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Microscopic mechanisms of inelastic light scattering in an interacting electron plasma in
semiconductor heterostructures are considered. In the dipole limit, the cross section consists of
two main contributions: the first is related to a disorder-induced mechanism and the second arises
from the Coulomb interaction. The spectra of disorder-induced light scattering are described in
terms of correlation functions of a random potential. The spectrum induced by the Coulomb
interaction arises from two-quasiparticle excitations. The mechanisms which are studied in this
paper result in the appearance of large wave vector excitations in the spectra of resonant light
scattering. These results can be used to model the experimentally observed appearance of the
roton density of states in light scattering spectra in the integer quantum Hall regime of a two-di-
mensional system. Furthermore, we show that the lineshape of spectra strongly depends on the
character of disorder and, in particular, on the spatial positions of impurities with respect to a
quantum well.

1. INTRODUCTION

Raman studies of two-dimensional (2D) systems in a high magnetic field are currently an
active area of research [1]. In particular, inelastic light scattering (LS) permits the observation
of the roton excitations in the regimes of the integer and fractional quantum Hall effects
(QHE’s) [24]. The magnetoroton excitations in the integer QHE regime have characteristic
wave vectors of the order of 1/[., where [, is the magnetic length. At the same time, in-plane
momentum transfers of the order of 1/I.. are not easily accessible in experiments. Magnetorotons
in LS spectra were interpreted as arising from breakdown of momentum conservation in the
presence of residual disorder [1,2].

The feature of the experiments mentioned above is that LS spcctra contain excitations with
relatively large wave vectors. In this paper, we consider specific mechanisms of LS, which allow
the observation of such excitations.

The effect of disorder on LS spectra in the integer QHE regime was investigated
theoretically in Ref. [5] in the framework of a phenomenological approach. The cross section,
calculated in Ref. [5], reflects the density of states of electron excitations and is written as

d*o

KA / Solw, ) f (@), @

where w is the photon energy transfer in the LS process, ¢ is the in-plane wave vector of
an excitation, and Sy(w, q) is the structure factor of the system. The function f(q) describes
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breakdown of momentum conservation and is written in Ref. [5] in the Lorentzian form: f(g) =
= (a/m)/(¢* + a?), where « is the phenomenological broadening parameter.

In the fractional QHE regime, LS was studied theoretically in a work of Platzman and
Song He [6], where the authors have obtained numerical data for the intra-Landau-level
spectra. They considered LS as a shake-up process, which results in two-excitation lines. This
process is directly connected with the Coulomb interaction and was described in Ref. [6] by
phenomenological matrix elements. Shake-up processes for the case of two-phonon LS from
the Wigner crystal were considered in Ref. [7].

In the present paper, we study resonant LS in the dipole limit (x — 0, where k is the
light momentum transfer). To calculate the LS spectra, we find the Hamiltonian responsible
for dipole-allowed LS by using a general formalism developed in Ref. [8]. The cross section is
expanded into a series of the parameter 1/(E, —w;), where E,, is the optical-gap energy, and
w is the laser frequency. We obtain analytical expressions for the amplitudes of LS induced by
disorder and by the Coulomb interaction. The cross section of disorder-induced LS is expressed
in terms of correlation functions of a random potential, which determines the characteristic
wave vectors of excitations in Raman spectra. The Coulomb interaction in an electron system
results in two-quasiparticle excitations in LS spectra. The mechanisms of LS, which we consider
here, were studied earlier in Refs. [5, 6] by using various phenomenological approaches. In this
paper, we develop from first principles a theory describing such LS mechanisms. The results
obtained by us can be applied both to bulk and 2D systems. We focus on 2D semiconductor
heterostructures because LS mechanisms, which involve magnetoexcitations with large wave
vectors, play the most important role in these systems. In particular, we calculate the LS
spectra of a 2D magnetoplasma with the filling factor v = 2.

