ЖЭТФ, 1997, том 112, вып. 1(7), стр. 342-352

РЕЗОНАНСНОЕ ДЖОЗЕФСОНОВСКОЕ ТУННЕЛИРОВАНИЕ ЧЕРЕЗ S-I-S-ПЕРЕХОД ПРОИЗВОЛЬНЫХ РАЗМЕРОВ

И. А. Девятов, М. Ю. Куприянов*

Научно-исследовательский институт ядерной физики Московского государственного университета им. М. В. Ломоносова 119899, Москва, Россия

Поступила в редакцию 6 декабря 1996 г.

В рамках уравнений Боголюбова-де Жена рассчитан джозефсоновский ток туннельных S-I-S-структур, в которых основным каналом переноса тока является резонансное туннелирование через одиночное локализованное состояние. Показано, что эффективность равновесного джозефсоновского резонансного туннелирования определяется только отношением ширины резонансного уровня к модулю параметра порядка сверхпроводящих электродов Δ при любом соотношении между параметрами системы.

1. ВВЕДЕНИЕ

Экспериментальные исследования джозефсоновских ВТСП-переходов с прослойкой из полупроводниковых оксидов привели к наблюдению «аномального эффекта близости» (long-range proximity effect) [1-10]. Он состоит в существовании заметного критического тока J_c в структурах с толщинами прослоек $d \ge 100$ нм. Из экспериментальных зависимостей $J_c(d) \propto \exp(-d/\xi)$ следовали температурно-независящие и значительно большие (10-50 нм), чем в сверхпроводящих оксидах (1-3 нм), значения длин когерентности ξ этих материалов. В [11] этот эффект был объяснен в рамках модели, базирующейся на предположении о том, что основным механизмом переноса нормального и сверхпроводящего токов в структурах является резонансное туннелирование через локализованные состояния в низкоэнергетическом туннельном барьере. При этом оказывалось, что характерный масштаб уменьшения сверхтока с ростом толщины прослойки определялся эффективной глубиной проникновения квазичастиц в прослойку $\xi = \alpha$. В отличие от длины когерентности в сверхпроводнике $\xi_0 = \hbar \nu_F / 2\Delta (\nu_F - c c c p o c c b + a)$ поверхности Ферми, Δ — модуль параметра порядка сверхпроводящих электродов), характерная длина α не зависит от параметров, отвечающих за сверхпроводящие свойства электродов, а ее относительно большие значения есть следствие малой высоты энергетического барьера материала прослойки:

$$\alpha = \frac{1}{\sqrt{2m(V-\mu)}} \approx 100-1000 \text{ Å},$$
 (1)

а также двукратного выигрыша в показателе экспоненты из-за резонансного характера транспорта тока (для нормального тока). В (1) m — эффективная масса носителей заряда, μ — химический потенциал, V — потенциал дна зоны проводимости материала прослойки.

^{*}E-mail: idev@rsfq.npi.msu.su

Рис. 1. Схема и энергетическая диаграмма рассматриваемой структуры

С другой стороны, известно [12], что неравновесные свойства слабых связей могут зависеть от эффективной длины когерентности ξ_i , определяемой как сверхпроводящими свойствами электродов, так и параметрами прослойки.

Проведенный в данной работе анализ процесса резонансного джозефсоновского туннелирования в S-I-S-структурах в рамках физически ясного подхода, базирующегося на уравнениях Боголюбова–де Жена, действительно показал наличие трех характерных длин, описывающих проникновение сверхпроводимости в рассматриваемые структуры. Помимо длины α (см. (1)), фактически определяющей эффективную глубину проникновения нормальных квазичастиц в подбарьерную область, решения зависят также от параметров ξ_i и ξ_b :

$$\xi_i = \alpha \frac{V - \mu}{E} = \frac{1}{E} \sqrt{\frac{V - \mu}{2m}}, \quad \xi_b = 2\alpha \ln\left(\frac{V - \mu}{E}\right), \tag{2}$$

