ПОЛОЖИТЕЛЬНОЕ МАГНИТОСОПРОТИВЛЕНИЕ МОНОКРИСТАЛЛА Fe_{0.95}Co_{0.05}Ge₂ ВНУТРИ ОБЛАСТИ МАГНИТНОГО ФАЗОВОГО ПЕРЕХОДА

Р. И. Зайнуллина, Н. Г. Бебенин, В. В. Устинов

Институт физики металлов Уральского отделения Российской академии наук 620219, Екатеринбург, Россия

Поступила в редакцию 19 ноября 1996 г.

В монокристалле Fe_{0.95}Co_{0.05}Ge₂ внутри области размытия фазового перехода первого рода на температурной зависимости магнитосопротивления обнаружены острые пики положительного магнитосопротивления, положение которых коррелирует с положением особенностей на температурных зависимостях производных по температуре электросопротивления и магнитной восприимчивости. Показано, что выявленные особенности транспортных и магнитных свойств, по-видимому, обусловлены наличием двух перколяционных переходов по температуре в магнитной системе кристалла.

1. ВВЕДЕНИЕ

Обычно особенности электросопротивления проводящих магнетиков в окрестности магнитного фазового перехода обусловлены ростом флуктуаций в магнитной подсистеме кристалла. Наложение магнитного поля приводит к подавлению спиновых флуктуаций, ослаблению рассеяния носителей тока и, следовательно, к уменьшению сопротивления [1-4]. Отрицательное магнитосопротивление наблюдается и в окрестности перехода металл-диэлектрик в магнитных полупроводниках, поскольку магнитное поле благоприятствует росту областей проводящей ферромагнитной фазы [5]. В нашей работе [6] впервые сообщается об обнаружении резкого пика положительного магнитосопротивления монокристалла FeGe₂ в области магнитного фазового перехода первого рода и высказывается предположение, что этот эффект обусловлен «размытием» перехода. По этой причине представляет интерес изучение процессов, происходящих внутри температурной области перехода.

Детальное исследование этих процессов в FeGe₂ затруднено тем, что ширина перехода в этом материале весьма мала (около 1 K), поэтому их изучение лучше проводить на объектах, имеющих такую же кристаллическую и магнитную структуру, но с более «протяженным» переходом. Такими объектами могут являться твердые растворы $Fe_{1 \perp x} Co_x Ge_2$. В данной работе приводятся результаты экспериментального исследования температурных зависимостей магнитной восприимчивости, электро- и магнитосопротивления монокристалла $Fe_{0.95}Co_{0.05}Ge_2$, на основе анализа которых делается вывод о том, что внутри области размытия магнитного фазового перехода, по-видимому, имеют место два своеобразных перколяционных перехода (по температуре) в магнитной подсистеме кристалла.

2. ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

Исследованный в настоящей работе монокристалл $Fe_{0.95}Co_{0.05}Ge_2$ был выращен по методу Чохральского на кафедре общей физики УГТУ (г. Екатеринбург). Магнитные измерения проведены на вибрационном магнитометре. Магнитосопротивление измерялось четырехконтактным методом на постоянном токе в электромагните при двух взаимно противоположных направлениях напряженности магнитного поля и двух взаимно противоположных направлениях тока. Образцы для измерения магнитосопротивления имели форму параллелепипеда размером 6 × 0.5 × 0.5 мм³. Стабильность температуры при измерениях магнитосопротивления была не хуже 0.01 К.

Все измерения проводились в режиме нагрева.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

3.1. Магнитное упорядочение в монокристаллах $Fe_{1-x}Co_xGe_2$

Соединение FeGe₂ (пространственная группа I4/mcm) является металлическим магнетиком с двумя магнитными фазовыми переходами при температурах $T_1 \approx 260$ и $T_2 \approx 287$ К. В нем реализуется следующая последовательность магнитных структур: парамагнитная ($T > T_2$), несоизмеримая ($T_1 < T < T_2$), коллинеарная антиферромагнитная ($T < T_1$). В магнитоупорядоченном состоянии магнитные моменты расположены в базисной плоскости (001). Переход при $T = T_1$ первого рода, а при $T = T_2$ второго [6].