2. RESONANT LIGHT SCATTERING IN AN ELECTRON SYSTEM

Resonant LS is connected with two virtual interband processes of absorption and emission
which are induced by the incident and scattered photons, respectively. In the following, we will
consider resonance between the lowest 2D subbands in the conduction and heavy-hole valence
bands. Resonances with the light-hole and split-off valence bands can be described similarly.
In addition, we assume that electrons occupy only the lowest 2D subband in the conduction
band.

The cross section of LS and the structure factor S(w) are given by (see Ref. [8])

do ) et
dQdw c*mg S,
. Y ,
8@ = S IF Vs 08By — Bp +w) = = / (O Vs Vg (0] 0)e ™"t )
F —_—00

where |0) and |F') are the initial and final states of the many-electron system, Fy and Ep are
their energies, and m, is the free-electron mass; the operator V4 is the interaction Hamiltonian
describing LS, and

Veff(t) = exp (—zﬁ'wtt) ‘A/eff exp (iﬁt,ott) , |
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where Hwt is the Hamiltonian of the crystal; w;(;) are energies of incident (écattered) photons;
w = w; —w is the energy transfer, and h = 1. The temperature is assumed to be zero. Assuming
resonance, the matrix elements (F|V,|0) are (see Ref. [8])

. FLLINYNIHIOY o Tan
(FIVgl0) = Y LRI - ity [ 35 oreinario, ®
N ) .

where | V') are intermediate many-electron states. The operators 3’1 and }2 describe the interband
optical processes assisted by the incident and scattered photons, respectively. The states | V) are
characterized by a single hole in the valence band and one additional electron in the conduction
band.

Single-electron states of the conduction band are given by |a) = e®@.(z)|o), where r
and z are the in-plane and normal coordinates, respectively; p is the electron momentum,
¢.(z) is the wave function describing size-quantization and ¢ = +1/2 are the spin indexes.
Single-electron states of the valence band can be written similarly: |y) = ™ ¢, (2)|J), where
¢, (2) is the wave function connected with size-quantization, and J is the angular momentum
of heavy holes. For simplicity, we disregard mlxmg betwecn the valence bands.

The Hamiltonian of the electron system is Htot =g b+ E.nc+ Eyn,, where the subscripts
¢ and v refer to the first subbands in the conduction and valence bands, respectively; H p is the
Hamiltonian describing intraband energies and direct Coulomb interaction between electrons
of different bands, n.(n,) are the operators of electron numbers in the conduction (valence)
bands, and E.(E,) are the energies of electrons at zero in-plane momentum in corresponding
2D subbands. The operator H = p = H +H +H ‘"t where H ‘nt is the operator of direct Coulomb
interaction between electrons of the conductlon and valence bands Exchange interaction
between electrons of different bands is ignored. The operators H and H describe the intraband
energies of electrons: H, = T. + 44¢f + Hint and H, = T, + 4%¢f. Here T, and T, are
the operators of kinetic energy; u fef (r) and u;‘ff (r) are random potentials in the conduction
and valence bands, respectively; and ng‘t is the operator of the Coulomb interaction in the
conduction band. Here we include in the Hamiltonian Hiot only the terms related to the
conduction and valence subbands, which are coupled by interband resonant transitions. The
Coulomb potentials are given by the matrix elements:

Ueelr = 1) = (e (e (IU (V= 207+ (=T ) [$e(2)0(2)),
| O

Ueolr = 1) = (8e(2)9u U (V&= 272+ G =T ) [6(2)00(),

where U(R) = €?/¢R, and ¢ is the dielectric constant.
A method to simplify the operator Veff was proposed in Refs [7 9] According to this
method, we find the commutator [E 7. + E, 7, ]1] (E.—E, ) j1 = Egj1. At the same time,

the operator Hb Adoes not change the number of particles in any band; i.e., the commutator
[E.ne + Eyiy, Hy] = 0. Thus, the effective Hamiltonian of resonant LS can be written as

