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The cross section of the inelastic light scattering by electron-hole plasma in metals is studied.
The Coulomb interaction of electron excitations is taken into account selfconsistently. The system
of Boltzmann’s equation for electronic fluctuations and Maxwell’s equations for the interaction
field is solved. Raman spectra consist of the electron-hole background, diffuson and plasmon
resonances. The widths of this background and resonance are determined by the electron collision
rate as well as by the decay of the incident and scattered radiation in metal. The line shape depends
on the screening of the electron-light interaction, i.e., on the incident radiation frequency.

1. INTRODUCTION

In recent times the inelastic light scattering has attracted considerable attention because
of a puzzle of the high temperature superconductivity [1-5]. Also synchrotron sources of
radiation [6; 7] with high resolution have led to an advance in experimental investigations of
electronic excitations in solids and liquids. Light scattering experiments permit to obtain the
detailed information on various elementary excitations: phonons [8], plasmons [9,10] and
magnons [11]. The influence of transition into superconducting state on the Raman light
scattering was firstly studied theoretically in Ref. [12] and recently for the synchrotron radiation
frequency [13].

The Raman spectra present a very complex picture and attention to their subtle aspects was
paid only recently. In particular, lately it has been discovered that the interaction of the phonon
resonances with the electron-hole continuum leads to characteristic changes in the shape of the
resonance line [14-16]. The resonance line acquires the Fano resonance line shape also known
as the Breit-Wigner resonance in nuclear physics. The second example, where the resonance
peak has a specific shape, is the two-magnon resonance in which two magnons are involved
in the electron transition through a gap [17].

The inelastic light scattering by normal metals has not yet been studied experimentally in
such a detailed manner as that by superconductors. We would like to concentrate on an effect
which has already been noticed [18], but not investigated in details: the influence of the spatial
distribution of the incident and scattered light in a metal on the resonance line shape. Up to
now in investigations of Raman scattering, the solid state is treated as a nonabsorbent substance,
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Fig. 1. Feynman diagrams depicting the two contributions to Raman scattering in metals. (a) The

electron-hole contribution; () the contribution of electromagnetic excitation (plasmon, the dotted line)

in electron-hole plasma. Here the solid line is the electron Green’s function, the wavy line the incident

and scattered light. The black dots are vertices describing the electron interaction with the incident
and scattered light. The Coulomb interaction is represented by an empty vertex

where the incident and scattered light possess well defined wave vectors. The existence of
imaginary parts of the wave vector leads to changing of the line shape. This effect should
be considered as competitive to the Fano resonance.

In this paper we study the influence of the above mentioned field decay in a metal on
resonance with the plasmon excitation. The interaction between plasmon resonance and the
electron-hole excitations is taken into account. In Fig. 1 the effect of the electron-hole
excitations is represented by a loop. The electron-hole excitations are shown in Fig. 1a. This
diagram describes a continuum with a width depending on the collision rate. In the «dirty» limit
the diagram involves a diffuson pole. The diagram 15, where the electromagnetic interaction
is shown by the dotted line, has a narrow plasmon pole at the electron plasma frequency wy.
It will be shown, that the influence of the electron loop leads to asymmetry of the plasmon
resonance (Fano effect). Two contributions shown in Fig. 1 should be integrated with the factor
[Ur, t)]* = |A® A®|? having the width determined by the spatial damping of incident (i) and
scattered (s) light.

The Raman cross section is expressed in terms of a linear response of the electron system
with the Coulomb interaction to the external field U (r, t). We solve selfconsistently Boltzmann’s
equation for electronic fluctuations and Maxwell’s equations for the interaction field.