где Е — энергия связанного андреевского состояния, ответственного за перенос сверхтока. Ранее [11, 13] при теоретическом анализе процессов резонансного джозефсоновского туннелирования через диэлектрический барьер неявно предполагалось, что барьер является тонким в масштабе длин ξ_i , ξ_b . В данной работе рассмотрен случай произвольного соотношения между d и ξ_i , ξ_b , уточнены границы применимости полученных ранее [11, 13] результатов. Показано, что в пределе Г $\gg \Delta$ (Г — эффективная ширина резонансного уровня) каналы прямого и андреевского отражения одинаково эффективны и выражение для резонансного джозефсоновского тока совпадает с аналогичным соотношением для микрозакоротки. В обратном пределе малых значений эффективной ширины резонансного уровня Г « Δ аномальный эффект близости сопровождается уменьшением критического тока в Δ/Γ раз вследствие рассогласования резонансных каналов прямого и андреевского отражения квазичастиц. При этом оказывается, что для структур с произвольной длиной d, в отличие от коротких ($d \ll \xi_i, \xi_b$) структур, в переносе сверхтока могут быть задействованы не один, а три канала андреевского прохождения квазичастиц. Тем не менее, их интерференция приводит к точной компенсации зависящих от ξ_i , ξ_b слагаемых в выражении для сверхтока, что дает значение равновесного сверхтока, которое совпадает со значением, рассчитанным для коротких переходов.

2. МОДЕЛЬ ПЕРЕХОДА

Будем считать, что плотность локализованных состояний в прослойке мала, так что взаимодействие квазичастиц, принадлежащих разным состояниям, несущественно, эффективное взаимодействие электронов на них пренебрежимо мало, а их распределение равномерно как по объему прослойки, так и по энергии (по крайней мере, в области порядка T_c вблизи химического потенциала μ). Для сохранения физической ясности картины мы ограничимся ниже рассмотрением одномерной задачи в одномодовом режиме, т. е. исследованием процессов в S-c-S-структуре с туннельным типом проводимости в области сужения, с потенциальным барьером вида (см. рис. 1):

$$V(x) = V\Theta(|x| - d/2) - (B/2m)\delta(x - x_0).$$
(3)

Здесь x_0 — координата локализованного состояния, описываемого δ -функциональным потенциалом, имеющим одно разрешенное энергетическое состояние с энергией $E_0 = B^2/8m$.

3. КОЭФФИЦИЕНТЫ ПРОХОЖДЕНИЯ И ЭНЕРГИЯ СВЯЗАННЫХ СОСТОЯНИЙ

В рамках сделанных выше предположений модуль параметра порядка в сверхпроводниках можно считать не зависящим от пространственных координат и для описания процессов в системе воспользоваться 1D уравнениями Боголюбова-де Женна (здесь и далее $\hbar = 1, k_B = 1$):

$$\left\{ \left(-\frac{1}{2m} \frac{\partial^2}{\partial x^2} - \mu + V(x) \right) \sigma_z + \hat{\Delta}(x) \right\} \Psi = E \Psi, \quad \hat{\Delta}(x) = \begin{pmatrix} 0 & \Delta e^{i\varphi/2} \\ \Delta e^{-i\varphi/2} & 0 \end{pmatrix} \Theta \left(|x| - d/2 \right).$$
(4)

Здесь σ_z — третья матрица Паули, φ — фаза параметра порядка сверхпроводящих электродов, E — собственные значения энергии, Ψ — спинор, составленный из u- и ν -функций Боголюбова-де Женна. Решение уравнений (4) в области прослойки и сверхпроводящих электродов представимо в виде суперпозиции проходящих и отраженных от границ перехода и локализованного состояния плоских волн. Сшив эти плоские волны и их производные, мы нашли коэффициенты прямого t^N и андреевского t^A прохождения квазичастиц [12–15]:

$$|t^{A}| = \frac{k_{+}}{k} \frac{\tilde{D}}{Q} \frac{|\zeta|}{\Delta} \left| (E - |\zeta|) e^{i\varphi/2} a_{+} - (E + |\zeta|) e^{-i\varphi/2} a_{-} \right|,$$

$$|t^{N}| = \frac{k_{+}}{k} \frac{\tilde{D}}{Q} \frac{|\zeta|}{\Delta} \left| e^{i\varphi/2} b_{+} - e^{-i\varphi/2} b_{-} \right|,$$
(5)

$$Q = (\cos\alpha - \cos\beta) - 2(E/\Delta)^2 \cos\beta - 2i(E/\Delta^2)|\zeta|\sin\beta, \quad \zeta = \sqrt{\Delta^2 - E^2}.$$
 (6)

Связанные состояния $|E| < \Delta$ определяются из условия Q = 0, что приводит к дисперсионному уравнению вида [12]

$$E^{2} = \Delta^{2} \cos^{2} \left(\frac{|\beta| \pm \alpha}{2} \right), \quad \cos \alpha = \tilde{R} + \tilde{D} \cos \varphi, \quad \sin \beta = \operatorname{Im}(a_{+}a_{-}^{*})\tilde{D}, \quad |\beta| \pm \alpha \ge 0.$$
(7)

