ОСЦИЛЛЯЦИИ ТУННЕЛЬНОЙ ПРОВОДИМОСТИ В МАГНИТНОМ ПОЛЕ В СТРУКТУРАХ МЕТАЛЛ-ИЗОЛЯТОР-УЗКОЩЕЛЕВОЙ HgCdTe: ЭНЕРГЕТИЧЕСКИЙ СПЕКТР И СПИН-ОРБИТАЛЬНОЕ РАСЩЕПЛЕНИЕ 2D-СОСТОЯНИЙ

Г. М. Миньков, О. Э. Рут, А. В. Германенко

Институт физики и прикладной математики при Уральском университете 620083, Екатеринбург, Россия

Поступила в редакцию 12 июля 1996 г., после переработки 31 декабря 1996 г.

Исследованы осцилляции туннельной проводимости в магнитном поле структур узкощелевой p-HgCdTe-окисел-металл (Yb, Al). В туннельных структурах с Yb обнаружены два типа осцилляций туннельной проводимости. Первый связан с пересечениями уровнями Ландау 2D-состояний, локализованных в поверхностной квантовой яме полупроводника энергии равной $E_F + eV$ ($E_F \rightarrow$ энергия Ферми полупроводника, V -смещение), а второй — энергии равной E_F . Показано, что в исследованных структурах с асимметричной квантовой ямой наблюдается сильное спин-орбитальное расщепление спектра 2D-состояний. В туннельных структурах p-HgCdTe-окисел-Al поверхностный потенциал существенно меньше и наблюдаются осцилляции только первого типа. Показано, что в этих структурах существует лишь одно спиновое состояние 2D-носителей, а второе за счет сильного спин-орбитального взаимодействия оказывается вытолкнутым в непрерывный спектр. Для анализа экспериментальных результатов проведен расчет энергетического спектра 2D-состояний, локализованных в поверхностной квантовой яме в полупроводнике с кейновским законом дисперсии. Показано, что все экспериментальные результаты хорошо согласуются с расчетами. Обсуждаются особенности «кинематически связанных» состояний в асимметричной квантовой яме.

1. ВВЕДЕНИЕ

Туннелирование между электронными системами различной размерности: 2D - 3D [1-3], 2D - 2D [4,5] и т.д. привлекает в последние годы большое внимание. С одной стороны, этот интерес связан с перспективами развития нового поколения полупроводниковых наноструктур и приборов на их основе, использующих такие явления как резонансное туннелирование и кулоновская «блокада». С другой стороны, исследование туннельной проводимости, ее зависимости от напряжения, температуры, магнитного поля и других внешних воздействий дает уникальную возможность изучения деталей энергетического спектра носителей тока пониженной размерности [1,2], роли межэлектронного взаимодействия [6,7], особенностей туннельных процессов.

В настоящей работе исследован энергетический спектр 2D-состояний как занятых 2D-носителями тока, так и пустых, локализованных в поверхностной квантовой яме на границе узкощелевой *p*-HgCdTe-окисел. Особенностью 2D-состояний электронов в узкощелевых материалах является тот факт, что средняя энергия 2D-электронов уже при малой их концентрации становится порядка или больше ширины запрещенной зоны, т. е. взаимодействие ближайших зон является сильным (это значит, что волновая функ-

ция электронов является многокомпонентной), и при расчете спектра 2*D*-состояний это взаимодействие необходимо учитывать в первую очередь [8].

Другая особенность исследованных структур связана с тем, что поверхностная квантовая яма асимметрична. Это должно приводить к снятию спинового вырождения 2Dсостояний при отличном от нуля значении продольного квазиимпульса даже в отсутствие внешнего магнитного поля [9]. Это расщепление является следствием спин-орбитального взаимодействия как с плавной частью потенциала, так и с границей полупроводник — диэлектрик, и лишь использование многозонной модели энергетического спектра позволяет проанализировать оба этих вклада. Вообще говоря, сама кристаллическая решетка полупроводников A^3B^5 и A^2B^6 не имеет центра инверсии, что также должно приводить к снятию спинового вырождения [10, 11], однако в узкощелевых материалах расщепление спектра легких частиц (электронов или легких дырок) за счет этой асимметрии мало по сравнению с энергиями, доступными для экспериментальных исследований.

Основные экспериментальные результаты о спин-орбитальном расщеплении спектра 2D-состояний были получены в основном из исследований осцилляции Шубникова — де Гааза [12, 13], де Гааза — ван Альфена [14] и вольт-емкостной спектроскопии [15, 16]. Эти методы позволяют проводить измерения в широком диапазоне концентраций 2D-носителей, но дают информацию только о состояниях на уровне Ферми.

Метод туннельной спектроскопии в квантующем магнитном поле, использованный в данной работе, позволяет исследовать спектр 2*D*-состояний не только при энергии Ферми полупроводника (E_F), но и в широком диапазоне энергий как выше, так и ниже E_F . Возможности туннельной спектроскопии расширяются при использовании модифицированной методики, предложенной в [17].