For applicability of Boltzmanh’s equation the following conditions should be fulfilled:

k] = (kO — k9| < kp, || = [w? — | < e,

where kp and ¢z are the Fermi momentum and energy?. The first condition allows an
analytical expression to be found for the distribution function of charge carriers. We are
interested in small values of |w| and |w| ~ wy. In the latter case the condition e? /v < 1 should
be fulfilled, where v is the Fermi velocity. A justified method is not known for an evaluation
of the response function for an arbitrary e?/Av, but permittivity calculated by Boltzmann’s
equation coincides with Lindhard’s expression obtained in the limit |k| <« ks and for arbitrary
values of |w|. Therefore we use the kinetic equation and write it in the r-approximation. The
T-approximation can be well founded for elastic scattering processes [19,20]. An attempt
to include the inelastic scattering by phonons has been made in {21], where the response
function was obtained by Green functions method. Strictly speaking, the collision rate 7
for large frequency transfer (jw| =~ wy) depends on w and is determined by the electron-
electron collisions. The long wave part of the Coulomb interaction is taken into account in a

" We put h and Boltzman’s constant equal to 1 except the final expressions.
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self-consistent way (Vlasov-Landau approximation; for the scattering problem, se¢ Ref. [18]).
Contributions of the local field will be disregarded.

2. INELASTIC LIGHT SCATTERING AND SUSCEPTIBILITY

We consider light scattering by a metal, which lies in the half-space z > 0. The Raman
cross section has the form

8re? )‘* (kg ,w) KW dw®)da® 0

do(k,,w) = - ,
ke, ) <mchw(“ - exp(—hw/kgT)  c(n)

where the density-density correlation function Z(k,,w) contains the bulk and surface
contributions [18]. Here we are interested in the bulk part only. Then we can use the even
continuation of all the fields in the semi-space > < 0 and take the Fourier transform with respect
to coordinates. The correlator (k. ,w) is expressed in terms of the generalized susceptibility

x(k, w):

ke, = = [SEUK W) Imx(h, o) @)
The generalized susceptibility y(k, w) in the field U(k,w) is defined as follows

2d%
(2ry?

7 (B) frk,w) = —x(k W)UK, w), 3)

where f,(r,t) is the electron distribution function with a specular boundary condition at z = 0.
The field U(r, t) considered below as the external force is the product of the vector potentials
of the incident A®(r, t) and scattered A (r, t) light

AD(r, HAS(r, t) ~ U(r, t) = Uk, w) exp [i(k,s — wi)],

where k, = k{) k(). Here the subscript s denotes the vector components parallel to the surface.
For the unbounded space e”, e*) are the polarization vectors of the incident and scattered
fields, respectively, and they are included in the vertex function v(p). For a half space the
polarization vectors e, e/ are determined by the solution of the eléctrodynamic problem
(for details see, Refs. [18,20]). The vertex function +(p) contains resonance denominators
appearing in the second order of the perturbation theory with respect to A%, A®. The Fourier
transform of the field U(r, t) is given by
_ _ug
Uk,w) oo 4

where complex { = (; + i(; is the sum of the normal components of the wave vector of the
incident and scattered light in the metal.
The electron distribution function f,(r, ) is searched in the form

Fol6, )= fo @, = W)+ 2 6£,1,),
£o
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where fy(e(p,r,t) —p) is the Fermi-Dirac distribution function depending on the local electron
spectrum

e(p,r,t) = eo(@) T YU, 2).
The nonequilibrium part of the electron distribution function is ruled by Boltzmann’s equation:
—i(w — kv) §fplk,w) = [iwy(D)U (k, w) — evE(k, w)] — v(6 fo(k,w) — (6 fo(k,w))),  (5)
where v is the collision rate and angle the brackets denote averaging over the Fermi surface

L [2ds . _ [ S
n ) @npo @)’

() =
nyg is the density of electron states; we assume 7' < €p.

The electric field E(k,w) describes the electron-electron Coulomb interaction and is
determined by the Maxwell equation

2 4 .
rot rot E(r, w) — ‘:—ZD(r, w) = %j(r,w) (6)
with

Da(k,(.U) = egﬁEﬁ(ka (.U),

243 ’
ikw) = e / j—ﬂfl—v 55,k w), )

where €, ; is the dielectric constant of the filled bands.
Substituting the solution of Boltzman’s equation (5) into Eq. (7) we obtain:

Ja(k,w) = 04p(k,w)Egk,w) + TPk, w)U(k,w), (3)
where
oap(k,w) = ie’ng <;a_ﬁ£v> , ﬁ:)(k, w) = ewny <Zaj(£‘),> ,
- iv(v/(@ = kv)) =N iv{v(p)/ (@ — kv))
Yt ey @O TG Ty
w=wtiv.

