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We study a one-dimensional, two-band model with short-range electron—electron repulsions
(onsite U and nearest-neighbor V' terms) and electron—phonon coupling. We show that there is
a region of U, V and band filling in which singlet superconductivity fluctuations are dominant.
This region is absent without electron-phonon interactions and includes large values of U and V.

1. INTRODUCTION

The physics of low-dimensional strongly correlated fermion systems with repulsive
interactions is a topic of active interest, largely because the origin of high-T, superconductivity
in cuprate oxides and the role of phonons in these correlated systems are not clearly understood.
Using a simple one-dimensional (1D) Cu-O chain model [1], we investigate the effects of both
short range electron-electron (e—) repulsive interactions (onsite U and nearest-neighbor Cu-O
repulsion V') and electron-phonon (e-p) coupling in the ground state of the system. We show
that superconducting (SC) correlations are absent in the model if we take into account e-e
interactions only. The inclusion of e-p interactions leads to the appearance of a (U, V, p)
region (where p is the band-filling) in which superconducting fluctuations are dominant. On
the other hand, the ground state of the system in the absence of e—e repulsion is a state with a
charge-density wave (CDW) or spin-density wave (SDW) state without a divergent SC response.
Thus, the region with dominant SC response results from the combined effect of e—e and e—p
interactions for this model.

We use a renormalization-group (RG) two-cutoff approach developed in earlier
works [2,3]. With some assumptions on the model parameters, our analysis is valid in the
limit of large U and V. The possibility of SC fluctuations in quasi-1D systems with strong
repulsive e—e interaction and e-p coupling was first raised in work of Zimanyi et al. [3], where
results are obtained for a massive Thirring model. The two-band model without e-p interaction
was considered in [1], where numerical results are presented, pointing out the possible existence
of SC fluctuations in the strong-coupling limit. This statement is based on the numerical results,
which point to the presence of phase separation in the strong-coupling limit, and an intuitive
assumption that results obtained for the Luttinger liquid in the weak-coupling limit are valid
qualitatively in the strong-coupling limit for the quantum lattice model. Then in some vicinity of
the phase separation (where the correlation exponent satisfies K, — 00) one has a divergent SC
response if K, > 1 holds (see Eq. (24) below). Here we investigate RG weak-coupling solutions.
Therefore we do not consider phase separation. We show that in a region of sufficiently large
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e—e repulsion, where the RG approach is still applicable, a ground state with a dominant SC
response can be achieved due to the interplay of e—e and e—p interactions. We will show that,
due to two-band hybridization, the repulsion agplitudes U and V' are multiplied by small
parameters in the RG equations. This allows us to consider larger U and V values, which
exceed, for example, the width of the upper band. :

The plan of this article is as follows. In Sec. 2 we define our Hamiltonian and calculate
the band structure in the absence of e-e and e—p terms. In Sec. 3 we take into account e-e
and e-p terms, and construct the ground-state phase diagram on the basis of our RG analysis.
In the Conclusion we discuss our results and their implications. )

2. THE HAMILTONIAN

We consider a chain consisting of two types of atoms: Cu on odd sites with d-orbitals and
O on even lattice sites with p-orbitals. The Hamiltonian of the system is

H=H0+Hce +Hep1 (1)
Hy=—t) c;ica;the.+ A cpi— chicas), 2
(i,3) i
Hee = Z Z UaCai,1CayisCaryiy Caird +V Z €4,i€d,iCp,iCp.i> 3)
a=d,p 1 (4,5)

where ¢ is the hopping integral, (, j) are nearest-neighbor sites, A = (E, — E3)/2, E, and
E; are site energies, Uy and U, are Hubbard onsite repulsive energies, and V' is the repulsion
amplitude between nearest-neighbor sites. Direct antiferromagnetic coupling between Cu sites
is omitted. Also

Hep = Hep,l + Hep,Zy : 4

and we consider two models of electron-phonon coupling: the molecular crystal (MC) model
with the Hamiltonian H.,; in which optic phonons couple to the electron site energy, and the
Su-Schrieffer-Heeger (SSH) model with the Hamiltonian H.,, ; in which the lattice distortions
modulate the electron-hopping matrix element ¢. The Hamiltonian H.,,1 consists of two parts:
Hep = Hepa + Hep p, where each part has the form

He,,=Z

with wy = \/k/M, g = \/V2Muwy, px = Zczwcq. Here M is the ion mass, wy is the op-
tic-phonon frequency, « is the elasticity constant, and ) is the e-p coupling constant. All terms
in (5) have labels d or p, and the sum is over odd or even sites for H., 4 or H,, ,, respectively.
The Hamiltonian H.,,; takes into account intermolecular phonon modes:

P3 1 2 _ + 1 g +
i + 260 +Agip; = Xk:wo (dkdk + 5) + ﬁ(dk +d)px &)

P 1
Hepp = Z Ty EK’(‘BH -q) - ('E) 6t;,5Cq.iCp.j =
1 »J

1 1
= Wi (f+fk + _) t = g(ka q)(f +f: )C+, +qCp,k > (6)
zk: k 2 \/Nkz’q q g/%d,k+q P(
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where 6t; ; = A(¢; — g;), wg = 24/Kk/M sin(ga/2) is the acoustic-phonon frequency, g(k,q) =
= 4i\sin(ga/2) cos(ka + ga/2)/\/2Mw,, and a is the Cu-O lattice constant.
First we consider the noninteracting Hamiltonian H,. Diagonalization gives