Первые работы по исследованию 2*D*-состояний методом туннельной спектроскопии в квантующем магнитном поле были выполнены на *n*-InAs [18, 19]. В широком диапазоне смещений были исследованы осцилляции туннельной проводимости в магнитном поле, связанные с туннелированием в основную и возбужденные подзоны 2*D*-состояний, определены эффективные массы носителей в них, и их зависимости от энергии. Однако отношение спинового расщепления электронных состояний к орбитальному в InAs невелико ($\hbar\omega_c/g\mu_B B \approx 0.18$), и никаких связанных со спином эффектов в этих экспериментах обнаружено не было. Межзонное туннелирование в структурах металл — диэлектрик — полупроводник (InSb, InAs) с инверсионным слоем на поверхности было исследовано в работах [20, 21]. Авторы наблюдали участок отрицательного дифференциального сопротивления в этих структурах, осцилляции туннельной проводимости в магнитном поле. Однако и в этих работах, несмотря на то что в InSb отношение спинового расщепления электронных состояний к орбитальному близко к 0.5 ($\hbar\omega_c/g\mu_B B \approx 0.34$), никаких связанных со спином эффектов туннельной проводимости обнаружено не было.

В настоящей работе приведены результаты исследований осцилляций туннельной проводимости в туннельных структурах, изготовленных на полупроводнике с узкой запрещенной зоной *p*-HgCdTe. Показано, что в тех туннельных структурах, в которых существует сильный притягивающий электроны поверхностный потенциал, осцилляции туннельной проводимости в магнитном поле, перпендикулярном поверхности, связаны с туннелированием в размерно-квантованные состояния, локализованные в поверхностной квантовой яме. Показано, что асимметрия квантовой ямы приводит к сильному спин-орбитальному расщеплению спектра 2*D*-состояний, так что в некото-

538

ром диапазоне значений потенциалов может существовать лишь одна из расщепленных спин-орбитальным взаимодействием ветвей 2*D*-состояний.

2. ДЕТАЛИ ЭКСПЕРИМЕНТА

Исследовались дифференциальная проводимость и ее производная по напряжению как функции магнитного поля и напряжения на туннельных структурах *p*-HgCdTe — окисел — металл (металл: Yb, Al). Туннельные контакты изготавливались на монокристаллических образцах p-Hg_{1-x}Cd_xTe (0.17 < x < 0.2) с концентрацией нескомпенсированных акцепторов $N_A - N_D = (0.5-2) \cdot 10^{18}$ см⁻³. Туннельно-прозрачный окисел образовывался при 10–15-минутном облучении ультрафиолетовым излучением образца, свежепротравленного в 5% растворе брома в бутаноле. Затем на образец через маску напылялся Yb или Al, а потом Pb. Использование иттербия — металла с малой работой выхода — позволяло получать туннельные контакты с большой глубиной поверхностной квантовой ямы на границе *p*-HgCdTe — окисел. В туннельных структурах с Al глубина потенциальной ямы значительно меньше.

Величина запрещенной зоны (E_g) и закон дисперсии объемных состояний полупроводника для каждой из исследованных туннельных структур определялись по осцилляциям туннельной проводимости в магнитном поле $\mathbf{B} \perp \mathbf{n}$ (\mathbf{n} — нормаль к плоскости туннельного контакта). В этой ориентации магнитное поле не квантует спектр 2D-состояний и осцилляции туннельной проводимости связаны с туннелированием на уровни Ландау объемных состояний. Подробно этот метод описан в [22, 23].

В настоящей работе приведены экспериментальные результаты исследований трех туннельных структур: структуры 1, 2 — Yb — окисел — HgCdTe с $E_g = 50$ мэB; структура 3 — Al — окисел — HgCdTe с $E_g = 45$ мэB. Концентрация нескомпенсированных акцепторов в этих структурах составляла 8 $\cdot 10^{17}$ см⁻³. При такой концентрации, близкой к переходу Мотта, уровень Ферми лежит вблизи потолка валентной зоны [24] и при сравнении с расчетами мы будем полагать $E_F = 0$ (здесь и в дальнейшем энергия отсчитывается от потолка валентной зоны в объеме полупроводника). Результаты, полученные на других исследованных туннельных структурах, аналогичны.

3. ОСЦИЛЛЯЦИИ ТУННЕЛЬНОЙ ПРОВОДИМОСТИ СТРУКТУР *p*-HgCdTe — ОКИСЕЛ — Yb

Типичные зависимости $d^2 j/dV^2$ от магнитного поля для структуры 1 в ориентации **В** || **n** при нескольких смещениях приведены на рис. 1. Видно, что осцилляции наблюдаются как при положительных смещениях, что соответствует сдвигу квазиуровня Ферми металла вверх на величину eV по отношению к квазиуровню Ферми полупроводника (рис. 2*a*), так и при отрицательных. Наблюдаемые осцилляции представляют собой суперпозицию нескольких типов осцилляций, которые удается разделить, сделав фурье-анализ зависимостей $d^2 j/dV^2$ как функции 1/B (рис. 3). Видно, что в фурье-спектрах при больших смещениях наблюдаются четыре хорошо разрешаемых максимума. При уменьшении смещения они двигаются навстречу друг другу таким образом, что при V = 0 сливаются в два максимума.