Величины $\tilde{D} = 1/|a_+a_-^*|$, $\tilde{R} = \operatorname{Re}(b_+b_-^*)\tilde{D}$ в (7) зависят от расположенных симметрично относительно химического потенциала μ значений энергий и имеют смысл коэффициентов прохождения и отражения квазичастиц через прямой и андреевский каналы. Параметры a_{\pm} и b_{\pm} имеют вид

$$a_{\pm} = \left\{ \left[B_{\pm} \operatorname{sh}(\kappa_{\pm}d) - \operatorname{ch}(\kappa_{\pm}d) \right] + \frac{i}{2} \left[\left(\frac{\kappa_{\pm}}{k_{\pm}^{*}} - \frac{k_{\pm}^{*}}{\kappa_{\pm}} \right) \left[\operatorname{sh}(\kappa_{\pm}d) - B_{\pm} \operatorname{ch}(\kappa_{\pm}d) \right] - \left(\frac{\kappa_{\pm}}{k_{\pm}^{*}} + \frac{k_{\pm}^{*}}{\kappa_{\pm}} \right) B_{\pm} \operatorname{ch}(\kappa_{\pm}x_{0}) \right] \right\} \frac{k_{\pm}^{*}}{k},$$

$$(8)$$

$$b_{\pm} = \frac{1}{2k} \left\{ (k_{\pm}^{*} - k_{\pm}) \left[\operatorname{ch}(\kappa_{\pm}d) - B_{\pm}\operatorname{sh}(\kappa_{\pm}d) \right] B_{\pm}(k_{\pm}^{*} + k_{\pm}) \operatorname{sh}(\kappa_{\pm}x_{0}) + \frac{i}{\kappa_{\pm}} \left[(\kappa_{\pm}^{2} + |k_{\pm}|^{2}) \left[B_{\pm}\operatorname{ch}(\kappa_{\pm}d) - \operatorname{sh}(\kappa_{\pm}d) \right] + B_{\pm}(\kappa_{\pm}^{2} - |k_{\pm}|^{2}) \operatorname{ch}(\kappa_{\pm}x_{0}) \right] \right\}.$$
(9)

Здесь

$$k = \sqrt{2m\mu}, \quad \kappa_{\pm} = \sqrt{2m(V - (\mu \pm E))},$$

$$k_{\pm} = \sqrt{2m(\mu \pm i\zeta)} \simeq k\left(1 \pm \frac{i\zeta}{2\mu}\right), \quad B_{\pm} = B/2\kappa_{\pm}.$$

Величины $D_{\pm} = |a_{\pm}|^{-2}$ и $R_{\pm} = |b_{\pm}/a_{\pm}|^2$ являются соответственно коэффициентами прохождения и отражения в нормальном канале туннелирования квазичастиц, обладающих энергией $\pm E$. Нетрудно проверить, что условие нормировки $R_{\pm} + D_{\pm} = 1$ выполняется для обоих нормальных каналов. В случае отсутствия локализованных состояний (B = 0) выражение (7) переходит в установленное ранее [12] дисперсионное уравнение для туннельных переходов конечной толщины.

4. ДЖОЗЕФСОНОВСКИЙ ТОК

Протекающий через структуру сверхток представим в виде суммы двух слагаемых [14, 15]:

 $I_s = I_{bound} + I_{cont},$

 $I_{bound} = 2e \sum_{j} \frac{\partial E_j}{\partial \varphi} \frac{1}{1 + \exp(E_j/T)},$ (10)

$$I_{cont} = \frac{e}{\pi} \int_{0}^{\infty} d|\zeta| \left\{ \left| t^{N}(\varphi, x_{0}) \right|^{2} - \left| t^{A}(\varphi, x_{0}) \right|^{2} - \left| t^{N}(-\varphi, -x_{0}) \right|^{2} + \left| t^{A}(-\varphi, -x_{0}) \right|^{2} \right\} \operatorname{th} \frac{E}{2T},$$

определяющих вклады от связанных состояний I_{bound} ($|E| < \Delta$) и непрерывного спектра I_{cont} ($|E| > \Delta$) соответственно.

