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Microscopic mechanisms of inelastic light scattering in an inteГdcting electron plasma in 
semiconductor heterostrиctures аге considered. 'П the dipole limit, Ihe cross section consists of 
two main contributions: the first is related to а disorder-induced mechanism and the second arises 
from the Coulomb inteГdction. The spectra of disorder-induced light scattering are described in 
terms о[ correlation functions of а random potential. The spectrиm induced Ьу the Coulomb 
interaction arises from two-quasiparticle excitations. The mechanisms which are studied in this 
paper result in the арреагапсе of large wave vector excitations in the spectГd of resonant light 
scattering. These results сап Ье used to model the experimentally observed арреаГdпсе of the 
roton density о[ slates in light scattering spectra in the integer quantum Наll regime of а two-di­
mensional system. Furthermore, we show that the lineshape of spectra strongly depends оп the 
character of disorder and, in particular, ОП the spatial positions of impurities with respcct 10 а 

quantum well. 

1. INTRODUCTION 

Raman studies oftwo-dimensional (2п) systems in а high magnetic field аге currently ап 
active агеа of research [1]. In particular, inelastic light scattering (LS) permits the observation 
of the roton excitations i11 the regimes of the integer and fractio11al quantum НаН effects 
(QHE's) [2-4J. The magnetoroto11 excitations in the i11teger QHE regime have characteristic 
wave vectors of the order of 1/ lе, where lе is the magnetic le11gth. At the same time, i11-plane 
mome11tum tra11sfers ofthe order of 1 / le аге 110t easily accessible in experime11ts. Mag11etorotons 
i11 LS spectra were i11terpreted as arising from breakdown of mome11tum c011servatio11 i11 the 
presence of residual disorder [1,2]. 

The feature of the experiments mentioned аЬоуе is that LS spectra c011tain excitations with 
relatively large wave vectors. In this рарег, we consider specific mecha11isms ofLS, which allow 
the observatio11 of such excitatio11s. 

The effect of disorder оп LS spectra in the integer QHE regime was investigated 
theoreticaHy i11 Ref. [5] in the framework of а phenomenological approach. The cross section, 
caJculated in Ref. [5], ref1ects the density of states of electron excitations and is written as 

(1) 

where c.v is the photon e11ergy transfer in the LS process, q is the in-plane wave vector of 
а11 excitation, and So(c.v, q) is the structure factor of the system. The function f(q) describes 
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breakdown ofmomentum conservation and is written in Ref. [5] in the Lorentzian form: f(q) = 
= (a/Jr)/(q2 + ( 2), where а is the phenomeno!ogica! broadening parameter. 

In the fractiona! QHE regime, LS was studied theoreticaIIy in а work of P!atzman and 
Song Не [6], where the authors have obtained numerica! data for the intra-Landau-!eve! 
spectra. They considered LS as а shake-up process, which resu!ts in two-excitation Iines. This 
process is directIy connected with Фе Соu!отЬ interaction and was described in Ref. [6] Ьу 
phenomeno!ogica! matrix e!ements. Shake-up processes for the сме of two-phonon LS from 
the Wigner crysta! were considered in Ref. [7]. 

In the present paper, we study resonant LS in the dipo!e Iimit (k -t О, where k is the 
!ight momentum transfer). То calcu!ate the LS spectra, we find the Hami1toni~n responsible 
for dipo!e-аIIоwеd LS Ьу using а general formaIism deve!oped in Ref. [8]. The cross section is 
expanded into а series ofthe parameter !/(Eg - ""(1), where E g is the optica!-gap energy, and 
""'1 is the !aser frequency. We obtain ana!ytica! expressions for the ampIitudes of LS induced Ьу 
disorder and Ьу the Соu!отЬ interaction. The cross section of disorder-induced LS is expressed 
in terms of corre!ation functions of а random potentia!, which determines the characteristic 
wave vectors of excitations in Raman spectra. The Соu!отЬ interaction in ап e!ectron system 
resu!ts in two-quasipartic!e excitations in LS spectra. The mechanisms of LS, which we consider 
here, were studied ear!ier in Refs. [5,6] Ьу using various phenomeno!ogica! approaches. In this 
paper, we deve!op from first princip!es а theory describing such LS mechanisms. The resu!ts 
obtained Ьу us сап Ье appIied both to bu!k and 2D systems. We focus оп 2D semiconductor 
heterostructures because LS mechanisms, which invo!ve magnetoexcitations with !arge wave 
vectors, р!ау the most important ro!e in these systems. In particu!ar, we calcu!ate the LS 
spectra of а 2D magnetop!asma with the fiIling factor v = 2. 

