однородной и изотропной турбулентности были получены в работах [11, 12].

Для коэффициента турбулентной диффузии D_T скалярной примеси в сжимаемой среде имеем [12]

$$D_T(t_1) = \frac{1}{3} \int d\mathbf{R} \int_0^{t_1} dt_2 \left[\langle u_i(1)G(1,2)u_i(2) \rangle - \langle \mathbf{Ru}(1)G(1,2)\operatorname{div} \mathbf{u}(2) \rangle \right].$$
(11)

Здесь и далее мы будем использовать удобные обозначения:

$$f(1) = f(\mathbf{r}_1, t_1), \quad f(1-2) = f(\mathbf{r}_1 - \mathbf{r}_2, t_1 - t_2), \quad dn = d\mathbf{r}_n dt_p, \quad \mathbf{R} = \mathbf{r}_1 - \mathbf{r}_2, \quad \tau = t_1 - t_2$$

и т.д. $G(1,2) = G(\mathbf{r}_1, t_1; \mathbf{r}_2, t_2)$ — функция Грина уравнения (3). Ее формальное выражение в лагранжевых обозначениях имеет вид

$$G(1,2) = \frac{D(\mathbf{a},t_2)}{D(\mathbf{a},t_1)} \delta\left(\mathbf{r}_1 - \mathbf{r}_2 + \int_{t_2}^{t_1} d\tau \,\mathbf{v}(\mathbf{a},\tau)\right). \tag{12}$$

Подставляя это выражение, а также соотношение div $\mathbf{u}(\mathbf{r},t) = D(\mathbf{a},t)/D(\mathbf{a},t)$ в формулу (11), вновь получаем формулу (8) для коэффициента турбулентной диффузии D_T скалярной примеси в сжимаемой среде.

Выражения для D_T и α_T в эйлеровом представлении выведены в работе [12]:

$$D_{T}(t_{1}) = \frac{1}{6} \int d\mathbf{R} \int_{0}^{t_{1}} dt_{2} \left[\langle u_{i}(1)G_{ss}(1,2)u_{i}(2) \rangle - \langle u_{s}(1)G_{is}(1,2)u_{i}(2) \rangle + \langle R_{s}u_{n}(1)G_{in}(1,2)(\nabla_{i}u_{n}(2)) \rangle - \langle R_{s}u_{i}(1)G_{sn}(1,2)(\nabla_{i}u_{n}(2)) \rangle \right],$$
(13)

6*

$$\alpha_T(t_1) = e_{ipt} \frac{1}{3} \int d\mathbf{R} \int_0^{t_1} dt_2 \langle u_i(1) G_{pn}(1,2) (\nabla_t u_n(2)) \rangle.$$
(14)

Тензорная функция Грина уравнения индукции (4) может быть представлена в виде

$$G_{ij}(1,2) = D_{is}(\mathbf{a},t_1) D_{sj}^{-1}(\mathbf{a},t_2) \delta \left[\mathbf{r}_1 - \mathbf{r}_2 - \int_{t_2}^{t_1} d\tau \, \mathbf{v}(\mathbf{a},\tau) \right].$$
(15)

Подставляя это выражение в (13) и (14), а также используя при этом связь

$$D_{sp}^{-1}(\mathbf{a},t)\partial v_p(\mathbf{a},t)/\partial a_i = -D_{si}^{-1}(\mathbf{a},t)$$

(см. (7)), вновь получаем формулу (9) (но без последнего члена!) и формулу (10).

Таким образом, чтобы вычислить D_T и α_T для ансамбля эйлеровых скоростей $\mathbf{u}(\mathbf{r}, t)$, надо знать функцию Грина $G_{ij}(1, 2)$ в эйлеровом представлении и ее корреляторы с компонентами скорости. Тензор $G_{ij}(1,2)$ является функционалом от $\mathbf{u}(\mathbf{r},t)$ и, в отличие от лагранжева представления (15), не может быть найден в явном аналитическом виде. В работах [11, 12] предложена процедура перенормировки интегрального уравнения для G_{ij}. Подстановка итераций перенормированного уравнения для G_{ij} в основные формулы (13) и (14) приводит к асимптотически хорошо сходящимся рядам для D_T и α_T . Усреднение ряда итераций для правого члена в уравнении индукции (4) приводит к иерархии нелинейных уравнений непосредственно для усредненной функции Грина $\langle G_{ij}(1,2) \rangle \equiv g_{ij}(1-2)H(t_1-t_2)$ (здесь $H(\tau) = 1$ для $\tau > 0$ и $H(\tau) = 0$ для $\tau < 0$). Первое из уравнений иерархии, имеющее квадратичную нелинейность, получило в литературе название уравнения в Direct Interaction Approximation — DIA-equation. Для скалярной примеси DIA-уравнение было предложено в работе [13]. Исследование скаяярного DIA-уравнения (см. [14-17]) показало, что оно позволяет вычислить D_T для всех значений параметра $\xi_0 = u_0 \tau_0 / R_0$ ($0 \le \xi_0 < \infty$). Отличие DIA-значения D_T от точного значения монотонно растет от 0% для $\xi_0 \to 0$ до $\cong 10\%$ при $\xi_0 \to \infty$ (случай замороженной турбулентности). DIA-уравнение для тензора $\langle G_{ij}(1,2) \rangle$ в изотропной среде сводится к системе двух нелинейных уравнений. Крайчнан [8] пессимистически оценивал возможность численного решения этой нелинейной системы.

В данной работе мы впервые численно решим эту систему уравнений и получим DIA-выражения для стационарных значений $(t \to \infty)$ коэффициентов D_T и α_T . Наши значения D_T всегда положительны (возможность отрицательных D_T возникает в DIA-решениях для чисто сжимаемой потенциальной турбулентности, когда $u_i(\mathbf{r}, t) = \nabla_i \varphi(\mathbf{r}, t)$). В настоящее время вычисления D_T и α_T на основе DIA-уравнения представляются самыми точными и надежными. Мы также подробно исследуем зависимость D_T и α_T от степени спиральности и ее пространственно-временных масштабов. Полученные закономерности позволят более правильно выбрать величины D_T и α_T даже в тех случаях, когда корреляторы скорости среды известны лишь приближенно и даже выбор характерных параметров R_0 и τ_0 затруднен.

2. ИЕРАРХИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ДЛЯ СРЕДНЕГО ТЕНЗОРА ГРИНА И ПЕРЕХОД К ДИФФУЗИОННОМУ ПРИБЛИЖЕНИЮ

Используя метод получения нелинейных уравнений для функций Грина G(1,2), изложенный в [11, 12, 17], получим для первых трех членов иерархии (напомним, что $\langle G_{ij}(1,2) \rangle \equiv G_{ij}(1-2)$):

$$\left(\frac{\partial}{\partial t_{1}} - D_{m}\nabla_{1}^{2}\right)G_{ij}(1-2) = \delta_{ij}\delta(\mathbf{R})\delta(\tau) + \int d3\langle\hat{L}_{in}(1)G_{nm}(1-3)\hat{L}_{ms}(3)\rangle G_{sj}(3-2) + \\ + \int d3\int d4\langle\hat{L}_{in}(1)G_{nm}(1-3)\hat{L}_{ms}(3)G_{sr}(3-4)\hat{L}_{rt}(4)\rangle G_{tj}(4-2) + \\ + \int d3\int d4\int d5\left[\langle\hat{L}_{in}(1)G_{nm}(1-3)\hat{L}_{ms}(3)G_{sr}(3-4)\hat{L}_{rt}(4)G_{tq}(4-5)\hat{L}_{qf}(5)\rangle - \\ -\langle\hat{L}_{in}(1)G_{nm}(1-3)\langle\hat{L}_{ms}(3)G_{sr}(3-4)\hat{L}_{rt}(4)\rangle G_{tq}(4-5)\hat{L}_{qf}(5)\rangle - \\ -\langle\hat{L}_{in}(1)G_{nm}(1-3)\hat{L}_{ms}(3)\rangle G_{sr}(3-4)\langle\hat{L}_{rt}(4)G_{tq}(4-5)\hat{L}_{qf}(5)\rangle\right]G_{fj}(5-2) + \dots (16)$$

Здесь тензорный оператор $\hat{L}_{nm}(3) \equiv \nabla_m^{(3)} u_n(3) - \delta_{nm} \nabla_s^{(3)} u_s(3)$ действует на все находящиеся справа от него функции от \mathbf{r}_3 , t_3 . Для гаусовских ансамблей $\mathbf{u}(\mathbf{r},t)$ второй интегральный член обращается в нуль, а третий сводится к одному члену с коррелятором перекрестного (во времени) типа, в котором $L_{in}(1)$ усредняется с $L_{rt}(4)$, а $L_{ms}(3)$ усредняется с $L_{qf}(5)$. Отбрасывание всех членов иерархии, кроме второго интегрального, приводит к DIA-уравнению. Используя равенство

$$\langle B_i(\mathbf{r},t)\rangle = \int d\mathbf{r}' \langle G_{ij}(\mathbf{r}-\mathbf{r}';t)\rangle B_j^{(0)}(\mathbf{r}'), \qquad (17)$$

получаем из (16) интегро-дифференциальное уравнение для среднего магнитного поля $\langle \mathbf{B}(\mathbf{r},t) \rangle$ в стационарной, однородной и изотропной среде, которое можно представить в виде

$$\begin{pmatrix} \frac{\partial}{\partial t} - D_m \nabla^2 \end{pmatrix} \langle \mathbf{B}(\mathbf{r}, t) \rangle = = \operatorname{rot} \int d\mathbf{R} \int_0^t d\tau \left[\alpha(\mathbf{R}, \tau) \langle \mathbf{B}(\mathbf{r} - \mathbf{R}, t - \tau) \rangle - D(\mathbf{R}, \tau) \operatorname{rot} \langle \mathbf{B}(\mathbf{r} - \mathbf{R}, t - \tau) \rangle \right].$$
(18)

Сама форма этого выражения носит общий характер, не зависящий от способа обрыва иерархии уравнений для $\langle G_{ij} \rangle$.

Формальное решение уравнения (18) легко получить, используя фурье-преобразование по **r** и преобразование Лапласа по времени *t*:

$$\langle \tilde{\mathbf{B}}(\mathbf{p},s) \rangle = \int d\mathbf{r} \int_{0}^{\infty} dt \, \exp(-st) \exp(-i\mathbf{pr}) \langle \mathbf{B}(\mathbf{r},t) \rangle.$$
 (19)

Получаем, учитывая соленоидальность магнитного поля $\mathbf{p}\tilde{\mathbf{B}}^{(0)}(\mathbf{p}) = 0$,

$$\langle \tilde{B}_i(\mathbf{p},s)\rangle \equiv \langle \tilde{G}_{ij}(\mathbf{p},s)\rangle \tilde{B}_j^{(0)}(\mathbf{p}) = \tilde{G}_0(p,s)\tilde{B}_i^{(0)}(\mathbf{p}) - ie_{iej}p_e \tilde{G}_1(\mathbf{p},s)\tilde{B}_j^{(0)}(\mathbf{p}),$$
(20)

где

$$\tilde{G}_{0}(\mathbf{p},s) = \frac{1}{2} \left(\tilde{G}_{-} + \tilde{G}_{+} \right), \quad \tilde{G}_{1} = \frac{1}{2p} \left(\tilde{G}_{+} - \tilde{G}_{-} \right),$$

$$\tilde{G}_{\mp}(\mathbf{p},s) = \left(s + \tilde{D}(\mathbf{p},s)p^{2} \mp \tilde{\alpha}(\mathbf{p},s)p \right)^{-1}.$$
(21)

Выражения для $D(\mathbf{p}, s)$ и $\tilde{\alpha}(\mathbf{p}, s)$ в DIA-приближении имеют вид

$$\tilde{D}(\mathbf{p},s) = -ip_t \left[\tilde{T}_{iti} - \tilde{T}_{tii} + ip_n \left(\tilde{S}_{timn} - \tilde{S}_{itmn} \right) \right] / 2p^2,$$
(22)

$$\tilde{\alpha}(\mathbf{p},s) = -e_{ims}p_s p_t \left[\tilde{T}_{itm} - \tilde{T}_{tim} + ip_n \left(\tilde{S}_{timn} - \tilde{S}_{itmn} \right) \right] / 2p^2, \tag{23}$$

где

$$T_{itm}(\mathbf{R},\tau) = \langle u_i(1) \langle G_{tn}(1,2) \rangle \nabla_m^{(2)} u_n(2) \rangle, \quad S_{tinm}(\mathbf{R},\tau) = \langle u_t(1) \langle G_{im}(1,2) \rangle u_n(2) \rangle.$$
(24)

Корреляторы (24) являются острыми функциями $\mathbf{R} = \mathbf{r}_1 - \mathbf{r}_2$ и $\tau = t_1 - t_2$ на масштабах $\sim R_0$ и временах $\sim \tau_0$ (или $\sim t_0 = R_0/u_0$ для замороженной турбулентности, когда $\tau_0 \gg t_0$). Для неоднородной турбулентной среды функции $\alpha(\mathbf{R}, \tau)$ и $D(\mathbf{R}, \tau)$ параметрически зависят от среднего положения $\mathbf{r} = (\mathbf{r}_1 + \mathbf{r}_2)/2$ в среде.