Выражения (4)–(10) справедливы при произвольных соотношениях между характерными длинами ($d, \xi_i, \xi_0, \xi_b, \alpha$) и характерными энергиями ($V - \mu, \Delta, \Gamma$) структуры. Однако ниже мы ограничимся лишь практически важным случаем малой прозрачности барьера, т. е. случаем относительно толстого барьера:

$$\kappa d \gg 1, \quad \kappa |d/2 \pm x_0| \gg 1, \quad \kappa = \sqrt{2m(V-\mu)} = \alpha^{-1},$$
(11)

когда локализованное состояние имеет хорошо определенное собственное значение энергии [16].

В этом пределе выражение для коэффициентов прохождения в нормальных каналах туннелирования D_{\pm} сводится к известной формуле Брейта–Вигнера [16]:

$$D_{\pm} = \frac{\Gamma_0^2}{\left(E \mp (E_R + \delta E_0^{\pm})\right)^2 + \Gamma_0^2 \operatorname{ch}^2(\kappa_{\pm} x_0)}, \quad \Gamma_0 = 2(V_0 - \mu)\sqrt{D_0},$$

$$D_0 = \frac{16k^2 \kappa^2}{(k^2 + \kappa^2)^2} \exp(-2\kappa d),$$
(12)

$$E_R = (V-\mu) - \frac{B^2}{8m} + \Gamma_0 \frac{k^2 - \kappa^2}{2k\kappa} \operatorname{ch}(\kappa x_0), \quad \delta E_0^{\pm} = \Gamma_0 \frac{k^2 - \kappa^2}{2k\kappa} \exp\left[(\kappa - \kappa_{\pm})d\right] \operatorname{ch}(\kappa_{\pm} x_0), \quad (13)$$

в которой E_R — перенормированное значение энергии локализованного состояния, Γ_0 — ширина его резонансного уровня, помещенного посередине барьера, D_0 — нормальная (в отсутствие локализованного состояния) прозрачность перехода.

Джозефсоновский ток через структуру определяют, согласно (5)–(10), комбинации величин a_{\pm}, b_{\pm} , описывающие когерентные процессы нормального и андреевского отражения квазичастиц. Поэтому помимо условий (11), определящих толщину перехода и координату локализованного состояния, имеющего хорошо определенное значение собственной энергии и достаточных для описания процессов одночастичного туннелирования, возникают дополнительные условия для энергий локализованных и связанных состояний, толщины и высоты барьера, разграничивающие различные режимы когерентного джозефсоновского туннелирования. Отметим, что во всех рассматриваемых ниже случаях основной вклад в резонансный джозефсоновский ток давал ток от связанных состояний.

5. ПРЕДЕЛ КОРОТКОГО ПЕРЕХОДА И ВЫСОКОГО БАРЬЕРА

При выполнении следующих неравенств:

$$|E| \ll (V - \mu) \exp(-\kappa d/2),\tag{14}$$

$$|E_R| \ll (V - \mu) \exp(-\kappa d/2) \sqrt{\operatorname{ch}(\kappa x_0)}$$
(15)

(условие (14) тождественно условию $d \ll \xi_b$) оказывается возможным пренебречь различием как в коэффициентах прозрачности, так и в набеге фазы функций Боголюбова-де Женна u, v в $\pm E$ -каналах, что существенно упрощает расчет сверхпроводящих свойств структуры. Переписывая дисперсионное уравнение Q = 0 в виде

$$\left(\frac{E}{\Delta}\right)^2 \operatorname{Re}(a_+^*a_-) - \frac{E\xi}{\Delta^2} \operatorname{Im}(a_+^*a_-) - \frac{1}{2} \left[\operatorname{Re}(a_+^*a_-) + \cos\varphi + \operatorname{Re}(b_+^*b_-) \right] = 0 \quad (16)$$

и замечая, что при выполнении неравенств (14), (15) входящие в дисперсионное уравнение (16) величины равны

$$Im(a_{+}^{*}a_{-}) = -2\frac{E}{\Gamma_{0}}ch(\kappa, x_{0}), \quad Re(a_{+}^{*}a_{-}) = \frac{E_{R}^{2} - E^{2}}{\Gamma_{0}^{2}} + ch^{2}(\kappa x_{0}),$$

$$Re(b_{+}b^{*}) = Re(a_{+}^{*}a_{-}) - 1.$$
(17)

мы приходим к дисперсионному уравнению, полученному ранее в работе Бинакера и Ван Хоутена [13] фактически без строгого определения условий его справедливости (было лишь отмечено, что $d \ll \xi_0$, в то время как настоящими условиями справедливости (17) является выполнение неравенств (14), (15)):

$$(\Delta^{2} - E^{2}) \left(E^{2} - E_{R}^{2} - \Gamma^{2}/4 \right) + \Delta^{2} \Gamma_{2} \Gamma_{1} \sin^{2}(\varphi/2) + \Gamma E^{2} \sqrt{\Delta^{2} - E^{2}} = 0,$$

$$\Gamma = \Gamma_{1} + \Gamma_{2}, \quad \Gamma_{1} = \Gamma_{0} \exp(-\kappa x_{0}), \quad \Gamma_{2} = \Gamma_{0} \exp(+\kappa x_{0}).$$
(18)