2. RESONANТ LIGHT SСАТТЕRING IN AN ELECTRON SYSTEM 

Resonant LS is connected \vith two virtua! interband processes of absorption and emission 
which аге induced Ьу the incident and scattered p!lOtons, respective!y. In the foIIowing, we wiII 
consider resonance between the !owest 2D subbands in the conduction and heavy-ho!e уа!епсе 
bands. Resonances with the !ight-ho!e and spIit-оff уа!епс~ bands сап Ье described simiIar!y. 
In addition, we assume that e!ectrons оссuру оп!у the !owest 2D subband in the conduction 
band. 

The cross section of LS and the structure factor S(""') are given Ьу (see Ref. [8]) 

d2 4 
__ ()'_ = ""'2 _e_ S("",) 
dnd"", ""'1 с4т6 ' 

(2) 

w!lere 10) and IF) are tlle initia! and fina! states of the many-e!ectron system, Ео and Ер are 
their energies, and то is t!le free-e!ectron mass; the operator V"fj is the interaction Hamiltonian 
describing LS, and 

Vefj(t) = ехр ( -iнtоtt) Уеп ехр (iHtott) , 
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where Htot is the Hamiltonian of the crystal; w1(2) are energies of incident (scattered) photons; 
W = W1 -W2 is the energy transfer, and h = 1. The temperature is assumed to Ье zero. Assuming 
resonance, the matrix elements (FIVeff 10) are (see Ref. [8]) 

(3) 

where IN) аге intermediate many-electron states. The operators]1 and]2 describe the interband 
optical processes assisted Ьу the incident and scattered photons, respectively. The states IN) are 
characterized Ьу а single hole in the valence band and опе additional electron in the conduction 
band. 

Single-electron states of the conduction band are given Ьу 'а) = еiрrФс(z)lст), where r 
and z are the in-plane and normal coordinates, respectively; р is the electron momentum, 
фс(z) is the wave function describing size-quantization and ст = ±1/2 are the spin indexes. 
Single-electron states of the valence band сап Ье written sirnilarly: 1,) = eipr Фv (z)IJ), where 
фv(z) is the wave function connected with size-quantization, and J is the angular momentum 
of heavy holes. For simplicity, we disregard mixing between the valence bands. 

Tlle Hamiltonian of the electron system is Htot = н ь + ЕсТ/,с + E v nv , where the subscripts 
с and v refer to the first subbands inthe conduction and valence bands, respectively; Нь is the 
Hamiltonian describing intraband energies and direct Coulomb interaction between electrons 
of different bands, nc(nv ) are the operators of electron numbers in the conduction (valence) 
bands, and Ее (Ev ) are the energies of electrons at zero in-plane momentum in corresponding 
2D subbands. The operator Нь = Не + Hv + H~~t, where H~~t is the operator of direct Coulomb 
interaction between electrons of the conduction and valence bands. Exchange interaction 
between electrons of different bands is ignored. The operators Н с and Н v describe the intraband 
energies of electrons' Н = i + udef + Hint and Н = i + udef Here i and i are . с с с 'се V V v· с v 

the operators of kinetic energy; u~e! (г) and u~e! (г) are random potentials in the conduction 
and valence bands, respectively; and H~~t is the operator of the Coulomb interaction in the 
conduction band. Here we include in the Hamiltonian Htot only the terms related to the 
conduction and valence subbands, which are coupled Ьу interband resonant transitions. The 
Coulomb potentials are given Ьу the matrix elements: 

Uее(г - г') = (Фс(Z)Фе(z')IU ( v(z - Z')2 + (r - r')2) IФс(z)Фе(Z'»), 

Ucv(r - r') = (Фс(z)Ф",(z')IU ( v(z - Z')2 + (r - r')2 ) IФе(Z)Фv(z'»), 

where И (R) = е2 / ER, and Е is the dielectric constant. 