The solutions of Maxwell’s equation (6), (7) has the form

i
Eakw)= 22

Uk @) Dk, ) k) ©)

with the matrix

2 _ -1
Dopk,w) = (kzéaﬁ —kokg — t—zfaﬂ(k, w)> ,
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where €,4(k, w) is related to the conductivity tensor
o 4
€apk,w) =€gp t+ Taag(k,w). (10)

Using the solution of Boltzmann’s equation (5) and Maxwell’s equation (9) we obtain the
generalized susceptibility (3)

- x(k,w) = wny <1;}£9_)$’E(vp—)> - icsz*g"(k, W) D o3k, )T (kw), (11)

where

=~~*) (= 'ﬁa'}/*(p)
)k, w) ewn0< o > .

For normal propagation of the incident and scattered waves (k = k, = k) the expressi-
on (11) reads

th=wm<¢@wm>+ ) ()T ). a2

@ — kv, wle,, (k,w)
Substituting (12) into (2) we obtain
E(ka: = 07 w) = 2:l(O)w) + Z2(05 (.U),

where (0, w) is the contribution of the first term in (12) related to the excitation of electron-
hole pairs and Z,(0,w) exhibits the plasmon resonance connected to ¢,,(k,w). These two
contributions are shown in Fig. 1; the loops correspond to I',(k,w) and the dotted line to
€2:(k,w).

3. LARGE AND LOW SPATIAL DISPERSION

Let us consider two important limiting cases.
() Large k-limit: kv > |@|.

Since ( — Yz = —1— + iwﬂ(é(,u)/ v}, with u = cos(k, v), we obtain the susceptibility (12)
@ — kv, k k?
in the form
TNYW
xtk,w) = == (1@ = (Y@)*8(w)/v), (13)

Eq. (13) describes the screening of light scattering by the Coulomb electron—electron
interaction [22]. This means that in the frequency range w ~ wv|{| < wp up to the plasma
frequency wy the density fluctuations are screened due to the Coulomb electron-electron
interaction.

(#) Low k-limit: kv < |&].
All integrands in x (12) we expand in power series with respect to kv/|w|. The second term
in (12) is proportional to k2. In the leading approximation the first term gives
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Xk — 0,w) = ’_‘”_“{ ((1 @) + ——(Z%EJFH"/(D)HZ) , 14

We retain in the denominator (the diffuson pole) the term proportional to k2, since it is essential
at low w ~ kX (v2) /v < v.
If we left out of considerations the frequency range near the diffuson pole, we obtain

x(k,w) = x(k = 0,w) + éx(k,w),

where the first term results only from the electron-hole excitations

— Imx(k = 0,w) = ne(|7P) — (YN} —= (15)

2‘.,/2

This frequency dependence of the cross section has been obtained in [19,23]. The first term
in Eq. (12) gives also a contribution proportional to k2

Xl(kyw) = X(O,QJ) + 6X1(k,£d),

dx1(k,w) = [( 2y - 2<v2>1<v(p> 12+—( (p)><v<p>v2>+cc>} (16)

The second term in Eq. (12) has the resonance form:

. ‘ , .
xa(k, w) = ({;‘Z;”—4“§(,€—) <v§ (’y(p) + %(v(p)))) <v§ ('r‘(p) + %(v*(p»» , a7

where
SPwe, (k,w) = D (PPw — wid® — wiu’k® — v (VK fw)
the electron plasma frequency wi = 4we? no( 2)/€%,, and the dispersion parameter u? =
= {v3)/(v2).
The equation ¢,.(k,w) = 0 gives frequency and damping (including its dispersion) of
plasmon w = wy(k) — iT(k), where
wp(k) = wy + 'k, TkR) = v [1+ (v’ = (7)) K/wi] /2.

Below we will omit the small dispersion of damping.
The terms proportional to k2 (16) and (17) can be written as follows

ox(k,w) =

1| (vﬁ‘y(p)) [’k? [Cw 4 wwi — VPOC; + 2ivwiC,
(v o ? A ’

where A = &*w — Q2w — Wik,

_ @ ®F) o _ G @) ®) tee) o @)
vene - 2[{(v27 (M) C T T

Now we are in a position to calculate the cross section.