В настоящее время монокристаллы твердых растворов $Fe_{1-x}Co_xGe_2$ выращены только для малых значений x, не превышающих 0.05 [7]. Подробные данные о магнитных структурах, реализующихся в этих монокристаллах, отсутствуют. Однако известно, что при замещении атомов Fe атомами Co в $Fe_{0.95}Co_{0.05}Ge_2$ происходит понижение температуры магнитных фазовых переходов на 20–30 K [8]. В указанном твердом растворе, по-видимому, реализуется такая же последовательность магнитных структур, как и в FeGe₂. Подтверждением этого предположения служат исследования кривых намагничивания, проведенные в [9], где показано, что при низких температурах соединение Fe_{0.95}Co_{0.05}Ge₂, как и FeGe₂, обладает коллинеарной антиферромагнитной структурой с осями антиферромагнетизма, ориентированными вдоль осей типа [110].

При замещении железа кобальтом возрастает дефектность кристаллов. Об этом можно судить по уменьшению отношения $\rho_{293 \text{ K}}/\rho_{4.2 \text{ K}}$, где ρ — сопротивление при указанной температуре. Согласно [10], при увеличении концентрации кобальта x от 0.001 до 0.05 значение $\rho_{293}/\rho_{4.2}$ уменьшается от 40–50 до 4–6. Кроме того, в работе [9] на основе детального изучения полевых зависимостей обратимой и необратимой восприимчивостей Fe_{0.95}Co_{0.05}Ge₂ показано, что легирование кобальтом приводит к возрастанию неоднородностей как кристаллической, так и магнитной структур.

Итак, можно ожидать, что в твердом растворе Fe_{0.95}Co_{0.05}Ge₂, как и в FeGe₂, имеется фазовый переход первого рода, «ширина» которого существенно больше.

На рис. 1 приведена температурная зависимость восприимчивости монокристаллического образца $Fe_{0.95}Co_{0.05}Ge_2$ в поле H = 10 кЭ, приложенном вдоль оси [110]. Видно, что в интервале температур от 240 до 250 К происходит значительное уменьшение восприимчивости. При дальнейшем возрастании температуры при T = 270 К

Рис. 1. Температурная зависимость восприимчивости монокристалла $Fe_{0.95}Co_{0.05}Ge_2$ в поле $H = 10 \text{ к}\Im$ (**H** || [110]), на вставке — производная восприимчивости по температуре

Рис. 2. Температурная зависимость продольного магнитосопротивления монокристалла $Fe_{0.95}Co_{0.05}Ge_2$ в поле H = 15 кЭ (H || j || [110])

имеется слабовыраженный максимум. Исходя из вышеизложенного заключаем, что в исследованном образце $Fe_{0.95}Co_{0.05}Ge_2$ имеются два фазовых перехода: первого рода, «размытый» в области температур от 240 К до 250 К, и второго рода при $T_2 = 270$ К.

3.2. Электро- и магнитосопротивление Fe0.95Co0.05Ge2

На рис. 2 приведена кривая температурной зависимости продольного (Н || j) магнитосопротивления

$$\frac{\Delta \rho}{\rho_0} = \frac{\rho_H - \rho_0}{\rho_0}$$

 $(\rho_H - \text{сопротивление в магнитном поле})$ в поле $H = 15 \text{ к}\Im$ при ориентации вектора плотности тока ј вдоль оси [110]. Видно, что с повышением температуры значение $\Delta \rho / \rho_0$ плавно уменьшается, однако в интервале температур 240–250 К имеются особенности.

На рис. З зависимость $\Delta \rho / \rho_0$ от T в этом температурном интервале показана более подробно. На кривой хорошо видны три пика положительного магнитосопротивления при температурах 242, 243.8 и 245.8 К, причем первый из пиков выражен слабее двух других.

При более высоких температурах магнитосопротивление очень мало и практически не зависит от температуры.