Vg = —i / J271(®) exp Gwit) dt = —i / J2€xp (—z’Hbt) 71 exp(iHyt) exp [i(wi—E,)t] dt. (5)
0 0
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.
We now expand Eq. (5) in a series of the operator H, using the equation

TSRS () B G ) | B

bt =t 2
After integration in Eq. (5), we have
‘A/eff=f/1+‘/‘/2+f/3+..., (6)
. Aa ) A }fI A . A fI f{ A
vo=n g Jal m]x]’ = J2[Hs, [ b,]1]]’ -
A A2 A3

where A = w; — E,. The expansion (6) is valid if the value A is much larger than the energies
of electron excitations in a plasma; i.e., |A| > €k, €c, T, where ¢ and e are the characteristic
kinetic and Coulomb energies, and T is the broadening of electron levels due to a random
potential. In a high magnetic field, ¢, ~ w. and e¢ ~ e2/(el.), where w, is the cyclotron
energy. At the same time, we assume |A| < E,. Below we will focus only on two first terms
in the expansion (6).

2.1. The operator Vl

The first term in Eq. (6) was calculated by Hamilton and McWhorter [8]. In the Kane
model, the operator V] is written as (see Ref. [8])

R 1. . :

Vi= "Z[fepe(k”) + fsps(k||)]7 (7

pell) =Y exp (ikyr,) , Ak = exp (ikr,) Gz, ®)

where k| = k| — ky, ki and k; are the wave vectors of incident and scattered photons,

respectively; r; is the in-plane coordinate of the i-electron, ¢;, is the Pauli matrix, and p,
and p; are the operators of electron and spin densities, respectively. The parameters f.(s)
in Eq. (7) show selection rules of LS in resonance with the heavy-hole valence band [8, 10]:
fe = D(elHe;“) and f; = tD[e,e}],, where e (e;) are the polarization vectors of incident
(scattered) photons,

P, . .
D = ol g, @ exp (k212 6. (D 30 (12 64002,

and P, is the interband matrix element.

2.2. The operator Vz

The second term in Eq. (6) can be written as

N 1 A a A
V== [£.Q.00+ £.Q.00 + C (@), ©)

A p2 . (b —ky)? ,
Qe(k) = 2 {5277};: + "‘_‘2‘7770_1]"““ + UgEf(ri) - utjef(ri)} €Xp (Zk“l'i) 3

. 82 (B —kyy)?
Qull) =D _ b {ip— # QD e 1) — ades (ri)} exp (kyr,)

Me 2m,

1
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where m.(, are the effective masses in the conduction (valence) bands (m, > 0). Here, the
single-electron momentum p: should be written with allowance for the perpendicular magnetic
field. The operator C(q) arises from the Coulomb interaction in the intermediate states. In
the dipole limit, we have

é = Z [Ucc(q) - Ucv(q)] {feﬁe(q)/;e(—q) + fs/;s(q)ﬁe(—q)} . (10)
q

The matrix elements U..(¢) and U.,(q) in Eq. (10) have opposite signs because the interband
exciton in intermediate states is neutral. The value U..(q) — U,.,(q) is nonzero if the wave
functions ¢.(z) and ¢,(z) differ. Hence, the contribution U.. — U, can be essential in tilted
quantum wells. . .

The operator V; induces LS by charge- and spin-density excitations in corresponding
geometries. The cross section connected with the operator V; was calculated in a number
of works for the case of bulk semiconductors [8, 11, 12] and for the case of quantum wells (for
instance, see Ref. [13]). It is essential that in Refs. [8, 11-13] the cross section d*c/dQdw —
6(w), when k — 0; i.e., the operator 171 leads to dipole-forbidden inelastic LS.