Выражения (18)–(24) имеют место и в общем случае, не связанном с DIA-приближением. В этом общем случае в (24) надо заменить $\langle G_{tn} \rangle$ на неусредненную функцию Грина G_{tn} и взять неприводимую часть. Напомним, что приводимые выражения содержат молекулярную функцию Грина, разделяющую какие-либо усредненные части, т.е. выражения типа (см. подробнее [11, 12, 17])

$$\int d3 \int d4 \langle A(1,3) \rangle G_m(3-4) \langle B(4,2) \rangle.$$

Уравнение диффузии получается из (18), если считать $\langle \mathbf{B}(\mathbf{r},t) \rangle$ достаточно гладкой функцией и разложить под интегралом $\langle \mathbf{B}(\mathbf{r}-\mathbf{R},t-\tau) \rangle$ в ряд по степеням **R** и τ , оставив члены нулевого и первого порядков. В итоге получим

$$\left(\frac{\partial}{\partial t} - D_m \nabla^2\right) \langle \mathbf{B}(\mathbf{r}, t) \rangle = \alpha_T(t) \operatorname{rot} \langle \mathbf{B}(\mathbf{r}, t) \rangle - - D_T^{(0)}(t) \operatorname{rot} \operatorname{rot} \langle \mathbf{B}(\mathbf{r}, t) \rangle - \beta_T(t) \operatorname{rot} \frac{\partial \langle \mathbf{B}(\mathbf{r}, t) \rangle}{\partial t},$$
(25)

где

$$D_T^{(0)}(t) = \int d\mathbf{R} \int_0^t d\tau \, D(\mathbf{R}, t) \to D_T^{(0)}(\infty) \left(1 - \exp(-t/\tau_0)\right),$$

$$\alpha_T(t) = \int d\mathbf{R} \int_0^t d\tau \, \alpha(\mathbf{R}, t) \to \alpha_T(\infty) \left(1 - \exp(-t/\tau_0)\right),$$
(26)

$$\beta_T(t) = \int d\mathbf{R} \int_0^t d\tau \, \tau \alpha(\mathbf{R}, t) \to \alpha_T(\infty) \left[-t \exp(-t/\tau_0) + \tau_0 \left(1 - \exp(-t/\tau_0)\right)\right].$$

Выражения за стрелками соответствуют модели, когда $D(\mathbf{R}, t) \propto \exp(-t/\tau_0)$ и $\alpha(\mathbf{R}, t) \propto \exp(-t/\tau_0)$. Легко проверить, что $D_T^{(0)}(t)$ и $\alpha_T(t)$ совпадают с (13) и (14). Ситуация с членом, содержащим $\beta_T(t)$, более сложная. Член первого порядка малости $\alpha_T(t)$ гоt $\langle \mathbf{B}(\mathbf{r}, t) \rangle$ является главным в правой чисти (25) по сравнению с оставшимися членами второго порядка малости. Поэтому Моффат [2, 7] и Крайчнан [8] заменили $\partial \langle \mathbf{B}(\mathbf{r}, t) \rangle / \partial t$ в правой части на приближенное выражение

$$\frac{\partial \langle \mathbf{B}(\mathbf{r},t) \rangle}{\partial t} \cong \alpha_T(t) \operatorname{rot} \langle \mathbf{B}(\mathbf{r},t) \rangle$$
(27)

и получили диффузионное уравнение в обычной форме (1), где коэффициент турбулентной диффузии

$$D_T(t) = D_T^{(0)}(t) + \alpha_T(t)\beta_T(t).$$
 (28)

В лагранжевом представлении, которое только и использовали Моффат и Крайчнан, подстановка (27) приводит к несколько другому выражению:

$$D_T(t) = D_T^{(0)}(t) + \alpha_T(t) \int_0^t d\tau \, \alpha_T(t).$$
 (29)

Эта формула совпадает с более общим выражением (28) при малых временах $t \ll \tau_0$ (или $t \ll t_0$ для замороженной турбулентности).

Из формул (26) видно, что для малых времен $D_T^{(0)} \approx D_T^{(0)}(\infty)t/\tau_0$, $\alpha_T \approx \alpha_T(\infty)t/\tau_0$ и $\beta_T(t) \approx \alpha_T(\infty)t^2/2\tau_0$, т.е. дополнительный член $\alpha_T(t)\beta_T(t)$ в (28) много меньше основного $D_T^{(0)}(t)$. С другой стороны, для больших времен ($t \gg \tau_0$ или $t \gg t_0$ для случая $\tau_0 \gg t_0$) точное решение (21) переходит в диффузионное с коэффициентом диффузии $D_T(\infty) = D_T^{(0)}(\infty)$, что противоречит приближенному выражению (28) (или (29)).

Мы видим, что диффузионное уравнение хорошо представляет решения точного интегро-дифференциального уравнения (18), только если положить $\beta_T(t) \equiv 0$, т.е. при выводе правильного диффузионного уравнения надо брать в интегральном члене (18) $\langle \mathbf{B}(\mathbf{r} - \mathbf{R}, t - \tau) \rangle \cong \langle \mathbf{B}(\mathbf{r}, t) \rangle - (\mathbf{R}\nabla) \langle \mathbf{B}(\mathbf{r}, t) \rangle$. По-видимому, это тот часто встречающийся случай, когда в асимптотическом разложении функции имеет смысл удерживать только первый член разложения. Заметим, что аналогичное разложение по τ в правой части уравнений иерархии (16) и учет члена $\tau \partial G_{ij} / \partial \tau$ приводит к нарушению важного условия нормировки функции Грина ($\tilde{G}_{ij}(p, \tau = 0) = \delta_{ij}$). Таким образом, член, квадратичный по $\alpha_T(t)$ в (9) и (29), и аналогичный член в (28) следует опустить.

3. DIA-уравнение и вычисление коэффициентов D_T и α_T

Точные формулы (13) и (14) для коэффициентов D_T и α_T в эйлеровом представлении содержат корреляторы компонент скорости $u_i(\mathbf{r}, t)$ и производных $\nabla_n u_m(\mathbf{r}, t)$ с тензорной функцией Грина $G_{nm}(1, 2)$. Как уже говорилось во Введении, использование вместо точной функции Грина G(1, 2) решения DIA-уравнения для усредненной функции Грина $\langle G(1, 2) \rangle$ приводит к хорошим результатам при вычислении коэффициента турбулентной диффузии D_T скалярной примеси. Важно, что DIA-решения позволяют получить D_T для любых возможных значений параметра $\xi_0 = u_0 \tau_0 / R_0 \equiv u_0 p_0 \tau_0$ $(0 \le \xi_0 < \infty)$. Коэффициент D_T для скалярной примеси определяется чисто конвективными движениями газа или жидкости, деформации и вращения элементов жидкости вклада не дают. Диффузия векторного магнитного поля определяется, кроме конвективных движений, также деформациями и вращениями элементов жидкости. Эти движения носят более локальный характер, описываются сложными корреляторами тензора $\nabla_n u_m(\mathbf{r},t)$ и, очевидно, дают гораздо меньший вклад в D_T , чем далекие конвективные движения, т. е. в отсутствие спиральности среды коэффициенты турбулентной диффузии D_T магнитного поля и скалярной примеси должны быть близки друг другу. Эти качественные соображения позволяют надеяться, что DIA-уравнение в случае переноса магнитного поля также даст главный вклад при вычислении D_T , а возможно, и при вычислении коэффициента усиления α_T . В данной работе мы ограничимся вычисление $t \gg \tau_0$ или $t \gg t_0 = R_0/u_0$ в случае $\tau_0 \gg t_0$.