На вставке рис. 4 приведена кривая температурной зависимости электросопротивления ρ_0 для случая **j** || [110] в температурном интервале, в котором наблюдаются особенности магнитосопротивления. На первый взгляд, $\rho_0(T)$ есть возрастающая функция, не имеющая каких-либо особенностей. Однако на кривой $d\rho_0/dT$ (рис. 4) при тех температурах, при которых наблюдаются пики магнитосопротивления, имеются минимумы, причем левый является наименее выраженным.

Заметного температурного гистерезиса электросопротивления не обнаружено.

Рис. 4. Температурная зависимость $d\rho_0/dT$ и электросопротивления ρ_0 (вставка) монокристалла Fe_{0.95}Co_{0.05}Ge₂ для случая j || [110]

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Необычность полученных результатов состоит прежде всего в том, что в области фазового перехода наложение магнитного поля приводит не к уменьшению сопротивления, обусловленному подавлением флуктуаций в магнитной подсистеме кристалла, а наоборот, к росту сопротивления, т.е. к усилению рассеяния носителей тока. Ниже приводятся соображения, позволяющие понять причины появления пиков магнитосопротивления, число пиков и корреляцию между магнитосопротивлением и температурным коэффициентом сопротивления.

Рассмотрим область фазового перехода. Предположим, что образец состоит из микрообластей, каждая из которых характеризуется своим значением температуры перехода T_c ; иными словами, задана функция $T_c(\mathbf{r})$, где вектор **r** меняется в пределах образца. Будем считать переход узким, что означает малость ширины перехода δ_c по сравнению со средним значением температуры перехода \overline{T}_c . Предположим, что в области фазового перехода электросопротивление образца ρ_0 можно представить в виде суммы двух слагаемых, первое из которых (некритическое) зависит только от T: $\rho_0^{nc} = \rho_0^{nc}(T)$, а второе (критическое) является функционалом от $T - T_c(\mathbf{r})$: $\rho_0^c = F_0 \{T - T_c(\mathbf{r})\}$ (для простоты записи мы опускаем тензорные значки). В магнитном поле сопротивление зависит от H, во-первых, явным образом (например, благодаря изменению вероятности рассеяния) и, во-вторых, из-за сдвига значений $T_c(\mathbf{r})$: $T_c(\mathbf{r}, H) = T_c(\mathbf{r}) + \Delta T_c(\mathbf{r}, H)$. Для критической части сопротивления можно написать $\rho_H^c = F_H \{T - T_c(\mathbf{r}) - \Delta T_c(\mathbf{r}, H)\}$, где F_H — соответствующий функционал. Если $\Delta T_c \ll \delta_c$, то можно считать $\Delta T_c(\mathbf{r}, H) \approx \Delta \overline{T}_c(H)$, поскольку вариация ΔT_c при изменении г должна быть величиной следующего порядка малости. Легко видеть, что в этом случае $\rho_H^c(T) = \tilde{\rho}_H(T - \Delta \overline{T}_c(H))$, где $\tilde{\rho}_H = F_H \{T - T_c(\mathbf{r})\}$. Учитывая малость $\Delta \overline{T}_c(H)$, для магнитосопротивления $\Delta \rho / \rho_0$ получаем

$$\frac{\Delta\rho}{\rho_0} = \frac{\Delta\rho^{nc}}{\rho_0} + \frac{\Delta\tilde{\rho}}{\rho_0} - \frac{1}{\rho_0} \frac{d\tilde{\rho}_H}{dT} \,\Delta\overline{T}_c(H),\tag{1}$$

где $\Delta \rho^{nc}/\rho_0 = (\rho_H^{nc} - \rho_0^{nc})/\rho_0$, $\Delta \tilde{\rho}/\rho_0 = (\tilde{\rho}_H - \rho_0^c)\rho_0$. Поскольку $\rho_0^{nc}(T)$ не имеет особенностей в области перехода, а ρ_0^c и $\tilde{\rho}_H$ зависят от одного и того же функционального аргумента $T - T_c(\mathbf{r})$, в достаточно слабых магнитных полях особенности производной $d\tilde{\rho}_H/dT$ (если они есть) должны наблюдаться при тех же значениях T, что и особенности $d\rho_0/dT$.