(4) 

А method to simplify the operator Veff was proposed in Refs. [7,9]. According to this 
method, we fit;d the commutator [Есnс + Evnv , ]1] = (Ее - Ev )]1 = Е9]1' At the same time, . 
the operator Нь does not change the number of particles in апу band; i.e., the commutator 
[Есnс + Evnv, Нь] = О. Thus, the effective Hamiltonian of resonant LS сап Ье written as 

00 00 

Veff = -i J ]2]1 (t) ехр (iWlt ) dt = -i J]2 ехр (-iНьt) ]1 exp(iHbt) ехр [i(WI-Еg)t] dt. (5) 
о о 
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л" 
We 110W expal1d Eq. (5) il1 а series of the operator Нь using the equation 

. о.ьл -о. _ ьл [а, Ь] [а, [а, Ь]] 
е е - +--+ + 1! 2! ... 

After il1tegration il1 Eq. (5), we have 

Veff = 1iI + ~ + Vз + .... , (6) 

~ - 12]\ 11. _ )2[Hb ,J\] 
\ -~, 2 - д2 ' 

where t:,. = Ц)\ - Еу • The expansion (6) is valid ifthe value t:,. is much larger than the energies 
of electron excitations in а plasma; i.e., Iдl » Ek, Ее, Г, where Ek: and Ее аге the characteristic 
kil1etic and Coulomb energies, and Г is the broadening of electron levels due to а random 
potential. In а high magnetic field, Ek '" Ц)е and Ее '" е 2 /(Е[е), where Ц)е is the cyclotron 
energy. At the same time, we assume Iдl «Еу ' Below we will focus only оп two first terms 
in the expansion (6). 

2.1. Тhe operator 1iI 
The first term in Eq. (6) was calculated Ьу Hamilton and McWhorter [8]. In the Капе 

model, the operator 1iI is written as (see Ref. [8]) 

• 1 
V\ = -~[fеРе(kll) + IsP8(kll)], (7) 

(8) 

where kll = k\11 - k211' k\ and k2 аге the wave vectors of incident and scattered photons, 
respectively; Г; is the in-plane coordinate of the i-electron, Ctiz is the Pauli matrix, and Ре 
and Р8 аге the operators of electron and spin densities, respectively. The parameters lе(8) 
in Eq. (7) show selectiol1 rules of LS il1 resol1al1ce with the heavy-hole valence bal1d [8,10]: 
lе = D(e\lle;lI) and 18 = iD[e\e2]z, where е\(е2) аге the polarization vectors of incident 
(scattered) photons, 

and Ре" is the interband matrix element. 

2.2. Тhe operator V, 

The second term in Eq. (6) сап Ье written as 
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where mc(v) аге the effective masses in the 'conduction (уаlепсе) bands (mv > О). Неге, the 
single-electron тотепtuт Pi should Ье written with allowance [ог the perpendicular rnagnetic 
field. The operator C(q) arises [roт the СоиlотЬ interaction in the intermediate states. In 
the dipole limit, we have 

(10) 

The matrix elements Ucc(q) and Uev(q) iп Eq. (10) have opposite signs because the iпtегЬапd 
excitol1 in il1terrnediate states is neutral. The value Uee(q) - Uev(q) is nonzero if the wave 
fUl1ctions фе(Z) апd Фv(Z) differ. Непсе, the сопtriЬutiоп Uсс - Uev сап Ье еssепtiаl in tilted 
quantum wells. • 

The operator vi induces LS Ьу charge- апd sрiп-dепsity excitations in соrrеsропdiпg 
geometries. ТЬе cross sесtiоп connected with the operator V1 was calculated in а пuтЬег 
ofworks [ог the case ofbulk semiconductors [8,11,12] and [ог the case of quantum weIls (for 
il1stапсе, see Ref. [13]). It is essel1tial.that in Refs. [8,11-13] the cross section d2(j/dD.dы --+ 

8(w), when k --+ О; i.e., the operator vi leads to dipole-forbidden inelastic LS. 
The operator V2 includes the contributions proportional to the operator of kinetic-energy 

density 

The operator Te(k) results in so-called LS Ьу fluctuations of kinetic-energy density, which 
was considered in Refs. [11,12,14]. In the approaches of Refs. [11,12,14], the cross section 
induced Ьу Te(k) vanishes if w =j- О and k = О. Therefore, the dipole-forbidden contributions, 
which сап, in principle, play ап important role in st;miconductors, were taken into account in 
Refs. [11,12,14] 