Рис. 2. а) Энергетическая диаграмма туннельного контакта при смещении V; б) энергетическая диаграмма структуры диэлектрик — полупроводник, используемая в расчетах

Зависимость положения фундаментальных полей магнитных $B_f =$ $= (\Delta(1/B))^{-1}$, где $\Delta(1/B)$ — период осцилляций по обратному магнитному полю, от смещения для структуры 1 во всем диапазоне смещений приведена на рис. 4, из которого видно, что, во-первых, существуют два различных типа осцилляций: у осцилляций первого типа фундаментальные магнитные поля увеличиваются с ростом смещения, а у второго — уменьшаются. Во-вторых, в исследованной структуре наблюдаются по две ветви каждого типа осцилляций, которые мы будем обозначать k_1^+ , k_1^- для первого типа осцилляций и k_{II}^{+} , k_{II}^{-} — для второго. Характерные близкие к $1/\cos\theta$ зависимости фундаментальных магнитных полей от угла θ между **B** и **n** показывают, что все наблюдаемые при **B** || **n** осцилляции связаны с квантованием спектра 2D-состояний, а именно, с туннелированием из металла на уровни Ландау 2D-состояний при V > 0 и с уровней Ландау 2*D*-состояний в металл при V < 0.

Аналогичные осцилляции наблюдались нами [25] при исследовании туннельных контактов, изготовленных на бесщелевых составах *p*-HgCdTe. В этой работе подробно рассмотрены возможные осцилляции туннельной проводимости в магнитном поле

Рис. 3. Фурье-образы осцилляций туннельной проводимости структуры 1 при различных смешениях, В || n. Штриховые кривые показывают сдвиг максимумов

Рис. 4. Зависимости фундаментальных полей осцилляций от смещения для структуры 1: I — осцилляции первого типа; II — осцилляции второго типа; k^+ , k^- соответствуют осцилляциям, связанным с туннелированием в различные спиновые состояния. Сплошные кривые — результаты расчета, описанного в тексте. На вставке — зависимость поверхностного потенциала от смещения

для структур металл — изолятор — полупроводник с 2D-электронами, локализованными в поверхностной квантовой яме. Было показано, что в тех случаях, когда глубина потенциальной ямы (а значит и энергия 2D-состояний) зависит от приложенного напряжения, должны наблюдаться два типа осцилляций, возникающих при пересечении уровнями Ландау 2D-состояний энергии, равной энергии Ферми металла (тип I) и при пересечении уровнями Ландау 2D-состояний энергии, равной энергии Ферми полупроводника (тип II). Оба этих типа осцилляций и наблюдаются в исследованных структурах (рис. 4). Осцилляции обоих типов периодичны по обратному магнитному полю, и именно поэтому они хорошо разделяются при фурье-преобразовании зависимостей d^2j/dV^2 от 1/B, и в полупроводнике с изотропным законом дисперсии их период определяется значением продольного (т. е. параллельного плоскости контакта) квазиимпульса k при энергии $E = E_F + eV$ для осцилляций первого типа и $E = E_F$ для осцилляций второго типа:

$$B_f^{-1}(V) = \frac{2e}{c\hbar k^2(E)}.$$
 (1)

Из значения фундаментальных полей осцилляций второго типа можно определить концентрацию 2*D*-электронов

$$n_{2D} = n^{+} + n^{-} = \frac{(k_{\rm II}^{+})^2 + (k_{\rm II}^{-})^2}{4\pi}.$$

Таким образом, уменьшение B_f с ростом смещения (рис. 4) соответствует уменьшению концентрации 2D-электронов вследствие уменьшения глубины потенциальной ямы. Именно поэтому зависимость периода осцилляций первого типа от смещения (рис. 4)

Рис. 5

Рис. 6

Рис. 5. Зависимости значений квазиимпульсов при смещении 45 мВ от амплитуды импульсов длительностью 10 мкс и частотой 20 Гц, структура 1

Рис. 6. Зависимости значений квазиимпульсов, определенных из периодов осцилляций первого и второго типов, при смещении 45 мВ от концентрации 2*D*-электронов для структуры 1 (**II**) и для структуры 2 (**II**). Сплошные кривые — результаты расчета квазиимпульса 2*D*-состояний при энергии $E = E_F$ (1, 2) и $E = E_F + eV$ (3, 4), описанного в тексте. На вставке — закон дисперсии 2*D*-состояний при значении поверхностного потенциала, соответствующего концентрации 2*D*-носителей $n_{2D} = 1.2 \cdot 10^{11}$ см⁻²

не дает непосредственно закон дисперсии 2D-состояний, так как k при каждом смещении соответствует потенциальной яме своей глубины.

Следует обратить внимание на то, что осцилляции туннельной проводимости первого типа наблюдаются и при отрицательных смещениях вплоть до V = -40 мВ. В этом диапазоне смещений они связаны с туннелированием из 2*D*-состояний, лежащих на фоне валентной зоны (рис. 2*a*), и их наличие доказывает, что «резонансное» размытие не является столь сильным, чтобы полностью размыть осцилляционную картину. Расчеты «резонансного» размытия, проведенные согласно [8], показывают, что в такой ситуации оно действительно должно быть мало.