Фурье-преобразование по **R** и преобразование Лапласа по τ функции $\langle G_{nm}(1,2) \rangle \equiv H(\tau)g_{nm}(R,\tau) \rangle$ в случае изотропной турбулентной среды имеет вид

$$\tilde{g}_{nm}(p,s) = \delta_{nm}\tilde{g}_0(p,s) + ie_{nmk}p_k\tilde{g}_1(p,s) + p_np_m\tilde{g}_2(p,s).$$
(30)

Функция $\tilde{g}_2(p, s)$ выражается через $\tilde{g}_0(p, s)$ и $\tilde{g}_1(p, s)$ и в силу соленоидальности магнитного поля (**p** $\tilde{\mathbf{B}}(p) = 0$) нигде себя не проявляет. *DIA*-уравнение для $\langle G_{nm}(1,2) \rangle$ сводится к системе зацепляющихся нелинейных уравнений для $\tilde{g}_0(p,s) \equiv (\tilde{g}_-(p,s) + \tilde{g}_+(p,s))/2$ и $\tilde{g}_1(p,s) \equiv (\tilde{g}_+(p,s) - \tilde{g}_-(p,s))/2p$. Удобно эту систему записать в виде

$$\tilde{g}_{+}(p,s) = \left\{ s + D_{m}p^{2} + \frac{p}{4} \int_{0}^{\infty} dq \int_{0}^{\infty} d\tau \int_{-1}^{1} d\mu(1-\mu^{2}) \exp(-s\tau) \left[pE(q,\tau)\tilde{g}_{0}\left(|\mathbf{p}-\mathbf{q}|,\tau\right) - pE_{h}(q,\tau)\tilde{g}_{1}\left(|\mathbf{p}-\mathbf{q}|,\tau\right) + (p^{2}+q^{2}-pq\mu)E(q,\tau)\tilde{g}_{1}\left(|\mathbf{p}-\mathbf{q}|,\tau\right) - E_{h}(q,\tau)\tilde{g}_{0}\left(|\mathbf{p}-\mathbf{q}|,\tau\right) \right] \right\}^{-1},$$

$$\tilde{g}_{-}(p,s) = \left\{ s + D_{m}p^{2} + \frac{p}{4} \int_{0}^{\infty} dq \int_{0}^{\infty} d\tau \int_{-1}^{1} d\mu(1-\mu^{2}) \exp(-s\tau) \left[pE(q,\tau)\tilde{g}_{0}\left(|\mathbf{p}-\mathbf{q}|,\tau\right) - pE_{h}(q,\tau)\tilde{g}_{1}\left(|\mathbf{p}-\mathbf{q}|,\tau\right) - (p^{2}+q^{2}-pq\mu)E(q,\tau)\tilde{g}_{1}\left(|\mathbf{p}-\mathbf{q}|,\tau\right) + E_{h}(q,\tau)\tilde{g}_{0}\left(|\mathbf{p}-\mathbf{q}|,\tau\right) \right\}^{-1}.$$
(31)

Здесь $\mathbf{pq} = pq\mu = pq\cos\theta$ — скалярное произведение векторов **p** и **q**, выражение $\bar{f}(p,\tau)$ обозначает фурье-преобразование функции $f(\mathbf{R},\tau)$ по **R**. Обобщенные спектры энергии $E(p,\tau)$ и спиральности $E_h(p,\tau)$ определяются формулами

$$\langle \mathbf{u}(\mathbf{r}, t)\mathbf{u}(\mathbf{r}, t+\tau) \rangle \equiv \int_{0}^{\infty} dp \, E(p, \tau),$$

$$\langle \mathbf{u}(\mathbf{r}, t) \operatorname{rot} \mathbf{u}(\mathbf{r}, t+\tau) \rangle \equiv \int_{0}^{\infty} dp \, E_{h}(p, \tau).$$

$$(32)$$

Для малых $p \ll p_0 = 1/R_0$ и $s\tau \ll 1$ формулы (31) переходят в диффузионные выражения:

$$\tilde{g}_{\mp}^{diff}(p,s) = \left[s + D_m p^2 + D_T^{(0)} p^2 \mp \alpha_T^{(0)} p\right]^{-1},$$
(33)

где DIA-стационарные коэффициенты турбулентной диффузии $D_T^{(0)}$ и коэффициент $\alpha_T^{(0)}$ выражаются формулами

$$D_T^{(0)} = \frac{1}{3} \int_0^\infty dp \int_0^\infty d\tau \left[E(p,\tau) \tilde{g}_0(p,\tau) - E_h(p,\tau) \tilde{g}_1(p,\tau) \right],$$

$$\alpha_T^{(0)} = \frac{1}{3} \int_0^\infty dp \int_0^\infty d\tau \left[p^2 E(p,\tau) \tilde{g}_1(p,\tau) - E_h(p,\tau) \tilde{g}_0(p,\tau) \right].$$
(34)

Для нахождения нестационарных $D_T(t)$ и $\alpha_T(t)$ в (34) надо поставить t для верхнего предела в интеграле по времени τ .

В обратном случае малых расстояний и времен ($p \gg p_0 = 1/R_0$ и $s\tau_0 \gg 1$) имеет место асимптотическая формула

$$\tilde{g}_{\mp} = \tilde{g}_0(p,s) \pm p\tilde{g}_1(p,s) \cong 2\left\{s + D_m p^2 + \left[(s + D_m p^2)^2 + 4(p^2 u_0^2 \mp pH_0)/3\right]^{1/2}\right\}^{-1}, \quad (35)$$

где

$$u_0^2 = \langle u^2(\mathbf{r},t) \rangle, \quad H_0 = \langle u(\mathbf{r},t) \operatorname{rot} u(\mathbf{r},t) \rangle.$$

В пределе $s \to 0$ и $D_m = 0$ из (35) следует, что

$$\tilde{g}_0(p,0) \cong \sqrt{3} / u_0 p, \quad \tilde{g}_1(p,0) \cong \sqrt{3} H_0 / 2 p^3 u_0^3.$$

Если турбулентная среда не обладает спиральностью ($E_h(p, \tau) = 0$), то $\tilde{g}_1(p, s) \equiv 0$ и система (31) превращается в одно нелинейное уравнение для $\tilde{g}_0(p, s)$:

$$\tilde{g}_{0}(p,s) = \left[s + D_{m}p^{2} + \frac{p^{2}}{4} \int_{0}^{\infty} dq \int_{0}^{\infty} d\tau \int_{-1}^{1} d\mu (1-\mu^{2}) \exp(-s\tau) E(q,\tau) \tilde{g}_{0}\left(|\mathbf{p}-\mathbf{q}|,\tau\right)\right]^{-1}, \quad (36)$$