(18)
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Fig. 2. Diffuson resonance and relaxation
maximum at different values of parameters
given in the text. In the curve (d) the
relaxation maximum is absent for the complete
screening. (), (¢) The screening is partial, the
mean free length for () is larger than for {c).
The curve (a) represents the Raman spectrum
without the diffuson resonance (see, Eq. (23))

04
0.3
0.2
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4. LIGHT SCATTERING CROSS SECTION

In the «clean» limit |w +iv| < v|¢| one obtains the cross section by substituting Eg. (13)
into (2). For a more interesting case, (; > (, we get

Z(k: = 0,w) = mngw {|7(P) — (Y@)26()/v) (——- In vj + _(_}6) . (19)

In this case £(0,w) has a maximum at w =~ v().

In the «dirty» limit ¥ >> v](], there are two regions: the low and large frequency transfers.
For the case of low frequency transfer |w| < v, we obtain the cross section by substituting (14)
into (2). If {{ >» (;, we can mtegmte only {U}?, taking the smooth function Im x{k,w) at

k=( e

, B OO < S M
k= ol £ ) = = (o) - S ieiE) . e

This expression has two maxima (see Fig. 2). One at |w| =~ (}{v?)/v < v describes the
diffuson excitations. Another at |w| = v is resulted from relaxation processes in the electron
system. The relaxation maximum is absent (curve (d)), if (|Y(p)|*) = |{(7(p))]>. We define this
case as the complete screening limit. For Jw| 3> ¢ {v?)!/? Eq. (20) transforms (see, curve (a))
to Eq. (23) obtained first by Zawadowski and Cardona [23]. The following sets of parameters
w = |[{(v@Y /7)), v = (02)¢2/v?) is used in Fig. 2: (@) w = 0.5, vy = 0; (b)) w=
=10.5, vy = 0.04; (¢) w = 0.5, vy = 0.02; (d) w = 1.0, vy = 0.02. The units of (0, w) are
no{|v()?)/ G

For the large frequency transfer (w] > v, we find the cross section using (15), (18). One
can obtain a simple form in the limit «?¢} < vwy, where the spatial dispersion of plasmon can
be disregarded. Making use of the integrals

dk, , 1 [dk
/'Z*;IU(R,WH o /2

20, w) = 5,(0,w) + 65(0,w), (22)

w)l2k2=g- Q1)
’ R

we obtain
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%0,0) Fig. 3. Theoretical prediction of Raman
spectra for normally incident and scattered
light. The background is the electron-
0.5¢ hole continuum with large collision rate.
The resonance corresponds to the excitation
of plasmon with low spatial dispersion.

< The Coulomb screening of electron density

— — / ’ \& fluctuations is complete for the curve (a),

a7 ¥ and partial for (¢). The curves (b) and (¢) are

0 02 04 06 08 10 12 14 shifted along the abscissa. The parameters
/o, are defined in the text

W

2,0,0) = na(17® ~ YO oy

wi [4w(w? = v?) — wd(Bw? — v?)]

no| (y()v2)*Grw ((3(;)2 -0 + -

(v2)((w? + v2)3

@) 260 — 2w = vACs + 2w = 1) = wh) — 2] c;)

62(07(4)) = (wz _ wg)z + wzyz

(w? — wd)? + wh?

(23)

(24)

The frequency dependence of the cross section (22) is shown in Fig. 3 for various values of
parameters: C, = C3 = 1, u?¢?/w? = 0.04, v/wy; =0.08, and (a) C; =1,z =0, (b) C, =2,
=02, (c) C, =2, z =04, where = u*(|7(p) — (v(P))|*)(v2)/|{y(P)v?)|*. The units of

(0, w) are nol{y(P)v3)|*/ G2 (v )u’.

There is a wide background in the range v < |w| < wy even for a weak p-dependence ~(p)

when

(Iv®) = (Y®))?) = 0.2(v(p))|*.