Из дисперсионного уравнения (18) следует, что амплитуда и форма связанных андреевских состояний зависят в данном случае только от соотношения между модулем параметра порядка Δ и характерной шириной энергии Γ_0 локализованного состояния, а также от его координаты x_0 .

В пределе широкой зоны энергии локализованного состояния $\Gamma_0 \gg \Delta$, т.е. в области толщин прослойки

$$\kappa^{-1} \ll d \ll \frac{\ln\left[8\kappa(V-\mu)/k\Delta\right]}{\kappa},$$
(19)

из дисперсионного уравнения (18) и (10) следуют выражения для энергии связанного андреевского состояния и джозефсоновского тока через рассматриваемую структуру:

$$E(\varphi)_{\Delta \ll \Gamma_0} = \pm \Delta \sqrt{1 - D(E_R) \sin^2(\varphi/2)},$$

$$D(E_R) = \left\{ (E_R/\Gamma_0)^2 + ch^2(\kappa x_0) \right\}^{-1},$$
(20)

$$I(\varphi)_{\Delta \ll \Gamma_0} = \frac{e\Delta}{2} D(E_R) \frac{\sin \varphi}{\sqrt{1 - D(E_R) \sin^2(\varphi/2)}} \operatorname{th} \frac{|E(\varphi)|}{2T}.$$

Формула (20) формально совпадает с зависимостями для одномодового S-c-S-перехода [17, 18]. Разница состоит в том, что прозрачность $D(E_R)$ — это брэйт-вигнеровская резонансная прозрачность (12) для локализованных состояний с различной энергией E_R .

Увеличение толщины перехода d сопровождается уменьшением ширины резонансной зоны и в пределе $\Gamma_0 \ll \Delta$, т. е. при сильном нарушении правого неравенства в (19), из (10), (18) имеем

$$E(\varphi)_{\Delta \gg \Gamma_0} = \pm \frac{\Delta \Gamma_0 \sqrt{1 - D(E_R) \sin^2(\varphi/2)}}{\sqrt{D(E_R)} \sqrt{E_R^2 + (\Delta + \Gamma_0 \operatorname{ch}(\kappa x_0))^2}},$$

$$I(\varphi)_{\Delta \gg \Gamma_0} = \frac{e \Delta \Gamma_0}{2} \frac{\sqrt{D(E_R)}}{\sqrt{E_R^2 + (\Delta + \Gamma_0 \operatorname{ch}(\kappa x_0))^2}} \frac{\sin \varphi}{\sqrt{1 - D(E_R) \sin^2(\varphi/2)}} \operatorname{th} \frac{|E(\varphi)|}{2T}.$$
(21)

Из (21) следует, что в пределе $\Gamma_0 \ll \Delta$ максимальный джозефсоновский ток (при $E_R = 0$, $x_0 = 0$) имеет пропорциональную sin ($\varphi/2$) фазовую зависимость и амплитуду в Δ/Γ_0 раз меньше, чем в пределе $\Gamma_0 \gg \Delta$. При этом связанное андреевское состояние прижато к химическому потенциалу μ . Увеличение E_R «отталкивает» андреевские уровни

к границам щели и обеспечивает пропорциональную $\sin \varphi$ фазовую зависимость джо-зефсоновского тока.

Из (20), (21) следует, что в обоих предельных случаях зависимость $I(\varphi)$ отличается от синусоидальной в области энергий локализованных состояний $E_R \leq \Gamma_0$. В частности, при $E_R = 0$, $x_0 = 0$ резонансная прозрачность равна единице и $I(\varphi) \propto \sin(\varphi/2)$ в обоих предельных случаях. С увеличением разности между энергией локализованного состояния и химическим потенциалом μ резонансная прозрачность резко уменьшается, так что зависимость $I(\varphi)$ довольно быстро выходит на синусоидальную. Это приводит к тому, что усредненный по энергии и координатам локализованных состояний сверхток практически во всей области температур пропорционален sin φ .

К такому же результату приводит и процедура усреднения, проведенная в трехмерном случае при вычислении сверхтока в технике с использованием формализма функций Грина [11].