которое совпадает с DIA-уравнением для скалярной примеси [11, 16]. В этом случае $\alpha_T^{(0)} \equiv 0$, а $D_T^{(0)}$ совпадает с DIA-коэффициентом турбулентной диффузии скалярной примеси. Это подтверждает наши предыдущие качественные рассуждения относительно близости магнитного D_T к значению D_T для примесных частиц. Следует отметить,

что DIA-уравнение для скалярной примеси не зависит от спиральности и влияние спиральности на значения D_T определялось из рассмотрения члена иерархии уравнений, содержащего члены четвертого порядка по скоростям $\mathbf{u}(\mathbf{r}, t)$ (в предположении гауссова ансамбля скоростей). Наличие спиральности увеличивает коэффициент диффузии D_T скалярной примеси [10, 16]. В 100%-спиральной среде (когда $E_h(p, \tau) = pE(p, \tau)$) коэффициент D_T может увеличиться вплоть до 50% (при $\xi_0 \to \infty$) от значения в отсутствие спиральности. По-видимому, наличие одинакового числа правых и левых спиральных движений в среде увеличивает вероятность развала этих вихревых движений по сравнению со случаем, когда в среде существуют спиральные движения какого-либо одного типа. Это качественно поясняет эффект усиления турбулентной диффузии спиральностью.

Прежде чем приводить результаты вычислений по формуле (34), приведем оценки значений D_T и α_T в предельных случаях $\xi_0 = u_0 \tau_0 / R_0 \ll 1$ и $\xi_0 \gg 1$. Значения $\xi_0 \ll 1$ соответствуют квазилинейному приближению [4]. В этом случае хорошим приближением для функции Грина является $\tilde{g}_0(p,\tau) \approx \tilde{g}_m(p,\tau) = \exp(-p^2 D_m \tau)$ и $\tilde{g}_1(p,\tau) = 0$. Мы далее примем $D_m = 0$ и подставим эти функции в (34). В итоге получаем для $\xi_0 \ll 1$ следующие формулы:

$$D_{T}^{(0)} \cong \frac{1}{3} \int_{0}^{\infty} dp \int_{0}^{\infty} d\tau \ E(p,\tau) \cong \frac{u_{0}^{2}\tau_{0}}{3} \equiv \frac{u_{0}}{p_{0}} \frac{\xi_{0}}{3},$$

$$\alpha_{T}^{(0)} \cong -\frac{1}{3} \int_{0}^{\infty} dp \int_{0}^{\infty} d\tau \ E_{h}(p,\tau) \cong -\frac{H_{0}\tau_{1}}{3} \equiv \left(-\frac{H_{0}}{u_{0}p_{1}}\right) \frac{\xi_{0}\eta}{3\gamma},$$

$$\eta = p_{1}/p_{0}, \quad \gamma = \tau_{0}/\tau_{1}.$$
(37)

Здесь τ_0 , p_0 и τ_1 , p_1 — характерные времена жизни и волновые числа спектров $E(p, \tau)$ и $E_h(p, \tau)$.

Для случая замороженной турбулентности, когда $E(p, \tau) \equiv E(p), E_h(p, \tau) \equiv E_h(p)$ ($\tau_0 \gg t_0 = R_0/u_0 = 1/u_0p_0$ или $\xi_0 \gg 1$), можно использовать для оценок асимптотическую формулу (35):

$$D_{T}^{(0)} \cong \frac{1}{\sqrt{3} u_{0}} \int_{0}^{\infty} \frac{dp E(p)}{p} \cong \left(\frac{u_{0}}{p_{0}}\right) \frac{1}{\sqrt{3}},$$

$$\alpha_{T}^{(0)} = \frac{H_{0}}{2\sqrt{3} u_{0}^{3}} \int_{0}^{\infty} dp \frac{E(p)}{p} - \frac{1}{\sqrt{3} u_{0}} \int_{0}^{\infty} dp \frac{E_{h}(p)}{p} \cong \operatorname{const}(\eta) \left(-\frac{H_{0}}{u_{0} p_{1}}\right).$$
(38)

Функция const(η), как показывают расчеты, весьма слабо зависит от η . Согласно теореме Хинчина–Бохнера [3] выполняется неравенство $|E_h(p,\omega)| \leq pE(p,\omega)$. Это означает, что безразмерные параметры $a, \eta \in \gamma$ удовлетворяют неравенствам

$$a = \frac{H_0}{u_0^2 p_0} \le 1, \quad \eta = \frac{p_1}{p_0} \ge 1, \quad \gamma = \frac{\tau_0}{\tau_1} \ge 1.$$
 (39)

Поскольку асимптотики (35) вблизи $p = p_0$ и $p = p_1$ нарушаются, формулы (38), в отличие от (37), имеют полуколичественный характер. Из оценок (37) и (38) следует,

что удобно ввести безразмерные величины \overline{D}_T и $\overline{\alpha}_T$ согласно определениям

$$D_T = \frac{u_0}{p_0} \overline{D}_T(\xi_0, a, \eta, \gamma), \quad \alpha_T = \left(-\frac{H_0}{u_0 p_1}\right) \overline{\alpha}_T(\xi_0, a, \eta, \gamma). \tag{40}$$

Для исследования зависимости \overline{D}_T и $\overline{\alpha}_T$ от параметров ξ_0 , a, η и γ мы выбрали несколько моделей турбулентности:

$$E(p,\tau) = u_0^2 \delta(p-p_0) e^{-\tau/\tau_0}, \quad E_h(p,\tau) = H_0 \delta(p-p_1) e^{-\tau/\tau_1}, \tag{41}$$

$$E(p,\tau) = \frac{u_0^2}{p_0} \frac{0.65159}{1+x^{17/3}} x^4 e^{-\tau/\tau_0}, \quad E_h(p,\tau) = a u_0^2 \frac{0.65159}{1+x^{17/3}} x^5 e^{-\tau/\tau_1}.$$
 (42)

Здесь и далее $x = p/p_0$, а — степень спиральности. При $p \gg p_0$ спектр (42) имеет колмогоровский вид $\propto p^{-5/3}$. Спектры (41) и (42) являются примерами предельных типов зависимости от p: пикообразного и с медленным спадом для $p \to \infty$.