The resonance line shape is asymmetric if the coefficient C, differs markedly from unity: the
resonance curve drops more rapidly at the side |w| > wy. Let us note that the parameters v(p),
¢1 and (; depend on frequencies of the incident and scattered light, and v is a function of w.
All these dependencies can be disregarded near the plasmon resonance, but they modify the

form of the background.
To take into account the spatial dispersion of plasmons we calculate the integral

"dk K2 G ( (1 — ky, signw
—zUk,w2 2 =2 P =
/ 2T | ( ) kg — k:%, 2(> (12 - k:f, + 2i(,1 (>

where the terms of the order ¢(3/¢} are omitted and k2 = (a + ib)/u’w§,

+ (kp’ CZ - = k}H - CZ)) )

a= (W —vH)w? - wg) -2, b=ww [2((.@2 — w(z,) +w?— 1/2] .

Using (2) and (18) we obtain instead of (24) the contribution

650, w) = nol{(y(P2)*¢ [2wv(3w2_u2)ClCl+ (( wiw? —u203> Pikp, &) +

202G @ 7
2
+ vw (u% - 202) Zikp, Q) + (kp, @ — — ki, — Cz))] )
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2(0,w)
2.5¢

Fig. 4. Plasmon resonance in light scattering
2.0{ for crossover of damping (curve (b) v /wo =

=0.0115); (a) plasmon damping is larger

than the field damping (v/wo = 0.02);

(¢) v/wy = 0.006; v is the electron collision
rate, wy — the plasma frequency

1.5

where

Z\(ky, () = [(G — kisignw) (a — v’wi(}) — (b= 2u*wi(i() kasignw] /Ay,
Laky, () = [(C1 — kisignw) (b — 2u*wiC1() + (a — wwiCl) kasignw] /4y,

A= (a— w22’ + (b - 202216, (26)

ky + ik, = k, with
12 1/2
k= (\/ a?+ b2+ a) /\/iuwo, k= (\/ a? + b2 — a) signw/\/iuwo.

For u?¢} < vw Eq. (25) coincides with (24). Expression (25) is valid if |w + iv| > v(;.

The position of a resonance is given by the condition a = u%w3¢?. It means that a plasmon
is excited with the wave vector equal to the double wave vector of the incident light (we consider
the back scattering geometry). The width of the resonance is determined by competition between
intrinsic plasmon damping b and decay of light (;. Usually the condition 2u2w§C 1& < |b| holds,
where the width of plasmon resonance is connected with the electron collision rate only (curve
(a) in Fig. 4).

The-resonance line has a critical behaviour ((b) in Fig. 4) when b ~ 2u?w?(,(, (see (26)).
In the case (c) the resonance width is conditioned by decay of the light {,. The parameter z
and the units of £(0,w) are defined as for Fig. 3 (see text after (24)), C;, = C3 =1, C, = 2,
w2 Jwi = 0.04, x = 0.2, 2¢; /¢ = 0.3.

5. CONCLUSIONS

In this paper we considered the effect of the electron collision rate and incident field decay
on inelastic light scattering in metals. Our method is based on the straightforward solution
of Bolztmann’s equation for electronic fluctuations and Maxwell’s equation for the electron—
electron interaction field. If the incident radiation frequency is not so large, the momentum
dependence of the electron-light interaction v(p) has to be taken into consideration. For the
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scattering geometry A, (incident and scattered light are polarized along z-axis and propagate
along z-axis)

|2

. ! lp/g” |p§n|2
v(p) = ePel) |1+ — - | .
m Z 6f(p) — €,(p) + w® Gf(p) - €n(p) — W' (27)

n

where the subscript f denotes the index of the band in which the carriers exist, the transitions
take place into any band n, pf.n is the electron momentum matrix element, m is the electron
mass, and for the semi-infinite metal [18] ¢! = (1 + \/em(w"'_)‘]i) 1

The electron-light interaction is screened by the Coulomb interaction as well as by electron—
electron collisions. The smooth part of the Raman spectra (background) is determined by
the screened electron-light interaction. This part exists due to p-dependent second term in
bracket (27). The screening is not effective for the diffuson and plasmon resonances. For
complete screening there are only the plasmon resonance with symmetric line shape and the
asymmetric diffuson maximum. In an intermediate case, the wide electron-hole background
appears and the plasmon resonance has the asymmetric line shape. For low collision rate,
the width of the resonance depends on the decay of incident radiation. If the collision rate is
comparable with the decay of incident radiation, the plasmon resonance curve has non trivial
form. Let us emphasize, that the diffuson maxima and the plasmon resonance are located in
very different parts of spectrum. The collision rate v =~ 10° cm™!, according to the estimation
given in Ref. [16] for YBaCuO in the normal state and for the optic range of the incident
radiation. Then the diffusion maximum has to be observed at w ~ 10 cm™!,

In a layered system having a cylindrical Fermi surface with its axis perpendicular to the
surface of the sample, the plasmon peak resonance does not appear for incident light normal to
the surface, since v. = 0. However, if the incident light falls at the surface an angle different
from zero, the plasmon resonance peak should be observed.