Процедура усреднения по координатам и энергиям локализованного резонансного джозефсоновского тока, описываемого формулами (20), (21), приводит к зависимости вида (I) – $\Sigma S/r$ (22)

$$\langle J \rangle_{E_R,x_0} \propto (J_c)_{max} n_{E_R,x_0} \Gamma_0 S / \kappa, \tag{22}$$

где $(J_c)_{max}$ — максимальный критический ток резонансного туннелирования через одиночное локализованное состояние, следующий из (20), (21) при $E_R = 0$, $x_0 = 0$, $\varphi = \pi$; n_{E_R,x_0} — концентрация локализованных состояний, Γ_0 — размер оптимальной энергетической зоны вблизи химического потенциала μ , S/κ — объем оптимальной области прослойки вблизи $x_0 = 0$. Отметим, что введенный в [11] параметр подавления усредненного джозефсоновского тока Γ_{LS} оказывается прямо пропорционален отношению $\Delta(0) \kappa \Gamma_0$ (для трехмерной геометрии). Поэтому предсказанное в [11] подавление критического тока перехода с ростом параметра Γ_{LS} есть прямое следствие (20)–(22): с ростом параметра Γ_{LS} происходит уменьшение ширины резонансного андреевского уровня и соответствующее уменьшение критического тока, описываемого переходом от предела (20) к пределу (21).

Усредненная резонансная проводимость переходов с нормальными берегами и одним локализованным состоянием на траектории описывается формулой [19]

$$\frac{1}{\langle \rho \rangle} = \frac{e^2}{\pi} n_{E_R, x_0} \pi^2 \Gamma_0 S / \kappa, \tag{23}$$

где e^2/π — квантовая единица проводимости. Анализ резонансного квазичастичного туннелирования в S-Sm-S-структурах показал [20], что сверхпроводимость в берегах не влияет асимптотически (при $eV \gg \Delta$) на проводимость структуры. В то же время максимальный критический ток, как следует из (20), (21), зависит от отношения Δ/Γ_0 и равен $e\Delta$ при $\Gamma_0 \gg \Delta$ и $e\Gamma_0$ в обратном пределе.

Комбинируя (22), (23), мы видим, что в пределе $\Gamma_0 \gg \Delta$ произведение $\langle J \rangle_{E_R,x_0} \langle \rho_n \rangle_{E_R,x_0}$ слабо зависит от параметров прослойки (с точностью до коэффициента пропорциональности, не выписанного в (22)) и определяется в основном максимальным критическим током перехода $e\Delta$, в то время как в обратном пределе $\Gamma_0 \ll \Delta$ мы имеем

$$\langle J \rangle_{E_R,x_0} \langle \rho_n \rangle_{E_R,x_0} \propto \Gamma_0 \propto 1 / \langle \rho_n \rangle_{E_R,x_0}.$$

Это является возможным объяснением зависимости

$$J_c \rho_n \propto 1/\rho_n$$

(так называемого «scaling law»), обнаруженной в экспериментах с ВТСП-переходами [1-3].

6. ПРЕДЕЛ ПРОМЕЖУТОЧНЫХ ТОЛЩИН ПРОСЛОЙКИ И ВЫСОТ БАРЬЕРА

В эксперименте, в частности, в ВТСП-структурах возможна ситуация нарушения условий (14), (15), в то время как условие (11) эффективного резонансного одночастичного туннелирования продолжает выполняться. Рассмотрим сначала случай, когда длина перехода еще мала в масштабе квазичастичной дефазировки [12] для всех значений энергий связанных состояний $|E| \leq \Delta$:

$$\xi_b \ll d \ll \xi_i,\tag{24}$$

а собственная энергия локализованного состояния и его координата равны нулю: $E_R = 0, x_0 = 0$. В этом случае возможно аналитическое решение дисперсионного уравнения (7). Отметим, что нарушение условия (14) возможно лишь в пределе «узкой линии резонанса» $\Delta \gg \Gamma_0$, поскольку в обратном пределе $\Delta \ll \Gamma_0$ условие (14) выполняется автоматически.