Подчеркнем, что корреляция между магнитосопротивлением и температурным коэффициентом сопротивления существует только при $\Delta T_c \ll \delta_c$.

Применим изложенные соображения к анализу процессов при фазовом переходе первого рода в Fe_{0.95}Co_{0.05}Ge₂, происходящем вблизи $\overline{T}_1 = 245$ K в интервале температур 240–250 K. В FeGe₂ величина $\Delta \overline{T}_1(H)$ положительна [10]. Это должно быть верно и для Fe_{0.95}Co_{0.05}Ge₂, поскольку в рассматриваемых материалах большей восприимчивостью обладает низкотемпературная фаза (см. рис. 1), а магнитное поле способствует расширению области существования фазы с большей (при фиксированном H) намагниченностью благодаря большему выигрышу в зеемановской энергии. В FeGe₂ в поле H = 15 кЭ сдвиг температуры перехода составляет около 0.1 К. Следует ожидать, что $\Delta \overline{T}_1(H)$ и в Fe_{0.95}Co_{0.05}Ge₂ имеет тот же порядок величины. Поскольку ширина перехода δ_1 в Fe_{0.95}Co_{0.05}Ge₂ порядка 10 К (см. рис. 1), неравенство $\Delta T_1 \ll \delta_1$ хорошо выполняется. Следовательно, положение максимумов $\Delta \rho / \rho_0$ должно совпадать с положением минимумов $d\rho_0/dT$, что и наблюдается в эксперименте.

Чтобы понять происхождение особенностей в производной $d\rho_0/dT$, рассмотрим процессы, происходящие внутри области перехода при изменении температуры. Обозначим

$$T_{min} = \min \left[T_1(\mathbf{r}) \right], \quad T_{max} = \max \left[T_1(\mathbf{r}) \right] = T_{min} + \delta_1.$$

При $T < T_{min}$ весь образец находится в низкотемпературной фазе. Если температура начинает превышать T_{min} , появляются «капли» высокотемпературной фазы. Относительный объем v высокотемпературной фазы дается интегралом от функции распределения температур перехода:

$$v = \int_{T_{min}}^{T} W(T_1) dT_1.$$
⁽²⁾

При $T = T^{(1)}$ значение v достигает критического значения v_c , и образуется односвязная область высокотемпературной фазы, пронизывающая весь образец, т. е. происходит своеобразный перколяционный переход. При температурах $T_{min} < T^{(1)} < T < T^{(2)} < T_{max}$ сосуществуют односвязные области низко- и высокотемпературной фаз. Распад односвязной области низкотемпературной фазы на отдельные кластеры (второй перколяционный переход) происходит при $T = T^{(2)}$. Дальнейший рост температуры ведет к уменьшению объема области, занятой низкотемпературной фазой, и при $T > T_{max}$ весь образец находится в высокотемпературной фазе.

Ниже нам понадобится информация о температурной зависимости площади S поверхности раздела фаз (в расчете на единицу объема). По-видимому, связь между vи S специально до сих пор не изучалась, поэтому придется использовать простейшие соображения качественного характера. При $T < T_{min}$ имеем S = 0. Если температура начинает превышать T_{min} , площадь поверхности раздела растет. Вблизи $T = T^{(1)}$ происходит интенсивное слияние отдельных капель, что, по-видимому, приводит к резкому

Рис. 5. Неоднородная часть электросопротивления монокристалла Fe_{0.95}Co_{0.05}Ge₂ внутри области магнитного фазового перехода

уменьшению площади поверхности раздела фаз. Резкий рост S(T), вызванный распадом бесконечного кластера низкотемпературной фазы, должен иметь место вблизи температуры $T^{(2)}$, после чего величина S должна уменьшаться и при $T = T_{max}$ обращаться в нуль. Таким образом, можно ожидать, что график функции S(T) при $T_{min} < T < T_{max}$ представляет собой двугорбую кривую.