The operator 172 includes the contributions proportional to the operator of kinetic-energy
density

a2

Tc(k”) = ZCX}) (ik”l'i) %

The operator f’c(k) results in so-called LS by fluctuations of kinetic-energy density, which
was considered in Refs. [11, 12, 14]. In the approaches of Refs. [11,12, 14], the cross section
induced by f“c(k) vanishes if w # 0 and k£ = 0. Therefore, the dipole-forbidden contributions,
which can, in principle, play an important role in semiconductors, were taken into account in
Refs. [11,12, 14]

2.3. Dipole-allowed inelastic light scattering

We now consider the operators j, (k), 5,(k), Q.(k), and Q,(k) in the dipole limit k — 0.
At zero wave vector we have p.(0) = 7., ps(0) = 25, and, consequently, [H,7n.] = 0 and
[H.,5,] =0, where §, is the total spin. These equalities mean that the operators p.(0) and
ps(0) induce elastic LS.

Inelastic LS in the dipole limit can be connected with the operators QC(O) and QS(O),
because the commutators [Q.(0), H.] and [Qs(0), H.] are nonzero. Usually, the Coulomb
interaction and a random potential play the role of perturbations, i.e., €; > €c,I. Hence, it
is convenient to exclude the kinetic energy from the operator 172 For instance, the operator
Q.(0) can be written as

. p?
Q.(0) = Z {2%1; +ugd(r) - uge‘f("i)} =
=Mepg _ Z {Eu?”(n) + uﬁef(l'i)} - TEA an

H 7 (T g |

where 1/ = 1/m. + 1/m,. The operator (mc/p,)f{c in Eq. (11) contributes to the elastic
LS process. Using similar transformations for all terms of V5, we have in the dipole limit
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Vl + ffz = Vezus + W, where the operator Ve,as induces elastic LS. The contributions of kinetic
energy remain now in the operator Ve;,s. Inelastic processes arise from the operator W =
= Waes + Weow, Where

- 1 1
Wdef = p Zueff(ri) [fe + fs&iz] = P Z ueff(q) [feﬁe(q) + fs/ss(q)]a (12)
i q
and
Woou = % 3 [(% - 1) Ueer: = To) + Uey (5 = ri/)] <fe + fs(""’—;"ﬁ)) =
1,4 i
1 c A A
= Xz' zq: [(g—l[z - 1> Ucc(q) + Uc‘u(q):l {fepe(q)pe(—q) + fsps(q)pe(_q)} . (13)

Here

Uepy () = uded (r;) + Z—:ufef (r). (14)
The functions u.ss(q) and U..(q) are the Fourier transforms of the corresponding potentials. The
operators Wde 5 and WCaul describe LS induced by disorder and by the Coulomb interaction,
respectively. We note that the operator W includes terms proportional to the small parameters
I and e¢¢. The latter is essential because we may use first-order perturbation theory in this case
(assuming €, > T, €c) to calculate the cross section.

3. LIGHT SCATTERING FROM THE 2D MAGNETOPLASMA

In this section, we intend to consider a 2D electron system in the perpendicular magnetic
field B at the filling factor v = 2 (v; = v| = 1) and inter-Landau-level excitations with Al = 1
(Al is the change of Landau-level number). We assume that the Coulomb energy is much
less than the cyclotron frequency; ec = €2/(el.) < w,, that allows us to use perturbation
theory [15, 16]. The creation operators for charge-density and spin-density excitations with the
wave vector q are (see Ref. [15])

A | o | SR

A (@ = TN Pe@, A{@= TP @,

where N, is the density of 2D electrons. The commutators with the Hamiltonian fIC are
[He, A (@] = wmAl(q), where the index m = e(s) for charge-density (spin-density)
excitations. The dispersions of magnetoexcitations (magnetoexcitons) w,, were calculated in
Refs. [15, 16] and are shown in the inset of Fig. 1. The wave functions of magnetoexcitons can
now be written as |q; m) = A} (¢)|0).

The cross section can be written in terms of correldtion functions

% 7 (Ol () exp (—”:-’ct) Al (@) exp (szct) 0)eitdt =

Im [G (W, P)] 6, Ba,a (15)
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where w > 0, and

The Green’s function is

1

o om(@) F i@’ (16)

Gn(w,q) =

where 1/T,,,(q) is the lifetime of a magnetoexciton.