Таким образом, в пределе «узкой линии резонанса», $\Delta \gg \Gamma_0$, для переходов с относительно большой толщиной условие (14) может быть нарушено по крайней мере для андреевских уровней, имеющих энергию порядка Δ . Однако при $E_R = 0$ решение (21) «прижато» к химическому потенциалу μ и имеет амплитуду Γ_0 , так что условие (14) для решения (21) выполняется для любых толщин перехода. В то же время отметим, что решение (21) при собственной энергии локализованного состояния $E_R \gg \Gamma_0$ отвечает андреевским уровням с энергией E, стремящейся к Δ . При этом из формул (20), (21) следует впервые отмеченный в работе [13] кроссовер формы резонансной кривой критического тока с $1/E_R$ на $1/E_R^2$ при $E_R \approx \Delta \gg \Gamma_0$. Поскольку для относительно толстых переходов, удовлетворяющих условию (24), условие (14) нарушается при $E_R \approx \Delta$, для таких переходов вышеупомянутый кроссовер не будет иметь места.

При выполнении условия (24) при $|E| \approx \Delta$ появляются два новых корня дисперсионного уравнения (7). Эти два новых решения являются прямым аналогом «расщепленных» андреевских уровней, рассмотренных в работе [12] для случая длинного S-I-Sперехода. Разница состоит в том, что эффективный коэффициент отражения \tilde{R} имеет сейчас аномальный знак: $\tilde{R} \simeq -1$ (в случае длинного S-I-S-перехода $\tilde{R} \cong 1$). Поэтому угол α близок к π :

$$\alpha = \pi + \alpha_0, \quad \alpha_0 = 2\sqrt{(\delta/2 + \cos^2(\varphi/2))\tilde{D}} \ll 1,$$

$$\delta \cong \left((\kappa_+ - \kappa_-)d\right)^2 / 2 \ll 1, \quad \tilde{D} \simeq \left\{2(V - \mu)/\Delta\right\}^2 D_0.$$
(25)

Выражение для угла дефазировки β имеет тот же вид, что и в в случае длинного S-I-S-перехода [12]:

$$\beta \simeq 2(\kappa_+ - \kappa_-)/k \ll 1.$$

Тогда из дисперсионного уравнения (7) следует выражение для «расщепленных» андре-

Рис. 2. Расшепленные андреевские уровни при $E \approx \Delta$, $d/\alpha = 12$, $\Delta/\mu = 2.5 \cdot 10^{-3}$, $(V - \mu)/\mu = 0$

евских уровней вблизи Δ:

$$E_{\pm}^{2} = \Delta^{2} \left\{ 1 - \left[\beta/2 \pm \sqrt{\tilde{D} \left(\delta/2 + \cos^{2}(\varphi/2) \right)} \right]^{2} \right\}.$$
(26)

Формула (26) переходит в выражение для расщепленных андреевских уровней длинного S-I-S-перехода после замены $\cos(\varphi/2)$ на $\sin(\varphi/2)$ и \tilde{D} на D. Поскольку из первого неравенства (24) следует, что $\beta/2 > \sqrt{\tilde{D}}$, оба решения (26) не достигают границы $E = \Delta$ (рис. 2).

Крутизна зон (26) $E(\varphi)$ определяет ток, текущий через каждое связанное состояние, по формуле (10)

$$I_{\pm} = \operatorname{sign} E \sin \varphi \left(e \Delta \tilde{D}/2 \right) \left[1 \pm \beta / \sqrt{4 \tilde{D} \left(\delta/2 + \cos^2(\varphi/2) \right)} \right].$$
(27)

Каждый из токов (27) значительно больше тока прямого, без участия локализованных состояний туннелирования, определяемого выражением Амбегаокара–Баратова [21], и имеет фазовую зависимость, пропорциональную $\sin(\varphi/2)$. Эти токи меньше тока от андреевского уровня (21) только на предэкспоненциальный фактор $(\kappa/k)(\Delta/(V - \mu))$. Однако, как и в случае длинного S-I-S-перехода, токи (27) имеют разные знаки и в равновесии компенсируют друг друга, давая общую амплитуду одного порядка с током , прямого туннелирования $4e\Delta(k/\kappa)^2D_0$, что экспоненциально меньше тока (21). Таким образом, появление дополнительных решений дисперсионного уравнения (7) при выходе за рамки условий (14), (15) не сказывается на равновесном резонансном джозефсоновском токе через переход.

7. ПРЕДЕЛ НИЗКОЙ ВЫСОТЫ БАРЬЕРА И ПРОИЗВОЛЬНОЙ ТОЛЩИНЫ ПЕРЕХОДА

Дальнейшее уменьшение отношения $\Delta/(V - \mu)$ и(или) увеличение толщины перехода κd , приводящее к нарушению второго неравенства в (24), не влияет, как было отмечено в предыдущем разделе, на выражение для андреевского уровня вблизи химического потенциала μ (21) (для $E_R \approx \Gamma_0$). Численный анализ дисперсионного уравнения (7) показывает, что два расщепленных корня при $E \approx \Delta$ по-прежнему существуют, но они становятся более плоскими и имеют фазовую зависимость, пропорциональную $\cos \varphi$. Поэтому их наличие по-прежнему существенно не влияет на равновесный резонансный джозефсоновский ток перехода, определяемый андреевским уровнем (21).