Дополнительную информацию о спектре 2*D*-состояний можно получить, используя модификацию метода туннельной спектроскопии, предложенную в [17]. Она позволяет за счет подачи коротких импульсов перезаряжать центры, локализованные в барьере или на границе полупроводник — изолятор, тем самым изменять величину поверхностного потенциала (φ_s) и определить k_i^2 при фиксированных энергиях $E_F + eV$ и E_F , но при различном значении φ_s . Зависимость $k_1^{+,-}$, $k_{11}^{+,-}$ от амплитуды импульсов при смещении 45 мВ приведена на рис. 5. Видно, что положительные импульсы уменьшают значения k_i , а отрицательные — увеличивают. Это обусловлено тем, что положительные импульсы, уменьшая глубину потенциальной ямы, приводят к увеличению энергии дна 2*D*-подзоны, а следовательно, к уменьшению концентрации 2*D*-электронов, кото-

рая определяет периоды осцилляций второго типа, и к уменьшению k_i^2 при энергии $E_F + eV$, а значит, и периодов осцилляций первого типа. На рис. 6 приведены зависимости k_i^2 при V = 45 мВ от концентрации 2D-носителей, изменяемой за счет подачи импульсов для двух туннельных структур, отличающихся начальным значением поверхностного потенциала. Видно, что в структуре 2 при минимальной концентрации 2D-носителей (что достигается при максимальной амплитуде положительных импульсов) наблюдается лишь одна частота осцилляций второго типа. Как будет показано ниже, при таком поверхностном потенциале и энергии равной E_F это соответствует существованию лишь одного спинового состояния 2D-носителей.

4. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ

Для анализа экспериментальных результатов используем двухзонную модель Кейна, которая хорошо описывает спектр объемных состояний HgCdTe (расстояние от зоны Γ_8 до зоны Γ_7 в HgCdTe равно 1 эВ, что много больше величины запрещенной зоны и энергии 2D-состояний, поэтому вкладом взаимодействия с зоной Γ_7 мы пренебрежем). Для расчета спектра 2D-состояний в этой модели необходимо задать модель диэлектрика. Наиболее оправданной представляется модель диэлектрика, предложенная в работе [8], в которой полагается, что диэлектрик имеет ту же зонную структуру, что и полупроводник (т. е. валентную зону Γ_8 и зону проводимости Γ_6), но большую величину запрещенной зоны (рис. 26). Эта модель содержит два параметра, характеризующих границу полупроводник — диэлектрик: D_c , D_v — разрывы соответственно зон Γ_6 и Γ_8 . Подробно расчет спектра 2D-состояний описан в [25, 26]. При исследовании бесщелевых составов HgCdTe было показано, что наиболее подходящими значениями параметров D_c , D_v для границы HgCdTe — окисел являются: $D_c = 2$ эB, $D_v = 1$ эB [25]. Эти же параметры мы будем использовать и при расчете спектра 2D-состояний в HgCdTe с $E_g > 0$.

Для вычисления спектра 2*D*-состояний необходимо также знание поверхностного потенциала $\varphi(x)$, который дается решением уравнения Пуассона:

$$\frac{d^2\varphi}{dx^2} = -\frac{e}{\kappa\kappa_0} \left((N_A - N_D)\vartheta(L - x) + \sum_{2D} |\Psi(x)|^2 \right), \tag{2}$$

где κ — диэлектрическая проницаемость, L — ширина области пространственного заряда, $\vartheta(L-x)$ — тета-функция, $\Psi(x)$ — волновая функция 2D-электронов и суммирование ведется по всем занятым 2D-электронами состояниям. Как видно из рис. 6, концентрация 2D-электронов в исследованных структурах в зависимости от смещения меняется в диапазоне $n_{2D} = (1-5) \cdot 10^{11} \text{ см}^{-2}$, а концентрация заряженных акцепторов в области пространственного заряда $(N_A - N_D)L \approx (0.8-1.5) \cdot 10^{12} \text{ см}^{-2}$, так что в первом приближении вторым членом в правой части уравнения (2) можно пренебречь. В этом случае $\varphi(x) = \varphi_s (1 - x/L)^2$, где φ_s — значение потенциала на границе, а

$$L = \left(\frac{2\kappa\kappa_0\varphi_s}{e(N_A - N_D)}\right)^{1/2}.$$

Результаты численных расчетов, в которых единственным подгоночным параметром является $\varphi_s(V)$, приведены сплошными кривыми на рис. 4, а использованная зависи-

Рис. 7. Рассчитанные значения n^+/n^- в зависимости от величины разрывов зон на границе полупроводник — диэлектрик при $n_{2D} = 1 \cdot 10^{12}$ см⁻² для полупроводников с E_g больше и меньше нуля. Стрелками показаны значения n^+/n^- , рассчитанные при нулевых граничных условиях

мость $\varphi_s(V)$ — на вставке к этому рисунку. Видно, что при всех смещениях рассчитанные значения продольных квазиимпульсов при энергиях $E_F + eV$ и E_F хорошо совпадают со значениями, определенными из периодов осцилляций соответственно первого и второго, типов. При этом две ветви в каждом типе осцилляций соответствуют расщепленной по спину основной 2D-подзоне. Можно было бы предположить, что две ветви соответствуют основной и возбужденной подзонам 2D-состояний. Однако проведенные расчеты показывают, что в этом предположении отношение квазиимпульсов двух ветвей при фиксированном смещении должно быть значительно больше, чем это наблюдается в эксперименте. Например, при eV = 0 рассчитанное значение должно быть равно восьми, а не примерно двум, как в эксперименте (рис. 4).