Кроме того, проводились вычисления для спектров промежуточного вида:

$$E(p,\tau) = \frac{8}{3\sqrt{\pi}} \frac{u_0^2}{p_0} x^4 e^{-x^2} e^{-\tau/\tau_0}, \quad E_h(p,\tau) = a u_0^2 \frac{8}{3\sqrt{\pi}} x^5 e^{-x^2} e^{-\tau/\tau_1}, \tag{43}$$

$$E(p,\tau) = \frac{1}{24} \frac{u_0^2}{p_0} x^4 e^{-x} e^{-\tau/\tau_0}, \quad E_h(p,\tau) = \frac{a u_0^2}{p_0} x^5 e^{-x} e^{-\tau/\tau_1}.$$
(44)

Кроме вычислений DIA-значений (34) стационарных коэффициентов $D_T^{(0)}(\xi_0)$ и $\alpha_T^{(0)}(\xi_0)$ мы приведем также так называемые самосогласованные значения $D_T^{(s)}(\xi_0)$ и $\alpha_T^{(s)}(\xi_0)$. Эти значения вычисляются из (34), если там вместо точных DIA-значений для $\tilde{g}_0(p,\tau)$ и $\tilde{g}_1(p,\tau)$ брать значения этих функций в диффузионном приближении (33) с неизвестными пока коэффициентами $D_T^{(s)}(\xi_0)$ и $\alpha_T^{(s)}(\xi_0)$. При этом формулы (34) становятся нелинейными уравнениями для нахождения искомых величин $D_T^{(s)}(\xi_0)$ и $\alpha_T^{(s)}(\xi_0)$. Такая процедура для скалярного поля впервые была предложена в работе [18]. Самосогласованные значения можно найти также и для нестационарных значений $D_T^{(s)}(t)$ и $\alpha_T^{(s)}(t)$:

$$D_T^{(s)}(t) = \frac{1}{3} \int_0^\infty dp \int_0^t d\tau \exp\left(-p^2 \int_0^\tau d\tau D_T^{(s)}(\tau)\right) \times \left[E(p,\tau) \operatorname{ch}\left(p \int_0^\tau d\tau \,\alpha_T^{(s)}(\tau)\right) + E_h(p,\tau) \operatorname{sh}\left(p \int_0^\tau d\tau \,\alpha_T^{(s)}(\tau)\right) p^{-1}\right],$$
$$\alpha_T^{(s)}(t) = \frac{1}{3} \int_0^\infty dp \int_0^t d\tau \,\exp\left(-p^2 \int_0^\tau d\tau \,D_T^{(s)}(\tau)\right) \times \left[E(p,\tau) \operatorname{sh}\left(p \int_0^\tau d\tau \,\alpha_T^{(s)}(\tau)\right) + E_h(p,\tau) \operatorname{ch}\left(p \int_0^\tau d\tau \,\alpha_T^{(s)}(\tau)\right)\right]. \tag{45}$$

Выражения $D_T^{(s)}(\xi_0)$ и $\alpha_T^{(s)}(\xi_0)$, соответствующие использованию (33), получаются из (45), если там положить $t \to \infty$ и считать $D_T^{(s)}(t;\xi_0) \equiv D_T^{(s)}(\xi_0)$ и $\alpha_T^{(s)}(t;\xi_0) \equiv \alpha_T^{(s)}(\xi_0)$.

Рис. 1. Значения безразмерного коэффициента турбулентной диффузии $\overline{D}_T = D_T (u_0/p_0)^{-1}$ для случая модели (41) с δ -образными спектрами турбулентной энергии и спиральности. Сплошными линиями обозначены DIA-значения, штрихами — результаты вычислений по самосогласованной формуле. Цифры у кривых дают значения параметров a, γ, η . Уровни справа представляют соответствующие коэффициенты при $\xi_0 = 100$. Значения \overline{D}_T для случаев (0, 5, 1), (0, 1, 5), (0, 5, 5), (1, 1, 5), (1, 5, 1), (1, 5, 5) практически совпадают с представленным случаем (0, 1, 1)

Более естественный, но и более сложный путь — вычислять нестационарные значения (45) до тех времен, пока не получатся постоянные значения для $D_T^{(s)}(t)$ и $\alpha_T^{(s)}(t)$. Мы, в основном, будем использовать первый, более простой, способ. Использование обоих способов для вычисления $D_T^{(s)}(\xi_0)$ в случае скалярной примеси показало [17], что первый способ приводит к заниженным значениям $D_T(\xi_0)$, а второй — к завышенным и что их полусумма весьма удовлетворительно аппроксимирует истинное значение коэффициента $D_T(\xi_0)$. При наличии спиральности ситуация усложняется, но качественно все остается по-прежнему.

Вычисления показывают, что самосогласованные значения $\overline{D}_{T}^{(s)}(t)$ и $\overline{\alpha}_{T}^{(s)}(t)$ всегда положительны. Для предельного случая 100%-спиральности $|E_h(p,\tau)| = pE(p,\tau)$ при $E(p,\tau) = u_0^2 \delta(p-p_0) f(\tau)$ формулы (45) дают $\overline{D}_{T}^{(s)}(t) = \overline{\alpha}_{T}^{(s)}(t) > 0$. Так как значения кинетических коэффициентов D_T и α_T , в основном, определяются крупномасштабными турбулентными движениями, которые хорошо описываются функциями Грина в диффузионном приближении, самосогласованный способ дает сравнительно удовлетворительные значения D_T и α_T , качественно соответствующие DIA-значениям.

Результаты вычислений стационарных DIA-значений $\overline{D}_T(\xi_0)$ и $\overline{\alpha}_T(\xi_0)$ представлены на рис. 1–8. Прежде всего замечаем, что наличие спиральности ($a \neq 0$) приводит к уменьшению коэффициента диффузии D_T , а не к увеличению, как в случае диффузии скалярной примеси. Впервые этот эффект был отмечен в работе [10]. Причиной этого уменьшения является наличие α -эффекта, т. е. усиления магнитного поля спиральными движениями, что замедляет диффузионное затухание поля.

Второй интересной особенностью является нелинейная зависимость коэффициента

Рнс. 2. Значения безразмерного коэффициента $\overline{\alpha}_T = \alpha_T (-H_0/u_0 p_1)^{-1}$ для модели (41). Обозначения те же, что и на рис. 1. Практически совпадают случаи (0, 1, 5) с (1, 1, 5), (0, 5, 1) с (1, 5, 1) и (0, 5, 5) с (1, 5, 5)

Рис. 3. Значения безразмерного коэффициента турбулентной диффузии \overline{D}_T для модели (42) с колмогоровским спектром энергии в инерционном интервале. Здесь $p_0 = p_1$ и цифры у кривых обозначают параметры *a* и γ . Сплошной уровень справа дает \overline{D}_T для $\xi_0 \to \infty$, а штриховые соответствуют $\xi_0 = 100$

 \overline{D}_T от степени спиральности $a = H_0/u_0^2 p_0$. Для 0 < a < 0.5 эта зависимость очень слаба. Практически в этом интервале значений параметра *a* можно использовать предельные значения \overline{D}_T , соответствующие a = 0. По-видимому, реальные турбулентные движения редко имеют степень спиральности a > 0.5, так что отмеченная особенность позволяет сократить число независимых параметров.