8. ЗАКЛЮЧЕНИЕ

Таким образом, проведенный анализ резонансного джозефсоновского туннелирования через одиночное локализованное состояние в прослойке показал наличие двух дополнительных характерных длин системы ξ_i и ξ_b (см. (2)), разделяющих различные режимы транспорта куперовских пар через структуру. Тем не менее, интересной особенностью резонансного джозефсоновского туннелирования оказался тот факт, что, несмотря на существенно разную динамику транспорта куперовских пар через структуру в различных режимах (появление дополнительных связанных андреевских состояний), общий равновесный ток через структуру определяется только отношением параметра порядка сверхпроводящих электродов Δ к ширине резонансного уровня Γ_0 во всех режимах и при любой толщине прослойки. Результаты работы позволяют точно установить границы применимости предыдущих расчетов резонансного джозефсоновского тока [11,13] и естественным образом объяснить предсказанное в [13] подавление по сравнению с одночастичным туннелированием резонансного джозефсоновского тока в пределе $\Delta \gg \Gamma_0$, а также зависимости $J_c \rho_n \propto 1/\rho_n$, обнаруженные в экспериментах с ВТСП-переходами [1–3].

Работа выполнена при финансовой поддержке программы «Современные проблемы физики конденсированного состояния» и проекта INTAS-RFBR 95-1305.

Литература

- 1. U. Kabasawa, Y. Tarutani, T. Fukazawa et al., Jap. J. Appl. Phys. 30, 1670 (1991).
- 2. Y. Kozono, M. Kasai, Y. Kanke et al., Physica C 185-189, 1919 (1991).
- 3. S. Tanutani, T. Fukazawa, O. Kabasawa et al., Appl. Phys. Lett. 58, 2707 (1991).
- 4. Yu. M. Boguslavskii and J. Gao, Physica C 194, 268 (1992).
- 5. J. Gao, Yu. M. Boguslavskii, B. B. G. Klopman et al., J. Appl. Phys. 72, 575 (1992).
- 6. M. Kasai, Y. Kanke, T. Oho et al., J. Appl. Phys. 72, 5344 (1992).
- 7. И. И. Венгрус, М. Ю. Куприянов, О. В. Снигирев и др., Письма в ЖЭТФ 60, 372 (1994).
- 8. T. Satoh, M. Hidaka, M. Yu. Kupriyanov et al., IEEE Tran. Appl. Sup. 5, 2612 (1995).
- 9. M. Yu. Kupriyanov and J. S. Tsai, IEEE Tran. Appl. Sup. 5, 2531 (1995).
- 10. M. Siegel, R. Dommel, C. Horstmann, and A. I. Braginskii, in *Extended Abstracts of Intern. Conf.* on Superconductor Electronics, Nagoya, Japan (1995), p. 141.
- 11. И. А. Девятов, М. Ю. Куприянов, Письма в ЖЭТФ 39, 187 (1994).
- 12. G. Wendin and V. S. Shumeiko, Phys. Rev. B 53, R6006 (1996).
- 13. C. W. J. Beenakker and H. van Houten, in *Single-Electron Tunneling and Messcopic Devices*, ed. by H. Koch and H. Lubbig, Springer-Verlag, Berlin Heidelberg (1992), p. 175.
- 14. B. J. van Wees, K.-M. H. Lenssen, and C. J. P. M. Harmans, Phys. Rev. B 44, 470 (1991).
- 15. P. F. Bagwell, Phys. Rev. B 46, 12573 (1992).

- 16. H. Knauer, J. Rihter, and P. Siedel, Phys. Stat. Sol. 44, 303 (1979).
- 17. C. W. J. Beenakker and H. van Houten, Phys. Rev. Lett. 66, 3056 (1991).
- 18. A. Furusaki, H. Takayanagi, and M. Tsukuda, Phys. Rev. Lett. 67, 132 (1991).
- 19. А. И. Ларкин, К. А. Матвеев, ЖЭТФ 93, 1030 (1987).
- 20. А. В. Тартаковский, М. В. Фистуль, ЖЭТФ 94, 353 (1988).
- 21. V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1963).