Результаты, полученные модифицированным методом туннельной спектроскопии (рис. 6), позволяют провести сравнение с расчетами, не используя φ_s в качестве подгоночного параметра. Действительно, мы можем вычислить k^+ , k^- при энергиях E_F и $E_F + eV$ как функцию φ_s . Затем, исключив φ_s , построить k^+ , k^- как функцию концентрации 2D-электронов $n_{2D} = ((k_{11}^+)^2 + (k_{11}^-)^2)/4\pi$. Именно в таком масштабе и приведены экспериментальные результаты на рис. 6. Видно, что теоретические зависимости (сплошные кривые) хорошо описывают эксперимент во всем диапазоне изменения концентрации 2D-электронов от $1 \cdot 10^{11}$ до $5.5 \cdot 10^{11}$ см⁻². Мы хотим обратить внимание на то, что при малых концентрациях 2D-электронов ($n_{2D} < 1.5 \cdot 10^{11}$ см⁻²), когда наблюдается лишь одна частота осцилляций второго типа, расчет предсказывает существование лишь одной ветви 2D-состояний при $E = E_F$.

На вставке к этому рисунку приведен рассчитанный закон дисперсии 2*D*-состояний при концентрации 2*D*-электронов равной $1.2 \cdot 10^{11}$ см⁻². Видно, что на ветви k^+ имеется минимум при $k \neq 0$, и, следовательно, состояния только этой ветви существуют при $E = E_F$.

Оценим влияние параметров D_c , D_v , которые содержатся в использованной теоретической модели и характеризуют границу полупроводник — диэлектрик. Для этого мы рассчитали отношение n^+/n^- , которое определяется величиной спин-орбитального расщепления, в зависимости от D_c , D_v при фиксированном значении полной концентрации 2D-носителей $n_{2D} = 1 \cdot 10^{12}$ см⁻² для полупроводников с $E_g = +50$ мэВ и $E_g = -50$ мэВ (рис. 7). Видно, что расщепление 2D-состояний в рассматриваемых полупроводниках значительно более чувствительно к величине D_v , чем к D_c . При этом для $D_c > D_v$ в полупроводнике с $E_g > 0$ значение n^+/n^- близко к величине, рассчитанной в часто используемой модели нулевых граничных условий [16], в то время как в материале с $E_g < 0$ — существенно отличается. Это связано с тем, что в бесщелевых полупроводниках нулевые граничные условия соответствуют бесконечному разрыву зоны Γ_8 ($D_v = \infty$) [25], в то время как в полупроводниках с $E_g > 0$ — бесконечному разрыву зоны Γ_6 ($D_c = \infty$).

В рамках рассмотренной модели нетрудно учесть экранирование 2D-электронами поверхностного потенциала. Совместное решение уравнений Шредингера и Пуассона методом последовательных приближений показывает, что для исследованных структур поправки к значениям k^+ , k^- не превышают экспериментальной погрешности.

Измерения осцилляций туннельной проводимости в магнитном поле в обеих структурах с Yb при максимальных положительных и отрицательных импульсах, которые, как было описано выше, изменяют величину поверхностного потенциала, были проведены во всем диапазоне смещений. Эти результаты также хорошо согласуются с расчетами.

Спин-орбитальное расщепление спектра 2*D*-электронов в узкощелевых полупроводниках HgCdTe при различной концентрации 2*D*-носителей, но при фиксированной энергии, равной энергии Ферми полупроводника, было измерено в работах [15, 27]. Экспериментальные результаты, приведенные в этих работах, хорошо укладываются в рамки описанной выше модели.

Из приведенных данных видно (рис. 4), что в узкощелевых полупроводниках спин-орбитальное расщепление спектра 2D-состояний в асимметричной поверхностной квантовой яме велико: порядка 20–40 мэВ при $k > 10^6$ см⁻¹. Это должно приводить к тому, что при небольших значениях φ_s , когда дно зоны 2D-состояний лежит вблизи дна зоны проводимости объема полупроводника, может реализоваться ситуация, когда существуют локализованные 2D-состояния лишь с одним спином, а состояния с другим спином оказываются вытолкнутыми в непрерывный спектр. Именно такая ситуация для 2D-состояний в широком диапазоне энергий экспериментально наблюдается в туннельных структурах p-HgCdTe — окисел — Al, в которых величина φ_s существенно меньше, чем в структурах с Yb.