3.1. Wave-vector-dependent light scattering

First, we discuss dipole-forbidden LS induced by the operator 171, which can be written as

= \/A]T [ Azt + £, Az ] +cc. (17)

The structure factor of LS (2) is

oo

1 p s ,
Sw) = o /(OlVl Vi()|0) exp (Gw;t) dt =

—00

: |
= Loy (kP {11l Tm (G, )] + 15, Tm [, )]} (18)

We see that the structure factor has the Lorentzian form and « klzl /Tm, when kjle < 1 and
|w — wm(k“)| ~ I',,. The integrated intensity of dipole-forbidden LS

I= /S(w)dw x kj/B,

when k”lc < 1.

3.2. Light scattering in the dipole limit

We now calculate the cross section of LS in the dipole limit £ — 0. At zero temperature we
can retain in the operator W [Egs. (12) and (13)] only the terms with A}, (q), A;,(—q)A;. (q).
Thus, we have

a VN

Wdef = AZ

> @ {f.A@+ £ A @),
. (19)
Woou = 5oxr 2 U@ {1 AIC0A@ + A0 A @]

q

Here we consider the strictly 2D system, where U,. = U, = U(q) = 2me?*/(eq).
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3.3. Light scattering induced by disorder (defects)

The operator Wde £ (Eq. (19)) results in LS by magnetoexcitons with arbitrary wave vectors
q. This effect can be understood in a single-electron picture. Consider the inelastic LS process,
in which 9., (r)(¥.,(r)) are the initial (final) single-electron states in the conduction band and
1, (r) is the intermediate single-electron state in the valence band. The amplitude of LS is
proportional to

<wc2(r)|d}v (T» (% (T)lwcl (T» .

The wave functions 1.1¢)(1,) are solutions of the usual equations

n2

-
[ P + ufef(r)] e = ecd)c, [— P + ugef(T)J "/Jv = €yYPy-
2m 2m

c v

We see that the wave functions 1, and %, coincide if ud*/m, = —u2¢m,,. The latter means
Uer = 0 and (Yo ()| Yy (1)) (W0 (NP1 (1)) = 0 if 1 (r) # 1bea(r). Thus, defect-induced LS
arises from the difference between the wave functions of electrons and holes. Light scattering
induced by a quasi-classical smooth electric field was considered earlier in Ref. [17]. In contrast
to Bechstedt et al. [17], we treat electron scattering by defects with a quantum-mechanical
approach. .

Using the operator W, [Eq. (19)], we find the structure factor of defect-induced LS

Sdef(w) - _

N, d?
A / (_27r—(§2 | Lot (@) (ulys)q {| fe I Ge(w, q) + | £’ Im Go(w, @)}, (20)

where the correlation function (uﬁff)q is given by

(uiff)q = Iueff(q)l2 = // drdr' wegp (F)uess (r + r’)ei‘"/. 20

In the backscattering geometry (ki) || z), the polarized spectra of LS (e, || ez, f. # 0) arise
from charge-density excitations. The depolarized spectra (e; L e;, fs # 0) relate to spin-
density excitations. These selection rules are similar to those for k-dependent LS [8]. We see
from Eq. (20) that characteristic wave vectors of magnetoexcitons are determined by random
potentials (the function (uiff)q) and by the magnetic length (the function Lg;). In the limit
I,, — 0, the structure factor is proportional to the density of states of magnetoexcitons. Near
the critical points of dispersions w.., where dw,,(¢q)/dg = 0, the density of states is proportional
to |w — wer|~!/2. The polarized spectrum Szjf in the limit I, — 0 has two peaks, which
correspond to the excitations with ¢,,; and ¢,uqz, Where ¢,o; and ¢,,,. are the wave vectors of
the roton minimum and maximum, respectively (see the inset in Fig. 1). In the limit [ — 0,
the depolarized spectrum Sj:;: has one singularity which is related to the roton minimum.