Сопротивление образца определяется сопротивлением однородных фаз, распределением кластеров в образце и рассеянием носителей тока на границах кластеров. Для простоты будем считать, что при одинаковой температуре сопротивления фаз одинаковы. Тогда можно написать

$$\rho_0 = \rho_h + \rho_{inh},\tag{3}$$

где первое слагаемое в правой части есть сопротивление образца в магнитооднородном состоянии, а ρ_{inh} обусловлено рассеянием на границах кластеров. Очевидно, в рассматриваемой упрощенной модели критическое сопротивление ρ_0^c сводится к ρ_{inh} . В качестве грубого приближения можно принять, что сопротивление ρ_{inh} пропорционально S. Тогда из сказанного выше следует, что $\rho_{inh}(T)$ обращается в нуль вне интервала (T_{min}, T_{max}) , а внутри него имеет два максимума. Очевидно, что если при достаточно большой величине $d\rho_{inh}(T)/dT$ производная $d\rho_h/dT$ является возрастающей функцией, то $d\rho_0/dT$ имеет два максимума и два минимума, а если $d\rho_h/dT$ — убывающая функция, то $d\rho_0/dT$ имеет три максимума и три минимума: один минимум вблизи T_{min} , второй — при значении T, немного большем $T^{(1)}$, далее при $T \approx T^{(2)}$ имеется максимум, а вслед за ним располагается третий минимум. Изложенные соображения показывают, что значения температур перколяционных переходов можно оценить по положению экстремумов производной $d\rho_0/dT$ или по положению экстремумов температурной зависимости магнитосопротивления.

Вне области перехода $\rho_h = \rho_0$. Как видно из рис. 4, $\rho_0(T)$ в Fe_{0.95}Co_{0.05}Ge₂ — монотонно возрастающая выпуклая вверх функция, поэтому можно заключить, что $d\rho_h/dT$ уменьшается с ростом T, вследствие чего производная $d\rho_0/dT$ должна иметь три минимума, что и наблюдается.

Чтобы составить представление о $\rho_{inh}(T)$, мы аппроксимировали зависимость $\rho_0(T)$ в температурных интервалах $237 \le T \le 241$ К и $248 \le T \le 252$ К единым полиномом четвертого порядка $\rho_h^{fit}(T)$. Далее мы приняли, что $\rho_h^{fit}(T)$ служит хорошим приближением для $\rho_h(T)$ для всех температур T в интервале от 237 до 252 К, после чего вычислили разность между $\rho_0(T)$ и $\rho_h^{fit}(T)$, которая аппроксимирует $\rho_{inh}(T)$. Результат представлен на рис. 5. Значения ρ_{inh} отличны от нуля внутри интервала 241–247 К. На кривой $\rho_{inh}(T)$ имеются два максимума: при T = 243.2 К и T = 245 К.

Полученная кривая $\rho_{inh}(T)$ имеет все особенности, которые вытекают из предложенной модели. Следовательно, по данным электрических измерений область перехода в исследованном образце Fe_{0.95}Co_{0.05}Ge₂ простирается от 241 K до 247 K, а для температур $T^{(1)}$ и $T^{(2)}$ можно принять значения, соответствующие положениям центрального пика магнитосопротивления и минимума между центральным и правым пиками, т.е. 244 K и 245 K соответственно.

Образование и распад бесконечных кластеров должны сказываться не только на сопротивлении, но и на магнитной восприимчивости, поскольку при слиянии мелких капель в одну большую односвязную область, пронизывающую весь образец, скачком меняется число магнитных моментов, принадлежащих поверхности раздела фаз. Считая, что вклад поверхности раздела фаз в среднюю намагниченность *m* образца пропорционален площади этой поверхности, можно написать

$$m = m_{ht}v + m_{lt}(1 - v) + \alpha S, \tag{4}$$

где m_{ht} — намагниченность высокотемпературной фазы, m_{lt} — низкотемпературной, α — коэффициент, который внутри области перехода можно считать постоянным, как и m_{ht} и m_{lt} . Из (2) и (4) получаем

$$\frac{dm}{dT} = (m_{ht} - m_{lt})W(T) + \alpha \frac{dS}{dT}.$$
(5)

Поскольку в Fe_{0.95}Co_{0.05}Ge₂ $m_{ht} < m_{lt}$, а кривая W(T) имеет обычно куполообразную форму, можно ожидать, что график производной dm/dT внутри области перехода представляет собой кривую с широким минимумом, на которую накладывается «гребенка» функции dS/dT.