5. ОСЦИЛЛЯЦИИ ТУННЕЛЬНОЙ ПРОВОДИМОСТИ СТРУКТУР *p*-HgCdTe — ОКИСЕЛ — Al

Фурье-спектры осцилляций туннельной проводимости структуры 3 в двух ориентациях магнитного поля — $\mathbf{B} \perp \mathbf{n}$ и $\mathbf{B} \parallel \mathbf{n}$ — приведены на рис. 8. Видно, что при $\mathbf{B} \perp \mathbf{n}$, когда спектр 2*D*-состояний не квантуется и осцилляции туннельной проводимости связаны с туннелированием только в объемные уровни Ландау, в фурье-спектре наблюдаются лишь две гармоники: B_f^v и $2B_f^v$. Гармоника с частотой $2B_f^v$ связана со спиновым расщеплением уровней Ландау. Ее малая амплитуда при $\mathbf{B} \perp \mathbf{n}$ в узкощелевом полупроводнике, в котором спиновое расшепление близко к половине циклотронного, означает, что в этой ориентации магнитного поля основной вклад в осцилляции дает туннелирования в разные спиновые состояния уровней Ландау в узкощелевом полупроводнике в которинтации магнитного поля основной вклад в осцилляции дает туннелирования в разные спиновые состояния уровней Ландау в узкощелевом полупроводнике будет обсуждаться в отдельной работе. При $\mathbf{B} \parallel \mathbf{n}$, кроме осцилляций с теми же частотами, наблюдается дополнительная фурье-компонента с фундаментальным полем B_f^{2D} , лежащим в интервале $B_f^v < B_f^{2D} < 2B_f^v$ (большая амплитуда осцилляций с часто-

6 ЖЭТФ, №2 (8)

той $2B_f^v$ соответствует близкой вероятности туннелирования на оба спиновых подуровня объемных уровней Ландау в этой ориентации магнитного поля). Угловые зависимости фундаментальных частот (рис. 9) подтверждают, что фундаментальные поля B_f^v и $2B_f^v$ связаны с туннелированием в объемные состояния: значения B_f^v и $2B_f^v$ не зависят от угла, лишь амплитуда компоненты $2B_f^v$ быстро убывает при увеличении θ от 0° до 90°. Компонента B_f^{2D} имеет близкую к $1/\cos\theta$ угловую зависимость, что указывает на ее связь с туннелированием в 2D-состояния¹⁾.

Зависимости k^2 от V для структуры 3, полученные после фурье-анализа осцилляций туннельной проводимости (рис. 10), показывают, что дно зоны 2*D*-состояний расположено вблизи дна зоны проводимости, т. е. выше энергии Ферми, так что в этой структуре отсутствуют 2*D*-носители и осцилляции с частотой B_f^{2D} соответствуют туннелированию в пустые 2*D*-состояния. Следует обратить внимание на то, что в этой структуре при **B** || **n** во всем диапазоне энергий наблюдается лишь одна ветвь 2*D*-состояний (рис. 10).

В рамках описанной выше теоретической модели можно оценить диапазон значений поверхностного потенциала, при котором существует лишь одно спиновое состояние 2D-носителей. На рис. 11 приведены рассчитанные зависимости $k^2(\varphi_s)$ для 2Dсостояний при энергии 75 мэВ в туннельной структуре с параметрами $E_g, N_A - N_D$, соответствующими структуре 3. Видно, что при данной энергии первое спиновое состояние 2D-носителей отщепляется при $\varphi_s \approx 75$ мВ, а второе — при $\varphi_s \approx 110$ мВ. Таким образом, в интервале значений поверхностного потенциала $\varphi_s = 75$ –110 мВ должно существовать лишь одно спиновое состояние 2D-носителей. Мы полагаем, что именно такое состояние наблюдается в структуре 3 при **В** || **п**. Как видно из рис. 11, этой структуре при V = 75 мВ соответствует $\varphi_s = 95$ мВ.

Закон дисперсии электронных 2*D*-состояний при $\varphi_s = 95$ мВ, рассчитанный в рамках описанной выше модели, приведен на рис. 10. Видно, что в этой туннельной структуре, в отличие от структуры с Yb, экспериментально определенные значения k^2 в исследованном диапазоне смещений 55–120 мВ хорошо согласуются с рассчитанным при

¹⁾ При $\theta > 50^{\circ}$ обнаруживается отщепление еще одной зависящей от угла компоненты, возможно связанной с появлением в таких наклонных полях второго спинового состояния 2*D*-носителей. Нам неизвестны теоретические расчеты спектра 2*D*-носителей в полупроводнике со сложным спектром в произвольном наклонном поле, и, возможно, приведенные экспериментальные результаты будут стимулировать такие расчеты.