2.3. Dipole-allowed inelastic light scattering 

We now consider the operators 11. (k), 1I,(k), (1.(k), and (1,(k) in the dipole Iimit k --+ О. 
At zero wave vector we have 11.(0) =;= nе , 11,(0) = 2s z and, consequently, [Не, nс] = О and , 
[Не, Sz] = О, where Sz is the total spin. These equaIities теап that the operators 11.(0) and 
11,(0) induce elastic LS. • • 

Inelastic LS in the diP91e limi} сап Ье \onnect~d with the operators Qe(O) and Qs(O), 
because the commutators [Qe(O),He] and [Qs(O),He] аге nonzero. UsualIy, the Coulomb 
iпtегасtiоп and' а random potential play the role of perturbations, i.e., Ek » Ее, Г. Непсе, it 
is convel1ient to exclude the kinetic energy from the operator Vz. For instance, the operator 
(1.(0) сап Ье written as 

(1.(0) = L {~!L + и~'! (ri) - и~e/ (ri) } = 
, 

_ тен' ""' {те de f ( ) + d. f ()} тен' int 
- - с - L..- -ие ri U v ri - - се' 

IL . m v fL . , 
( 11) 

where l/fL = l/те + l/mv. The operator (me/fL)He in Eq. (11) contributes to the elastic 
LS process. Using similar transformations [ог аН terms of Vz, we have in the dipole limit 
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V1 + 112 = Vel as + 'Ит, where the operator v"las induces elastic LS. The contributions of kinetic 
energy remain now in the operator v"las' Inelastic processes arise [roт the opet'ator W = 
= Wdef + WCoul , where 

Wdef = ~2 L uefj(ri) [fe + !sUiz] = ~2 L иеп(ч) [fePe(q) + !sPs(q)] , (12) 
. q 

and 

W Сои! = ~2 L [( ~e - 1) Uee(ri - ri') + Uev(ri - ri')] (!е + !s( Uiz ~ Ui' Z») = 
i, i' ;iii' Jl 

= ~2 ~ [ (~; - 1) Uee(q) + Uev(Q)] {!еРе(Ч)Ре( -ч) + !.Ps(Ч)Ре ( -q)}. (13) 

Here 

(14) 

The functions ие!! (Ч) and Uее (Ч) are the Fourier transforms ofthe couesponding potentials. The 
operators Wdef and W Сои! describe LS induced Ьу disorder and Ьу the СоиlотЬ interaction, 
respectively. We note that the operator W includes terrns proportiona1 to the small parameters 
Г and Ес. The latter is essentia1 because we тау use first-order perturbation theory in this case 
(assuming Ek »Г, ЕС) to calculate the cross section. 

З. LIGНТ SCAТfERING FROM ТНЕ 2D МAGNETOPLASМA 

In this section, we intend to consider а 2D electron system in the perpendicular magnetic 
field В at the filling factor 1.1 = 2 (1.It = 1.11 = 1) and inter-Landau-level excitations with 111 = 1 
(111 is the change of Landau-level number). We assume that the СоиlотЬ energy is much 
less than the cyclotron frequency; ЕС = e2/(El e ) « We , that allows us to use perturbation 
theory [15, 16]. The creation operators for charge-density and spin-density excitations with the 
wave vector q are (see Ref. [15]) 

'+ 1, 
Ае(ч) = ,jJV;Pe(q), 

where N e is the density of 2D electrons. The commutators with the Hamiltonian Не are 
[Не, А~(ч)] =WmA~(q), where the index т = e(s) for charge-density (spin-density) 
excitations. The dispersions of magnetoexcitations (magnetoexcitons) Wm were calculated in 
Refs. [15,16] and are shown in the inset of Fig. 1. The wave funct.ions ofmagnetoexcitons сап 
now Ье written as Iq; т) = A~(q)IO). 

The cross section сап Ье written in teuns of couelation functions 
00 

2~ J (OIAm,(q')exp (-iнеt) А;;'(ч)ехр (iHet) 10)ei<vtdt = 
-00 

(15) 
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where W > О, and 

The Green's function i~ 

1 
Gm(w, q) = _ () + т ( )' 

W Wm q ~ m q 
(16) 

where l/Г m(q) is the lifetime of а magnetoexciton. 