Если спиральные движения мелкомасштабные ($\eta = p_1/p_0 \gg 1$) или (и) короткокоррелированные ($\gamma = \tau_0/\tau_1 \gg 1$), то коэффициент турбулентной диффузии D_T практически не зависит от степени спиральности *a* и совпадает с *DIA*-коэффициентом диффу-

Рис. 4. Значения безразмерного коэффициента $\overline{\alpha}_T = \alpha_T (-H_0/u_0 p_0)^{-1}$ для модели (42). Обозначения те же, что и на рис. 3. Все уровни справа соответствуют $\xi_0 = 50$. Случай (0, 5) практически совпадает с (1, 5), а (0, 10) — с (1, 10)

Рис. 5. Значения безразмерного коэффициента турбулентной диффузии \overline{D}_T для модели (43). Обозначения те же, что и на рис. 3. Все уровни справа соответствуют $\xi_0 = 100$. Случай (0, 5) практически совпадает с (1, 5)

зии для скалярной примеси. В этом случае различие коэффициентов D_T для магнитного поля и скалярной примеси определяется различным вкладом в эти коэффициенты от корреляторов четвертого и выше порядков. Для скалярной примеси максимальный и всегда отрицательный вклад такой поправки (в отсутствие спиральности) составляет величину < 10% при $\xi_0 \rightarrow \infty$. При $\xi_0 \rightarrow 0$ эта поправка стремится к нулю. Вычислить поправку к D_T для случая диффузии магнитного поля чрезвычайно трудно из-за очень громоздкого выражения для этой поправки. Возможно, что эта поправка так-

Рис. 6. Значения безразмерного коэффициента $\overline{\alpha}_T = \alpha_T (-H_0/u_0 p_0)^{-1}$ для модели (43). Обозначения те же, что и на рис. 3. Случай (0, 5) практически совпадает с (1, 5), а (0, 10) — с (1, 10)

Рис. 7. Значения безразмерного коэффициента турбулентной диффузии \overline{D}_T для модели (44). Обозначения те же, что и на рис. 3

же невелика по величине; во всяком случае, при $\xi_0 \rightarrow 0$ она также стремится к нулю, как и поправка к D_T скалярной примеси. Практически уже при $p_1/p_0 > 5$ и (или) $\tau_0/\tau_1 > 5$ можно пренебречь влиянием спиральности на значение D_T магнитного поля. Физически это вполне понятно, если вспомнить, что эти случаи соответствуют мелкомасштабным и (или) короткокоррелированным во времени спиральным движениям на фоне неспиральных крупномасштабных движений с большим временем корреляции.

Сравнение *DIA*-значений D_T с самосогласованными значениями $D_T^{(s)}$ показывает их хорошее согласие для $\xi_0 \leq 1$ и качественное согласие для $\xi_0 \gg 1$. Отметим, что всегда $D_T^{(s)} < D_T$. Это происходит оттого, что в области малых масштабов и времен

Рис. 8. Значения безразмерного коэффициента $\overline{\alpha}_T = \alpha_T (-H_0/u_0 p_0)^{-1}$ для модели (44). Обозначения те же, что и на рис. 3

 $(p \gg p_0, s\tau_0 \gg 1)$ реальная функция Грина $\tilde{g}_0(p, s)$ имеет большее значение, чем ее приближенное диффузионное выражение.

Зависимость безразмерного $\overline{\alpha}_T$ -коэффициента от степени спиральности *a* качественно та же самая, что и для \overline{D}_T : для a < 0.5 различие коэффициентов $\overline{\alpha}_T$ очень маленькое даже для $p_1 \cong p_0$ и $\tau_1 \cong \tau_0$, а для $p_1/p_0 > 5$ и (или) $\tau_0/\tau_1 > 5$ зависимость от параметра *a* практически исчезает. Это означает, что размерный α_T -коэффициент в этих случаях линейно зависит от величины характерной спиральности H_0 (благодаря наличию размерного множителя в (40)).

Увеличение параметра $\gamma = \tau_0/\tau_1$ приводит при любых значениях ξ_0 к уменьшению величины α_T и физически соответствует уменьшению α -эффекта для более короткоживущих спиральных движений. Степень уменьшения, однако, зависит от значения параметра ξ_0 и при $\xi_0 \rightarrow \infty$ зависимость α_T от γ исчезает. Это соответствует оценке (38).

Зависимость $\overline{\alpha}_T$ от параметра $\eta = p_1/p_0$ была исследована на примере модели (41) и представлена на рис. 2. Обращает внимание пикообразный вид $\overline{\alpha}_T$ при $\xi_0 < 1$ для случая $\eta = 5$ и $\gamma = 1$. Максимум пика соответствует значению $\xi_0 = \xi_*$, которое качественно можно оценить из условия, что за время жизни спирали τ_1 сама она успевает развалиться, т. е. $D_T \tau_1 \approx R_1^2$ при $D_T \cong u_0^2 \tau_0/3$, которое имеет место для случая $\xi_0 < 1$ (см. оценку (37)). Такая оценка дает

$$\xi_* \cong \operatorname{const}\sqrt{\tau_0/\tau_1} \left(p_0/p_1 \right) \equiv \operatorname{const}\sqrt{\gamma}/\eta$$

при условии, что получающиеся $\xi_* < 1$. Подставляя это значение ξ_* в оценку (37), получаем, что $\overline{\alpha}_{T max} \cong (1/3) \text{const} / \sqrt{\gamma}$ и не зависит от параметра η . Условие $\xi_* < 1$ (или $\sqrt{\gamma}/\eta < 1$) выполняется для сравнительно долгоживущих и мелкомасштабных спиральных движений ($\eta \gg 1$), т.е. когда эти спиральные образования можно считать своего рода «примесными частицами». Казалось бы, аналогичную оценку величины ξ_* можно получить и для другого предельного случая $\xi_0 \gg 1$, где $D_T \cong \text{const}(u_0/p_0)$. Это дало бы $\xi_* \cong \text{const}\gamma/\eta^2$ при условии $\xi_* \gg 1$. Однако вычисленные значения $\overline{\alpha}_T(\xi_0)$, как в DIA-приближении, так и самосогласованные, не показывают для $\xi_0 \gg 1$ существования каких-либо пиков. В действительности же такая оценка для области $\xi_0 \gg 1$ бессмысленна, так как сам характер турбулентных движений с $\xi_0 \gg 1$ не позволяет считать спиральные образования какой-либо примесью, подверженной диффузионному разрушению за время своей жизни τ_1 . При $\xi_0 \gg 1$ турбулентные движения носят вихревой характер с временем обращения $t_0 \cong 1/u_0 p_0$ много меньшим времени жизни вихря τ_0 : $\xi_0 \equiv \tau_0/t_0 \gg 1$. Спиральные движения в этом случае являются неотьемлемой частью этих вихрей. При $\tau_1 \ll t_0$ происходит многократное обращение спиральных образований в вихре. В этом случае усредненный α -эффект перестает зависеть от параметра $\gamma = \tau_0/\tau_1$. Зависимость же α_T от $\eta = p_1/p_0$, в основном, определяется размерным множителем в (40): $\alpha_T \propto 1/\eta$.

Как видно из рисунков, самосогласованные значения $\overline{\alpha}_T^{(s)}$ численно близки к DIA-значениям $\overline{\alpha}_T$ при $\xi_0 \ll 1$ и сильно занижены для $\xi_0 \gg 1$. При увеличении параметра $\eta = p_1/p_0 \equiv R_0/R_1$ это различие еще более увеличивается. Следует отметить, что самосогласованный способ при вычислении α_T дает гораздо худшие результаты, чем при вычислении коэффициента турбулентной диффузии D_T .