Рис. 9. Угловые зависимости фундаментальных полей осцилляций туннельной проводимости структуры 3 при смещении V = 75 мВ. Сплошные линии соответствуют осцилляциям, обусловленным туннелированием в объемные состояния, штриховые — в 2D-состояния

Рис. 10. Зависимости B_f и k^2 от смещения. Точки — экспериментальные значения B_f , полученные в ориентации **B** || **n** для структуры 3. Кривые 1 — закон дисперсии объемных состояний, рассчитанный в модели Кейна с параметрами: $E_g = 45$ мэВ, $P = 8 \cdot 10^{-8}$ эВ·см; 2 — законы дисперсии расшепленных спин-орбитальным взаимодействием 2D-состояний, рассчитанные при $\varphi_s = 95$ мэВ

Рис. 11. Рассчитанные зависимости k^2 от величины поверхностного потенциала при энергии 75 мэВ: сплошная линия — для объемных состояний; штриховые кривые для 2*D*-состояний. Точками указаны экспериментальные значения k^2 при смещении V = 75 мВ

не зависящем от V значении поверхностного потенциала законом дисперсии. По-видимому, это связано с тем, что в структуре 3 плотность поверхностных состояний больше, чем в структурах 1 и 2, так что изменение поверхностного потенциала со смещением невелико в том не очень большом диапазоне V, в котором мы наблюдали осцилляции туннельной проводимости. Из рис. 10 также видно, что в этой структуре второе спиновое состояние 2D-электронов должно появиться лишь при $k^2 > 1.5 \cdot 10^{12}$ см⁻² (вблизи k = 0 оно тоже существует, но его трудно изобразить в этом масштабе).

Это состояние в исследованном диапазоне энергий должно иметь значения k близкие к величине k объемных состояний (рис. 10) и экспериментально осцилляции с соответствующей частотой выделить не удается. Как упоминалось выше, возможно именно это состояние появляется в наклонных магнитных полях при $\theta > 50^{\circ}$ (рис. 9). Воз-

Рис. 12. Законы дисперсии объемных и 2*D*-состояний, рассчитанные при $N_A = 10^{18}$ см⁻³, $E_g = 50$ мэВ, $D_c = 2$ эВ, $D_v = 1$ эВ и значениях поверхностного потенциала $\varphi_s = 80$ (*a*), 120 мВ (*б*)

Рис. 13. а) Уровни Ландау 2*D*-состояний, рассчитанные в модели Кейна, пояснения в тексте; б) кривые — законы дисперсии объемных и расщепленных спин-орбитальным взаимодействием 2*D*-состояний, рассчитанные в отсутствие магнитного поля. Точки — значения *k*, определенные из приведенных на рис. 13*a* положений уровней Ландау. Расчет проведен с параметрами: $N_A = 10^{18}$ см⁻³, $E_g = 50$ мэВ, $D_c = 2$ эВ, $D_v = 1$ эВ, $\varphi_s = 300$ мВ

можность изменять поверхностный потенциал в структуре 3 была бы очень полезна, однако использование модифицированной методики с дополнительными импульсами не приводило к заметному изменению φ_s в этой структуре.

Возможность появления 2*D*-состояний лишь при больших квазиимпульсах в полупроводниках с сильно непараболичным спектром обсуждалась в работах [28, 29]. Такие состояния были названы «кинематически связанными». В этих работах рассматривалась бесспиновая задача. В реальных полупроводниках с сильно непараболичным спектром (InSb, HgCdTe) учет спина приводит к дополнительным особенностям кинематически связанных состояний. Это видно из рис. 12, на котором приведены рассчитанные в кейновской модели законы дисперсии объемных и 2*D*-состояний при двух значениях поверхностного потенциала. При малом φ_s существуют 2*D*-состояния лишь с одним спином, и они появляются при $k \neq 0$, т.е. являются кинематически связанными (рис. 12*a*). При большем φ_s эти состояния существуют при всех *k*, а состояния со вторым спином являются кинематически связанными (рис. 12*b*). Именно такая ситуация, как видно из рис. 10, реализуется в структуре 3.

Может показаться непоследовательным, что все экспериментальные результаты относительно спектра 2D-состояний были получены в данной работе из анализа осцилляций в магнитном поле, в то время как теоретические расчеты выполнены без учета магнитного поля. При этом для сравнения результатов расчетов с экспериментом использовалось соотношение (1), т. е. молчаливо предполагалась применимость правила квазиклассического квантования спектра 2D-состояний в магнитном поле и в таких узкощелевых полупроводниках. Чтобы подтвердить справедливость такого предположения, мы рассчитали уровни Ландау 2D-состояний в рамках модели Кейна аналогично тому, как это было сделано в работе [30]. Результаты расчета для фиксированного значения $\varphi_s = 300$ мВ приведены на рис. 13*а*. Сплошными и пунктирными кривыми показано положение двух серий уровней Ландау, соответствующих различным спиновым состояниям 2*D*-носителей. При фиксированной энергии отсутствует строгая периодичность по обратному магнитному полю уровней в каждой из серий, однако значения *k*, определенные из среднего периода каждой из серий по формуле (1) с хорошей точностью дают закон дисперсии соответствующей ветви 2*D*-состояний, рассчитанный без магнитного поля (рис. 13*6*). Таким образом, в актуальной области энергий и магнитных полей правило квазиклассического квантования в магнитном поле выполняется с хорошей точностью.

6. ЗАКЛЮЧЕНИЕ

Методом туннельной спектроскопии в магнитном поле исследован энергетический спектр 2D-состояний, локализованных в поверхностной квантовой яме узкощелевого полупроводника HgCdTe. Большой поверхностный потенциал, существующий в туннельных структурах *p*-HgCdTe — окисел — Yb создает подзону 2D-электронных состояний, дно которой расположено ниже энергии Ферми. В этих структурах наблюдаются два типа осцилляций туннельной проводимости в магнитном поле. Периоды этих осцилляций определяются параллельной поверхности составляющей квазиимпульса 2D-состояний при энергиях E_F и $E_F + eV$. Это позволяет исследовать энергетический спектр 2D-состояний в широком диапазоне энергий. Показано, что в исследованных структурах с асимметричной квантовой ямой наблюдается сильное спинорбитальное расщепление спектра 2D-состояний.