3.1. Wave-vector-dependent Iight scattering 

First, we discuss dipole-forbidden LS induced Ьу the operator V1, which сап Ье written as 

(17) 

The structure factor of LS (2) is 

00 

1 J д + д 5(w) = 211' (01V1 Vj(t)IO)exp(iwlt)dt = 

-00 

We see that the structure factor lшs the Lorentzian form and сх k~ /г т, when klllc ~ 1 and 

Iw - wm(kll)1 ~ г т' The integrated intensity of dipole-forbidden LS 

I = J 5(w)dw сх k~/B, 

3.2. Light scattering in the dipole limit 

We now calculate the cross section ofLS in the dipole limit k -+ О. At zero temperature we 
сап retain in the operator W [Eqs. (12) and (13)] only the terms with A~ (ч), A~ (-ч)А~, (ч). 
Thus, we have 

(19) 

Here we consider the strictIy 2D system, where Uсс = Ucv = U(q) = 21re2/(Eq). 
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3.3. Light scattering induced by.disorder (defects) 

The operator Wde ! (Eq. (19» results in LS Ьу magnetoexcitons with arbitrary wave vectors 
q. This effect сап Ье understood in а single-electron picture. Consider the inelastic LS process, 
in which ФсI(r)(Фс2(r» аге the initial (final) single-electron states in the conduction band and 
фv(r) is the intermediate single-electron state in the valence band. The amplitude of LS is 
proportional to 

The wave functions 'ФСI(2)(ФV) аге solutions of the usual equations 

[ р2 + 1ldej (Т)] ./. = Е ,,/. 
2тс с 'Ре с'Рс, 

We see that the wave functions Фс and Фv coincide if и~e! ~c = _и~e! m v' The latter means 
ие!! = О and (ФС2(r)lфv(r»)(фv(r)IФсI(r») = О if ФсI(r) =j Фс2(Т)' Thus, defect-induced LS 
arises from the difference between the wave functions of electrons and holes. Light scattering 
induced Ьу а quasi-classical smooth electric field was considered earlier in Ref. [17]. In contrast 
to Bechstedt et al. [17], we treat electron scattering Ьу defects with а quantum-mechanical 
approach. 

Using the operator И1dе! [Eq. (19)], we find the structure factor of defect-induced LS 

where the correlation function (1l~ff) q is given Ьу 

(1l;ff)Ч = l1leff(q)1 2 = .1.1 drdr'lteff(r)'lteff(r + r')e iQr'. (21 ) 

In the backscattering geometry (kI(2) " z), the polarized spectra of LS (еl " е2, fe =j О) arise 
from charge-density excitations. The depolarized spectra (еl ..L е2, fs =j О) relate to spin­
density excitations. These selection rules аге similar to those [or k-dependent LS [8]. We see 
[roт Eq. (20) that characteristic wave vectors of magnetoexcitons аге determined Ьу random 
potentials (the function (7L;ff)q) and Ьу the magnetic length (the function L o1 ). In the limit 
Г rn --- О, the structure factor is proportional to the density of states of magnetoexcitons. Near 
the critical points of dispersions ц)ст, where dUJrn (q) / dq = О, the density of states is proportional 
to 'Ц) - UJcrl- 1j2 . The polarized spectrum В:;( in the limit Ге -~ О has two peaks, which 
correspond to the excitations with qrot and qrnax, where qrot and qrnax аге the wave vectors of 
the roton minimum and maximum, respectively (see the inset in Fig. 1). In the limit ГS --- О, 

the depolarized spectrum S~:: has опе singularity which is related to the roton minimum. 
Light scattering processes with L'll = 2,3, .,. сап Ье described in the same way. The structure 

factor [ог the process with Ы = N is given Ьу Eq. (20) with а correction L 01 --- L oN . 

We now discuss the mechanisms of electron scattering Ьу disorder in quantum welIs. 