In order to observe the peculiarity of plasmon resonance one needs a source of radiation
with frequency comparable to the interband electron energy and a good resolution.

The authors thank to A. R. Ferchmin for critical reading of the manuscript. One of us
(L. A. F.) is supported in the framework of INTAS contract 0101-CT93-0023.

References

I. M. Boekholt, M. Hoffman, and G. Guntherodt, Physica C 175, 127 (1991).

. F. Slakey, M. V. Klein, J. P. Rice, and D. M. Ginsberg, Phys. Rev. B 43, 3764 (1991).

. A_ A. Maksimov, A. V. Puchkov, . 1. Tartakovskii, V. B. Timofeev, D. Reznik, and M.V, Klein,

Solid State Commun. 81, 407 (1992). i

4. D. Reznik, M. V. Klein, W. C. Lee, D. M. Ginsberg, and S.-W. Cheong, Phys. Rev. B 46, 11 725
(1992).

5. T. P. Devereaux, D. Enzel, B. Stadlober, R. Hackl, D. H. Leach, and J. J. Neumeier, Phys. Rev.
Lett. 72, 396 (1994).

6. P. M. Platzman, E. D. Isaacs, H. Williams, P. Zschack, and G. E. Ice, Phys. Rev. B 46, 12943
€1992).

7. E. D. Isaacs, P. M. Platzman, P. Metcalf, and J. M. Honig, Phys. Rev. Lett. 76, 4211 (1996).

[V S

- 688



XBTD, 1997, 112, ewn. 2(8) Inelastic light scattering. . .

1.

12.

13.
14.
15.
16.
17.

18.
19.
20.
21
22

23.

. M. Born and K. Huang, Dynamical Theory of Crystal Lattice, Clarendon, Oxford (1954).
. D. Pines and P. Nozieres, The Theory of Quantum Liquids, Benjamin, New York (1966).
. P. M. Platzman and P. A. Wolff, Waves and Interactions in Solid State Plasmas, Academic Press,

New York (1973).

M. G. Cottam and D. J. Lockwood, Light Scattering in Magnetic Solids, Wiley & Sons, New York
(1986).

A. A. Abrikosov and L. A. Falkovsky, Zh. Eksp. Teor. Fiz. 40, 262 (1961) Sov. Phys. JETP 13, 179
(1961).

P. Johansson and M. Altarelli, Phys. Rev. B 53, 8726 (1996).

B. Friedl, C. Thomsen, and M. Cardona, Phys. Rev. Lett. 65, 915 (1990).

T. P. Devereaux, A. Virosztek, and A. Zawadowski, Phys. Rev. B 51, 505 (1995).

L. A. Falkovsky and S. Klama, Physica C 264, 1 (1996).

G. Blumberg, P. Abbamonte, M. V. Klein, W. C. Lee, D. M. Ginsberg, L. L. Miller, and A. Zibold,
Phys. Rev. B 53, 11930 (1996). )

L. A. Falkovsky and S. Klama, Phys. Rev. B 50, 5666 (1994).

L. A. Falkovsky, Zh. Eksp.Teor. Fiz. 103, 666 (1993) (JETP 76, 331 (1993)).

L. A. Falkovsky and E. G. Mishchenko, Phys. Rev. B 51, 7239 (1995).

V. N. Kostur, Z. Phys. B 89, 149 (1992).

A. A. Abrikosov and V. M. Genkin, Zh. Eksp. Teor. Fiz. 65, 842 (1973) (Sov. Phys. JETP 38, 417
(1974)).

A. Zawadowski and M. Cardona, Phys. Rev. B 42, 10732 (1990).

689