Light scattering processes with Al = 2, 3, ... can be described in the same way. The structure
factor for the process with Al = N is given by Eq. (20) with a correction Ly — Loy

We now discuss the mechanisms of electron scattering by disorder in quantum wells.

3.3.- 1. Interface defects

In the case of imperfect interfaces, the size-quantization energies of particles depend on
the in-plane coordinate: W, = 72/(2m%L%(r)) and W, = —7?/(2m L?(r)), where L(r) is the
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width of a quantum well, and mg(v) are the effective masses in a bulk semiconductor. The
size-quantization energies of electrons and holes W, and W, play the role of the potentials

udef (r) and u2¢/(r). In this simplest model, we have:
2 1 me
Uetf = = | —— + —— ] .
H 2w\ md mim,

Typically, for GaAs-AlAs quantum wells we can write: m? # m,, and m? ~ m,. Consequently,
a reasonable approximation for the effective potential is

w? 1 1
Ueff = 75— | — = — ] .
I 2L%r) \m, mY
In the case of GaAs-AlAs quantum wells, we have mg ~ 0.4m, and m, =~ 0.17m, for the first
heavy-hole subband [18]. For weak fluctuations of the width of a quantum well, we can write

B 1 1\ 726L(r)
tefy = tegy (Fo) ¥ <m— - a;) I

v

b

where L, is the average width of a quantum well, §L(r) = L(r) — Ly, and |6 L| < L.
In the limit |§L(r)] < Ly, the correlation function (21) is written as

(22)

1/mb — 272
(p)e = | LI s

In the case of short-range fluctuations of §L(r), we may assume that the characteristic wave
vector g of the correlation function (§L(r)), is much larger then I and (§L*(r)), ~ const

for ¢ ~ 171
3.3.2. Impurities

Another mechanism of electron scattering is connected with impurities. In this case, the

potentials are
ul (1) = ud (1) =Y wi(r - R,)
n

and
Ueff = ugEf(l +mc/mv)7

where R,, are the positions of impurities, and u,(r) is their potential. The correlation function

in the cross section (20) is written as

2
«%ﬁ=m@+$)mmm 23)

v

where [V; is the 2D density of the impurities, and w:(q) is the Fourier transform of a single-
impurity potential. The impurity potential is taken in the form

62

uy(r) = ——=
e/r2+ 22
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Fig. 1.  Light scattering spectrum induced
by disorder for the case of charge-density

40 £ 0'S(w—coc)/ec i . excitations, T./ec = 0.01; curves J, 2, and 3
correspond to the impurity-induced mechanism

£130 1 ] with the parameters zo = 200, 300, and 500 A,
S respectively; the magnetic length is [, = 100 A.
5'20 Curve 4 shows the spectrum of light scattering
*;" ] induced by a short-range random potential
§ (interface defects). The arrows correspond to
Eg10¢ ] the critical points of the excitation dispersions.
3 Inset: the dispersions of charge-density (CDE)

90'1 0ol '6:2 03 04 (@-ae, and spin-density (SDE) excitations in the 2D

electron plasma with the filling factor v = 2
(see Ref. [16])

where z; is the distance between the center of a quantum well and the §-layer of the impurities.

Figure 1 shows the charge-density-excitation spectrum Sz:jf (w) calculated for various
mechanisms of disorder-induced scattering. The lineshape strongly depends on the correlation
function (uﬁff)q. Curves /, 2, and 3 in Fig. 1 represent impurity-induced LS in the systems

with zy = 200,300, and 500 A, respectively. The magnetic length I, = 100 A corresponds
to B = 7 T. The parameter I', can be estimated from the width of the cyclotron peak in
high-mobility heterostructures; it is of the order of 0.1 meV. Hence, for B = 7 T we have
ec ~ 10 meV and I'./e¢c ~ 0.01. In the case zp = 200 A, the main contributions to the
spectra arise from the critical points of the dispersion, i.e., from excitations with qd = Qmaz
and q,,;. The spectrum in the case z; = 500 Ais strongly shifted to low energies and includes
mostly excitations with g <. gq... This fact is connected with the exponential function