3.3.1. Interface defects 

In tl1e case of imperfect interfaces, the size-quantization energies of particles depend оп 
the in-plane coordinate: Wc = 7Г 2 /(2m~L2(r» and Wv = _7Г2 /(2m~L2(r», where L(r) is the 
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width of а quantum welI, and m~(v) аге the effective masses in а bulk semiconductor. The 
sizе-qllапtizаtiоп епегgiеs of electrons and holes We and Wv play the role of the роtепtiаls 
1t~ef (г) al1d 1t~ef (г). In this simplest model, we have: 

7[2 (1 те) 
иеп = 2и(г) - т~ + m~mv . 

Typically, [ог GaAs-АIAs quапtum welIs we сап write: т~ =1 m v and т~ с::: те. Сопsеquепtlу, 
а reasol1abIe approximatiol1 [ог the eftective potel1tia1 is 

иеп = 2;;:r) (~v - ~~) . 
Iп tl1e case of GaAs-АIАs qual1tum wells, we have т~ с::: О.4то and m v с::: 0.17то for the first 
heavy-l1О1е SllЬЬапd [18]. For weak fluctuations of the widtl1 of а quапtum well, we сап write 

where Lo is t11e average width of а quantum welI, I5L(r) = L(r) - Lo, апd II5LI « Lo. 
In the 1imit II5L(r)1 « L o, the corre1atiol1 function (21) is written as 

( 2 ) = [(1/т~ - 1/mv)Jr2] 2 (I5L 2( ») 
иеп q 4L3 r Q' 

о 

(22) 

lп the case of short-range f1uctuations of I5L(r), we тау assume that the characteristic wave 
vector qo of tl1e correlation function (I5L 2(r»)q is much larger then l;;1 al1d (I5L2(r»)q с::: сопst 
[ог q с::: l;;l. 

3.3.2. Impurities 

Anot11er mechal1ism of electrol1 scatteril1g is cOl1nected with impurities. 111 this case, the 
роtепtiа1s аге 

и~e! (r) = и~e! (r) = L щ(г - Rn ) 

n 

and 

where Rn аге the positions of impurities, апd u.t(r) is their potential. The сопеlаtiоп functiol1 
iп the cross section (20) is written as 

(23) 

wl1ere N t is the 2D dепsitу of the impurities, and Ut(q) is the Fourier transform of а sil1g1e­
impurity potel1tial. Тl1e impurity potentia1 is taken in the form 
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Fig. 1. Light scattering spectrum induced 
Ьу disorder for the case of charge-density 
excitations, r./fC = 0.01; curves 1, 2, and 3 
correspond to the impurity-induced mechanism 
with the parameters Zo = 200,300, and 500 А, 
respectively; the magnetic length is lc = 100 А. 
Curve 4 shows the spectrum of Iight scattering 
induced Ьу а short-range random potential 
(interface defects). The arrows correspond to 
the critical points of the excitation dispersions. 
Inset: the dispersions of charge-density (CDE) 
and spin-density (SDE) excitations in the 2D 
electron plasma with the fiIling fact,or 1/ = 2 

(see Ref. [16]) 

where Zo is the distance between the center of а quantum well and the 8-1ayer of the impurities. 

Figure 1 shows the charge-density-excitation spectrum S:;{ (w) ca1culated for various 
mechanisms of disorder-induced scattering. ТЬе lineshape strongly depends оп the сопеlаtiоп 
function (u;ff}q. Curves i, 2, oand 3 in Fig. 1 represent impurity-induced LS i~ the systems 

with Zo = 200,300, and 500 А, respectively. ТЬе magnetic length lc = 100 А сопеsропds 
to В = 7 Т. ТЬе parameter Г е сап Ье estimated from the width of the cyclotron peak in 
high-mobility hеtеrostruсtшеs; it is of the order of 0.1 теУ. Непсе, for В = 7 Т we have 
Ее ~ 10 meVand Ге/Ее ~ 0.01. In the case Zo = 200 А, the main contributions to the 
spectra arise from the critica1 points of the dispersion, i.e., from ex~itations with q = qmax 

and qrot. ТЬе spectrum in the case Zo = 500 А is strongly shifted to low energies and includes 
mostly excitations with q < Qmax' This fact is connected with the exponential fиnction 

in Eq. (20). In the' case Zo 500 А, the }mpurity potential is too smooth to induce roton 
excitations. In the spectrum for Zo = 300 А, the structure is shifted to low energies, but the 
contribution of rotons is still essentia1. Curve 4 in Fig. 1 shows the spectrum of LS induced 
Ьу а short-range random potential «(8L2(r)}q = const). We see that the main contributions to 
the spectrum 4 in Fig. 1 are related to the critical points of the dispersion. In Fig. 1 the peak 
intensities strongly depend оп the parameter Ге/Ее, while the lineshap~ of the spectra away 
from the peaks is relatively insensitive to this parameter. 