В туннельных структурах *p*-HgCdTe — окисел — Аl поверхностный потенциал существенно меньше, дно подзоны 2*D*-состояний лежит выше энергии Ферми полупроводника и осцилляции туннельной проводимости в магнитном поле связаны с туннелированием в пустые 2*D*-состояния. Наличие лишь одной ветви в спектре 2*D*-состояний в этих структурах обусловлено тем, что за счет сильного спин-орбитального взаимодействия второе спиновое состояние выталкивается в непрерывный спектр.

Для анализа экспериментальных результатов проведен расчет энергетического спектра 2*D*-состояний, локализованных в поверхностной квантовой яме в полупроводнике с кейновским законом дисперсии. Показано, что все экспериментальные результаты хорошо согласуются с расчетами.

Литература

- 1. D. C. Tsui, Phys. Rev. B 8, 2657 (1973).
- 2. Г. М. Миньков, О. Э. Рут, В. А. Ларионова, А. В. Германенко, ЖЭТФ 105, 719 (1994).
- 3. R. C. Ashoori, J. A. Lebens, N. P. Bigelow, and R. H. Silsbee, Phys. Rev. B 48, 4616 (1993).
- 4. K. M. Brown, N. Turner, J. T. Nicholls et al., Phys. Rev. B 50, 15465 (1994).
- 5. J. P. Eisenstein, L. N. Preiffer, and K. W. West, Surf. Sci. 305, 393 (1994).
- 6. J. P. Eisenstein, L. N. Preiffer, and K. W. West, Phys. Rev. Lett. 69, 3804 (1992).
- 7. B. L. Altshuler and A. G. Aronov, in *Electron-Electron Interaction in Disordered Systems*, ed. by A. L. Efros and M. Pollak, North-Holland (1985), p. 1.

- 8. P. Sobkowicz, Semicond. Sci. Technol. 5, 183 (1990).
- 9. Ю. Л. Бычков, Э. И. Рашба, Письма в ЖЭТФ 39, 66 (1984).
- 10. G. Dresselhaus, Phys. Rev. 100, 580 (1955).
- 11. R. Eppenga and M. F. H. Schuurmans, Phys. Rev. B 37, 10923 (1988).
- 12. J. Luo, H. Munekata, F. F. Fang, and P. J. Stiles, Phys. Rev. B 38, 10142 (1988).
- 13. B. Das, D. C. Miller, S. Datta et al., Phys. Rev. B 39, 1411 (1989).
- 14. H. L. Stoermer, T. Haavasoja, V. Narayanamurti et al., J. Vac. Sci. Technol. B 1, 423 (1984).
- 15. В. Ф. Раданцев, ЖЭТФ 96, 1793 (1989).
- 16. V. F. Radantsev, T. I. Deryabina, G. I. Kulaev, and E. L. Rumyantsev, Phys. Rev. B 53, 15756 (1996).
- 17. Г. М. Миньков, А. В. Германенко, В. В. Кружаев, О. Э. Рут, В. А. Ларионова, Письма в ЖЭТФ 62, 308 (1995).
- 18. D. C. Tsui, Phys. Rev. B 4, 4438 (1971).
- 19. D. C. Tsui, Phys. Rev. B 8, 2657 (1973).
- 20. J. Muller and U. Kunze, Semicond. Sci. Technol. 8, 705 (1993).
- 21. U. Kunze, Z. Phys. B-Condensed Matter 80, 47 (1990).
- 22. Л. П. Зверев, В. В. Кружаев, Г. М. Миньков, О. Э. Рут, ЖЭТФ 80, 1163 (1981).
- 23. Л. П. Зверев, В. В. Кружаев, Г. М. Миньков и др. ФТТ 26, 2943 (1984).
- 24. I. M. Tsidilkovski, G. I. Harus, and N. G. Shelushinina, Adv. Phys. 34, 43 (1985).
- 25. G. M. Minkov, A. V. Germanenko, V. A. Larionova, and O. E. Rut, Phys. Rev. B 54, 1841 (1996).
- A. V. Germanenko, G. M. Minkov, V. A. Larionova, O. E. Rut, C. R. Becker, and G. Landwehr, Phys. Rev. B 52, 17254 (1995).
- 27. R. Wollrab, R. Sizman, F. Koch et al., Semicond. Sci. Technol. 4, 491 (1989).
- 28. R. E. Doezema and H. D. Drew, Phys. Rev. Lett. 57, 762 (1986).
- 29. An-zhen Zhang, J. Slinkman, and R. E. Doezema, Phys. Rev. B 44, 10752 (1991).
- 30. G. M. Minkov, A. V. Germanenko, V. A. Larionova, and O. E. Rut, Semicond. Sci. Technol. 10, 1578 (1995).