u2(g) = U*(q) exp (—2g20)

in Eq. (20). In the case z = 500 A, the impurity potential is too smooth to induce roton
excitations. In the spectrum for z; = 300 A the structure is shifted to low energies, but the
contribution of rotons is still essential. Curve 4 in Fig. 1 shows the spectrum of LS induced
by a short-range random potential ((§L?(r)), = const). We see that the main contributions to
the spectrum 4 in Fig. 1 are related to the critical points of the dispersion. In Fig. 1 the peak
intensities strongly depend on the parameter I'./ec, while the lineshape of the spectra away
from the peaks is relatively insensitive to this parameter.

In their experiment Pinczuk et al. [2] observed a broad structure at energies above the
cyclotron frequency, which was interpreted as the roton density of states. For the multiple
quantum wells studied by them the distance 2, was about 300 A. Our calculations show
that for the distance zy = 300 A the spectrum is shifted to energies below the roton
energy. It can be assumed, therefore, that in the experiment [2] the LS spectrum arises, in
part, from a short-range random potential (interface defects). In addition, the experimental
spectra depend essentially on the laser frequency, which is the signature of strong interband
resonance. Our theoretical results are valid away from strong resonance and, consequently, a
detailed comparison between theoretical and experimental spectra is not possible. Our theory,
nevertheless, makes it possible to estimate the characteristic wave vectors of excitations in
Raman spectra and to understand the mechanism of LS.
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3.4. Light scattering by two elementary excitations

Light scattering induced by the Coulomb interaction is connected with the operator Wcouz
(see Eq. (19)). This operator results in LS by two charge-density excitations (the polarized
spectrum) and by combined excitations w = w,+w, (the depolarized spectrum). Light scattering
by two spin-density excitations is absent here, because the operator V; contains the first power
of the spin operator o,. We can assume that the next terms in the expansion (6) can lead to
LS by two spin-density excitations. '

The structure factors for polarized and depolarized spectra are

N2 (mc\’
558t = ol 25 (3) [ G L@ V@ I [Cureor0] @9

where Geees)(w,q) = 1/(w — we — wes) + 2iT) are the two-magnetoexciton Green’s functions.
For simplicity, we assume I'. = Iy = I'. In the limit ' — 0, the structure factors (24) are
proportional to the density of states of two magnetoexcitons. We see from Eq. 24, that the
characteristic wave vectors of magnetoexcitons in LS spectra are of the order of [J!. In the

limit T — 0, the functions Spo‘l’?jep) have peaks at critical-point energies (Fig. 2).

The matrix elements WC,,M (Egs. (13) and (19)) originate from Coulomb correlations.
Such a process can be considered as a «shakeup». In other words, interband optical transitions
are accompanied by shakeup of an electron system with emission of elementary excitations.

Light scattering by low frequency excitations in the regime of the fractional QHE was
reported in Refs. [3,4]. The spectra observed in Ref. [4] were interpreted in terms of two-
roton excitations, which have low energies (about 0.2¢). The roton excitations in the fractional
QHE are connected with intra-Landau-level transitions. Until now, we do not know of any
publications devoted to studies of the structure near the frequency 2w.. In an experimental
situation, the Raman spectrum near the frequency w = 2w, can consist of two contributions:
the first can be the defect-induced structure related to the magnetoexciton Al = 2 and the
second can be the contribution of the two-magnetoexciton process. These contributions can
be separated because the critical-point energies of two types of excitations are different.

Here we do not consider the spin-flip inter-Landau-level spectra, which occur in our
approach if the geometry deviates from backscattering and the incident light is in resonance
with the light-hole valence band [10]. A theoretical description for these processes is similar
to that for the case of charge-density (spin-density) excitations.