In their experiment Pinczuk et al. [2] observed а broad structure at energies above the 
cyclotron frequency, which was interpreted as the roton density of states. For the multiple 
quantum wells studied Ьу them the о distance Zo was about 300 А. Our ca1culations show 
that for the distance Zo = 300 А the spectrum is shifted to energies below the roton 
energy. It сап Ье assumed, therefore, that in the experiment [2] the LS spectrum arises, in 
part, from а short-range random potential (interface defects). In addition, the experimental 
spectra depend essentially оп the laser frequency, which is the signature of strong interband 
resonance. Our theoretical results are valid away from strong resonance and, consequently, а 
detailed comparison between theoretical and experimental spectra is not possible. Our theory, 
nevertheless, makes it possible to estimate the characteristic wave vectors of excitations in 
Raman spectra and to understand the mechanism of LS. 
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3.4. Light scattering Ьу two elementary excitations 

Light scattering induced Ьу the Coulomb interaction is connected with the operator W Сои! 
(see Eq. (19». This operator results in LS Ьу two charge-density excitations (the polarized 
spectrum) and Ьу combined excitations UJ = UJs +UJe (the depolarized spectrum). Light scattering· 
Ьу two spin-density excitations is absent here, because the operator v2 contains the first power 
of the spin operator az . We сап assume that the next terms in the expansion (6) сап lead to 
LS Ьу two spin-density excitations. 

The structure factors for polarized and depolarized spectra are 

where Gee(es)(UJ, q) = 1/(UJ - UJe - UJe(s) + 2iГ) are the two-magnetoexciton Green's functions. 
For simplicity, we assume Ге = Г. = г. lп the 1imit Г -+ О, the structure factors (24) are 
proportional to the density of states of two magnetoexcitons. We see from Eq. 24, that the 
characteristic wave vectors of magnetoexcitons in LS spectra are of the order of l;;-I. lп the 
limit Г -+ О, the functions ~i?ol~ep) have peaks at critical-point energies (Fig. 2). 

The matrix elements W Сои! (Eqs. (13) and (19» originate from Coulomb correlations. 
Such а process сап Ье considered as а «shakeup». lп other words, interband optical transitions 
are accompanied Ьу shakeup of ап electron system with emission of elementary excitations. 

Light scattering Ьу low frequency excitations in the regime of the fractional QHE was 
reported in Refs. [3,4]. The spectra observed in Ref. [4] were interpreted in terms of two­
roton excitations, which have low energies (about 0.210 С ). The roton excitations in the fractional 
QHE are connected with intra-Landau-level transitions. Until now, we do not know of апу 
publications devoted to studies of the structure near the frequency 2UJc . In ап experimental 
situation, the Raman spectrum near the frequency UJ = 2UJc сап consist of two contributions: 
the first сап Ье the defect-induced structure related to the magnetoexciton 11l = 2 and the 
second сап Ье the contribution of the two-magnetoexciton process. These contributions сап 
Ье separated because the critical-point energies of two types of excitations are different. 

Here we do not consider the spin-flip inter-Landau-level spectra, which occur in our 
approach if the geometry deviates from backscattering and the incident 1ight is in resonance 
with the light-hole valence band [10]. А theoretical description for these processes is similar 
to that for the case of charge-density (spin-density) excitations. 