Как видно из вставки рис. 1, кривая $d\chi/dT$ имеет как раз такой вид. На ней имеются два минимума. Температуры, при которых расположены первый минимум (T = 243 K) и следующий за ним максимум (при T = 244-245 K) почти равны значениям $T^{(1)}$ и $T^{(2)}$, определенным из данных по магнитосопротивлению. Минимум на кривой у левого края перехода отсутствует, что обусловлено резким ростом W(T) в этой области.

Заметим, что размытие перехода согласно результатам магнитных измерений оказывается почти в два раза большим, чем по данным электрических измерений. Скорее всего, это связано с тем, что величина магнитного момента образца более чувствительна к наличию малых кластеров другой фазы, чем значение сопротивления, поскольку магнитные восприимчивости фаз в Fe_{0.95}Co_{0.05}Ge₂ заметно различаются.

5. ЗАКЛЮЧЕНИЕ

Итак, в монокристалле $Fe_{0.95}Co_{0.05}Ge_2$ в области размытия магнитного фазового перехода первого рода нами обнаружены три пика положительного магнитосопротивления на кривой зависимости $\Delta \rho / \rho_0$ от T, экстремумы на температурных зависимостях производных по температуре от электросопротивления и магнитной восприимчивости. Установлена корреляция между этими особенностями. Анализ полученных результатов показывает, что наличие пиков положительного магнитосопротивления, как и наличие особенностей температурных зависимостей $d\rho_0/dT$ и $d\chi/dT$, является, по-видимому, своеобразным следствием «размытия» перехода. Последнее обстоятельство приводит к возникновению внутри области фазового перехода кластеров низко- и высокотемпературных фаз. При изменении температуры в системе кластеров имеют место два своеобразных перколяционных перехода. Площадь границ кластеров при этих переходах резко меняется, что, по-видимому, обусловливает наличие вышеуказанных особенностей на температурных зависимостях $d\rho_0/dT$ и $d\chi/dT$ и появление пиков на температурной зависимости магнитосопротивления.

Проведенный анализ причин изменения сопротивления и намагниченности в области «размытых» фазовых переходов является весьма общим и не связан с конкретными особенностями изученного монокристалла.

Литература

1. P. G. de Gennes and J. Friedel, J. Phys. Chem. Sol. 4, 71 (1958).

- 2. S. Alexander, J. S. Helman, and I. Balberg, Phys. Rev. B 13, 304 (1976).
- 3. I. Balberg and J. S. Helman, Phys. Rev. B 18, 303 (1978).
- 4. К. Б. Власов, Е. А. Розенберг, А. Г. Титова, Ю. М. Яковлев, ФТТ 24, 1338 (1982).
- 5. Э. Л. Нагаев, Физика магнитных полупроводников, Наука, Москва (1979), с. 344-368.
- 6. Р. И. Зайнуллина, К. Б. Власов, Н. Г. Бебенин, В. В. Устинов, ФТТ 38, 2831 (1996).
- 7. Т. И. Папушина, А. А. Фролов, Неорганические материалы, 28, 608 (1984)
- 8. И. И. Пиратинская, Г. П. Зиновьева, А. В. Михельсон, Р. П. Кренцис, Физика металлов и их соединений, УрГУ, Свердловск (1978), вып. 6, с. 67.
- 9. К. Б. Власов, Р. И. Зайнуллина, М. А. Миляев, ФММ 75, 65 (1993).
- 10. К. Б. Власов, Р. И. Зайнуллина, В. Н. Сыромятников, ФММ 61, 1219 (1986).