2 1
401 -

5_30' 1 Fig. 2. . The spectrum of light scattering by
g two magnetoexcitons: curves I and 2 show
20 the excitations 2w, and w,. + w,, respectively;
g the parameter I'/ec = 0.01
Q
g10}

0

0 02 04 06 038 (w-w,)e,
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4. RESONANT STRUCTURE OF THE CROSS SECTION

In Sec. 2, we consider the operator f/eff in the limit |A| = |Ey —w;| > w.. We how discuss
the case of strong resonance between Landau levels in the conduction and valence bands when
|Aur| ~ we(wnn), where Ay = wy — Eg —w(1/2+1) —wpn(1/2+1"), and wyy, is the cyclotron
frequency of heavy holes. The energies Er = E; + w.(1/2+ 1) + wprr(1/2 + ") correspond
to the interband optical resonances. The effective g-factors are neglected. At the same time,
we assume that [A;| > ec > T and w.(whp) > €c. Thus, the expansion parameters are
Cc/A”r, €c/w. and T'/w,.

The resonant contributions to the amplitude in third-order perturbation theory are shown
in Fig. 3. In these diagrams, the interband virtual transitions are optical, while the intraband
transitions are assisted by a random potential. Using these diagrams, we rewrite the operator
Waer (Eq. (12)) with the substitution:

ueff(‘]’) N < 1+ mc/mv 1 > uzief(q) + ugef(q)

A? Ajplg) Ap1Ay) ApAy

The diagrgms for two-magnetoexciton processes are shown in Fig. 4. The correction for
the operator W, (Eq. (13)) is

1 me me 1 1 1

— = =1 U+ Us| — | — — U.+—U,

A2 [( 2n ) oo (Zu AphAsi  Andy )~ Apdy

which shows a fine structure of interband resonances.
1
—
1 / 2
S N
2 3 2 3 1 3 1 3

a b c d

Fig. 3. Diagrams for light scattering induced by defects, in which the interband transitions
are optical and the intraband transitions are assisted by defects. Scattering by defects occurs
in the initial electron states (diagrams @ and b) and in the intermediate states of the light
scattering process (diagrams ¢ and d). For the case v = 2, the contributions connected with
defect-induced scattering in the final states in third-order perturbation theory are absent
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2
a b c d

Fig. 4. Diagrams for light scattering induced by the Coulomb interaction, in which the
interband transitions are optical and the intraband transitions are assisted by the Coulomb
coupling. In the diagrams ¢ and b, the Coulomb interaction induces virtual transitions in
the initial states. The diagrams ¢ and d include similar transitions in the intermediate states

5. DISCUSSION

In this paper, we have shown that resonant LS from an electron plasma in the dipole limit
can be described by effective operators of two types (see Egs. (12) and (13)):

- 1
Waes = 55 O tess @ [fepe@ + fupe (@],
" 25)
- 1 R R N o
Woou = 535 D U@ [fehe(~0pe(@ + fobe(~Dpa@],
q

where p.(q) and p,(q) are the Fourier transforms of the charge and spin densities, respectively;
the functiens: f.(,y determine the selection rules of LS. The operators (25) are the leading terms
in the expansion of the LS amplitude in terms of the parameter 1/A.

The operator Wdc ¢ describes LS processes in the presence of disorder (defects). The matrix
element u.¢r is a combination of Fourier transforms of random potentials in the conduction
and valence bands (Eq. (14)):

Uers (@) = ule! (@) + “uded (g).
My
The cross section of disorder-induced LS is given by Eq. (1) with f(g) « |ueff(q)|2. The
characteristic wave vectors of excitations in these spectra are connected with the correlation
functions of disorder.

The operator We . relates to LS induced by the Coulomb interaction. This operator leads
to two-quasiparticle spectra in an ideal system. The characteristic wave vectors of excitations
in LS spectra in this case are determined by the electron-electron interaction potential and in
a high magnetic field are of the order of 1/I..
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The results of this paper can be used for a description of light scattering in semiconductor

plasmas and in laterally modulated electron systems (quantum wires and dots). Our approach
is valid when E, > |A| = |E, — wi| > €cqc, Where €., is the characteristic energy of electron
excitations in the LS process.
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