2 1 
40 
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Fig. 2. . The spectrum of 1ight scattering Ьу 
two magnetoexcitons: curves 1 and 2 show 
the excitations 2UJe and UJe + UJ 8, respective1y; 

the parameter Г/Ее = 0.01 



А. О. Gavorov ЖЭТФ, 1997, 112, выn. 3(9) 

4. RESONANT STRUCTURE OF ТНЕ CROSS SECТION 

In Sec. 2, we consider the operator Veff in the limit '~I = IEg -ШII »шс. We hOw discuss 
the case of strong геsопапсе between Landau levels in the conduction and valence bands when 
1~1l'1 rv Шс(Шhh), where ~ll' = Ш! - E g - шс(1/2 + l) - Шhh(l/2 + ['), and Шhh is the cyclotron 
frequency of heavy 1101es. ТЬе energies Egll , = Eg + шс(J /2 + l) + Шhh(l/2 + [') correspond 
to the interband optical resonances. ТЬе effective g-factors аге neglected. At the same time, 
we assume that 1~1l'1 » Ее » Г and Шс(Шhh) » Ее. Thus, the expansion parameters are 
Ee/~ll', Ее/шс and Г/ШС' 

ТЬе resonant contributions to the amplitude in third-order perturbation theory are shown 
in Fig. 3. In these diagrams, tlle interband virtual ttansitions are optical, while the intraband 
transitiollS are assisted Ьу а random potelltial. Using these diagrams, we rewrite the operator 
Wdef (Eq. (12» with the substitutioll: 

ТЬе diagr31ms for two-magnetoexciton processes are shown in Fig. 4. ТЬе correction for 
the operator fVeoul (Eq. (13» is 

which shows а fine structure of interband resonances. 

1 

r\1 r\2 

2 3 2 3 1 3 1 3 

2 
а Ь с d 

Fig. 3. Diagrams [ос light scattering induced Ьу defects, in which the interband transitions 
are optical and the intraband transitions are assisted Ьу defects. Scattering Ьу defects occurs 
in the initia! e!ectron states (diagrams а and Ь) and in the intermediate states ofthe light 
scattering process (diagrams с and d). For the case 11 = 2, the contributions connected with 
defect-induced scattering in the fina! states in third-order perturbation theory are absent 
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1 1 2 ... 
r\/ 

2 3 2 3 3 1 3 

2 
а ь с d 

Fig. 4. Diagrams for light scattering induced Ьу the Coulomb interaction, in which the 
interband transitions are optical and the intraband transitions are assisted Ьу the Coulomb 
coupling. In the diagrams а and Ь, the Coulomb interaction induces virtual transitions in 
the initial states. ТЬе diagrams с and d include similar transitions in the intermediate states 

5. DlSCUSSION 

In this paper, we have shown that resonant LS from ап electron plasma in the dipole Iimit 
сап Ье described Ьу effective operators oftwo types (see Eqs. (12) and (13»: 

Wdef = ;2 L UeJj(q) [fePe(q) + fsPs(q)] , 
q 

W Cou1 = 2~2 L U(q) [!еРе( -q)Ре(q) + !вРе( -q)ps(q)], 

(25) 

q 

where Pe(q) and Ps(q) are the Fourier transforms ofthe charge and spin densities, respectively; 
the functions!e(s) determine the selection rules of LS. The operators (25) are the Ieading terms 
in the expansion of the LS amplitude in terms of the parameter 1 / ~. 

The operator Wdef describes LS processes in the presence of disorder (defects). The matrix 
element иеJj is а combination of Fourier transforms of random potentiaIs in the conduction 
and valence bands (Eq. (14»: 

The cross section of disorder-induced LS is given Ьу Eq. (1) with f(q) сх IUeJj(q)12 • The 
characteristic wave vectors of excitations in these spectra are connected with the correlation 
functions of disorder. 

The operator W С oul relates to LS induced Ьу the Coulomb interaction. This operator Ieads 
to two-quasiparticle spectra in ап ideaI system. The characteristic wave vectors of excitations 
in LS spectra in this case are determined Ьу the electron-electron interaction potentiaI and in 
а high magnetic field are of the order of l/lc . 
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The results of this paper сап Ье used for а description of light scattering in semiconductor 
plasmas and in laterally modulated electron systems (quantum wires and dots). Our approach 
is valid when Eg ~ 11\1 = IE; - UJzl ~ Еехе , where Еехе is the characteristic energy of electron 
excitations in the LS process. 

The author would like to thank УА Volkov for motivating remarks and Е. L. Ivchenko, 
А. Pinczuk, and А. Maslov for helpfиl discussions. ТЫ!> work was supported Ьу the А. von 
Humboldt Stiftung and Ьу the Russian Fund for Fundamental Research. 
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