Вычисление поправки $\alpha_T^{(1)}$, зависящей от четырех точечных корреляторов скорости (для гауссова ансамбля и спектра (41)) показало, что эти поправки растут по величине от 0% для $\xi_0 \to 0$ до $\leq 4\%$ при $p_0 = p_1$ и $\tau_0 = \tau_1$ для $\xi_0 = 10$. Для мелкомасштабной и (или) короткокоррелированной спиральности вместо 4% имеем 20% для случая $\gamma = 5$, 25% для случая $\eta = 5$ и 30% при $\gamma = 5$, $\eta = 5$. Поправка практически не зависит от степени спиральности *a*. Она отрицательна для $\xi_0 \leq 1$ и положительна при $\xi_0 \gg 1$.

4. ВЫЧИСЛЕНИЕ НЕСТАЦИОНАРНЫХ $D_T(t)$ И $\alpha_T(t)$ Самосогласованными способами

На рисунке 9 представлены результаты вычислений $D_T(t)$ и $\alpha_T(t)$ для модели (41) при 100%-спиральности ($|E_h(p,\tau)| = pE(p,\tau)$). В этом случае $\gamma = 1$, $\eta = 1$, a = 1и $\overline{D}_T^{(s)}(t) = \overline{\alpha}_T^{(s)}(t) > 0$. Сплошные кривые представляют результаты вычислений по формуле (45), а штриховые — по упрощенному варианту этой формулы, когда в интегральных членах в качестве $D_T^{(s)}(\tau)$ и $\alpha_T^{(s)}(\tau)$ брались стационарные значения $D_T^{(s)}(\infty)$ и $\alpha_T^{(s)}(\infty)$, также вычисленные по упрощенному варианту (45). Штриховые кривые дают заниженные значения, а сплошные — несколько завышенные. Рассмотренный случай был вычислен в работе [10] по лагранжевым формулам (9) и (10) в результате численного моделирования траекторий. При $t > 3t_0$ в этой работе получились отрицательные значения коэффициента диффузии $D_T(t)$, а для α_T — положительные. Наши вычисления хорошо согласуются со стационарными DIA-значениями для D_T и α_T и надежно свидетельствуют, что коэффициент турбулентной диффузии магнитного поля в случае несжимаемой среды положителен.

5. ЗАКЛЮЧЕНИЕ

Приведем основные выводы, вытекающие из анализа результатов вычислений.

1. Безразмерный коэффициент турбулентной диффузии $\overline{D}_T = D_T (u_0/p_0)^{-1}$ магнитного поля в несжимаемой среде положителен и монотонно растет с ростом параметра

Рис. 9. Значения нестационарных безразмерных коэффициентов $\overline{D}_T = \overline{\alpha}_T$ для модели (41) с $a = 1, \gamma = 1, \eta = 1$. Сплошные кривые представляют вычисления по самосогласованной формуле (45), а штриховые — вычисления по упрощенному варианту этой формулы, когда под знаками интегралов ставятся постоянные значения коэффициентов $D_T^{(s)}$ и $\alpha_T^{(s)}$. Цифры у кривых дают значения параметра ξ_0 . Уровни справа дают DIA-значения \overline{D}_T при $\xi_0 = 10$

 $\xi_0 = u_0 p_0 \tau_0$, асимптотически приближаясь к своему предельному значению при $\xi_0 \to \infty$. Наличие спиральности в среде уменьшает D_T , причем для малой степени спиральности $a = H_0/u_0^2 p_0 < 0.5$ этот эффект весьма слаб. Мелкомасштабная и (или) короткокоррелированная спиральность с $\eta = p_1/p_0 \ge 5$ и (или) $\gamma = \tau_0/\tau_1 \ge 5$ практически не изменяет значение D_T даже при a = 1.

2. Безразмерный коэффициент, описывающий α -эффект, $\overline{\alpha}_T = \alpha_T (-H_0/u_0 p_1)^{-1}$ для крупномасштабной ($\eta \approx 1$) спиральности монотонно растет с ростом параметра ξ_0 . Для a < 0.5 величина $\overline{\alpha}_T$ практически от степени спиральности a не зависит.

3. Для мелкомасштабной и короткокоррелированной спиральности ($\eta = p_1/p_0 \ge 5$ и (или) $\gamma = \tau_0/\tau_1 \ge 5$) коэффициент $\overline{\alpha}_T$ практически от *a* не зависит.

4. Для мелкомасштабной спиральности с $\sqrt{\gamma}/\eta < 1$ величина $\overline{\alpha}_T(\xi_0)$ имеет пикообразный вид с максимумом при $\xi_* \cong \text{const}\sqrt{\tau_0/\tau_1} (p_0/p_1) \equiv \text{const}\sqrt{\gamma}/\eta$ и величиной $\overline{\alpha}_{T max} \cong (1/3) \text{const}/\sqrt{\gamma}$.

5. При $\xi_0 \to \infty$ величина $\overline{\alpha}_T(\xi_0)$ стремится к предельному значению, слабо зависящему от η и не зависящему от γ .

Литература

^{1.} P. H. Roberts, An introduction to magnetohydrodynamics, Elsevier, New York, London (1967).

^{2.} H. K. Moffatt, *Magnetic field generation in electrically conducting fluids*, Cambridge University Press, Cambridge (1978).

- 3. F. Krause and K.-H. Raedler, *Mean-field magnetohydrodynamics and dynamo theory*, Academie Verlag, Berlin (1980).
- 4. E. N. Parker, Cosmical magnetic fields, Clarendon Press, Oxford (1979).
- 5. А. П. Казанцев, ЖЭТФ 53, 1806 (1967).
- 6. А. П. Казанцев, А. А. Рузмайкин, Д. Д. Соколов, ЖЭТФ 88, 487 (1985).
- 7. H. K. Moffatt, J. Fluid Mech. 65, 1 (1974).
- 8. R. H. Kraichnan, J. Fluid Mech. 75, 657 (1976).
- 9. G. I. Taylor, Proc. Lond. Math. Soc. A 20, 196 (1921).
- 10. R. H. Kraichnan, J. Fluid Mech. 77, 753 (1976).
- 11. Н. А. Силантьев, ЖЭТФ 101, 1216 (1992).
- 12. A. Z. Dolginov and N. A. Silant'ev, Geophys. Astrophys. Fluid Dyn. 63, 139 (1992).
- 13. P. H. Roberts, J. Fluid Mech. 11, 257 (1961).
- 14. R. H. Kraichnan, Phys. Fluid 13, 22 (1970).
- 15. R. H. Kraichnan, J. Fluid Mech. 81, 385 (1977).
- 16. N. A. Silant'ev, Geophys. Astrophys. Fluid Dyn. 75, 183 (1994).
- 17. Н. А. Силантьев, ЖЭТФ 111, 871 (1997).
- 18. R. Phythian and W. D. Curtis, J. Fluid Mech. 89, 241 (1978).