Hy = Va2 cos? ka + A2 [c; (k)ca(k) — ci(k) er(K)] 7
where

ca(k) = cosbc (k) + sinbrcy(k),

cp(k) = —sinficy(k) + cosOxcy(k) ®)
with tg(20,) = —2tcos(ka)/A, —m/2 < 20, < w/2. Now we have a two-band electronic
structure and consider the case of an entirely filled lower band. The filling factor of the upper
band is 0 < p < 2 (empty for p = 0 and filled for p = 2). With unit cell 2a, the quasi-momen-
ta k and k + 7/a are equivalent, and we may assume that the states in the lower band have
quasi-momenta in the interval —7/2a < k < 7/2a and that in the upper band in the interval
7/2a < |k| < w/a; then kpa = /2 + wp/4. The Fermi velocity is

2at?sinkra)
/4t cosi(kra) + A? '

er=_

®

3. RG TREATMENT

Since we will use an RG approach we take into account only states in the upper band
in the vicinity of Er which are described by the operators c,. Then Hj has the form, in the
T-representation,

0 0
Hy=vp¥;, | —i— | Yo+ +vp¥s _ |i— ) V2, 10
0 =VF 2,+( Z&v) )+ HUR 2"(693) 2, (10)
where ¥, 4 include momenta near +kp, respectively. Below we will omit the subscript 2
and also terms in H with ¥;. (Taking into account the terms with ¥, can produce a shift
of the chemical potential and some renormalization of the Fermi velocity.) Therefore in the
Hamiltonian we can make the replacements

Yy — sinfp¥(z), ¥p — cosfp¥(x). (11)
Note that in the case t/A < 1 or p < 1 we have

tsin(rp/4)

sinfrp ~ 0 =~
A

(12)
First we consider e-e interaction effects. For the Cu-O case it is appropriate to consider
Uq > Up. Let us study the case U, = 0. The effect of small U, is easily taken into account

and will be discussed below. In terms of a «g-ology» model [4], the Hamiltonian H.. gives the
scattering amplitudes
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g = % sin* @ + 2Vasin® 0 cos(2kra) = g3,

o= % sin@p + 2Vasin? 0 = gq,

(13)

where g, is the backscattering amplitude, and ¢, and g4 are forward scattering amplitudes. The
«Umklapp» part g; exists only for the half-filled case p = 1: for simplicity we will not consider
this case. Since we use a RG approach below, we consider g; /mvp < 1, i.e., Ua, Va < nop
or sinf < 1 for large U and V. We have a spin-rotation invariance, i.e., g1 = g). Therefore,
when they are not essential, we will omit spin indices. The effect of the g4 term is taken into
account separately: it simply produces a shift in the velocity of the spin and charge degrees of
freedom: v, = vp(l + g4), v, =vp(l — gs).
The familiar RG equations defining the scaling behavior of the system are (4]

g9 =—129, (14)

ge = g1 — 2g, = const. (15)

For g, > 0 the excitation spectrum is gapless, g — gy = 0, while there is a gap if g; < 0.
The charge excitation spectrum is gapless for g. > 0 and has a gap A, if g. < 0. The ground

state has the most divergent singlet (triplet) SC response for g. > 0 and g, < 0 (or g. > 0 and
g1 > 0). In our case

gc = —% sin*@p + 2Vasin® 85 cos? O [cos(2kr) — 2] < 0. (16)
Therefore there is no region in (U, V) with divergent SC fluctuations, in accordance with
results [1] for the weak-coupling case. The possible ground states are a CDW or SDW,
depending on the sign of g,. (This sign can vary due to the coskra term.) We see that in
order to obtain SC correlations it is necessary to have large positive g; or negative g5 terms.
As we will see below, this condition can be achieved by taking into account an appropriate e-p
interaction.

, Second-order perturbation theory in e-p interaction produces a retarded e-e interaction [2]
for w less than the Debye frequency, w < wp ~ +/k/M. (We consider the case
wp < Ep.) The effective e-e interaction can be described in «g-ology» terminology: gi,,n =
= —2¢%(kr,2kF)/wikp, g2,0n = —29*(kF,0)/wo, g3ph = g1,pn (half-filled band only). In the
case of the MC model (5) we have

/\2
91,ph = G2,ph T G3ph = A 17
whereas the SSH model (6) gives
A .
Jiph = G3,ph = —475(Sin2 6 cos’fr). (18)

The parameters k and A in (17) and (18) are, of course, different, as well as the other parameters
in the Hamiltonians H.,, 1, H.p>. Note that all terms are negative, and gy:,,), is due solely to
onsite e—p coupling and does not contain renormalization terms sinfz and cos 7. In the case
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6 < 1, the onsite e—p interaction is dominant. Now we have two types of e~e interaction with
cutoffs Er and wp. Thus we use the RG procedure [2, 3] for a two-cutoff model. The one-loop
scaling equations (14) and (15) for g, are unaffected by the presence of retarded interaction.
The equations for the g; ,x, taking into account the cross terms g;g; »», were derived in [3]:

1

3 1
! — .
9ipn = p—— <§91 + 59 + gl,ph) 91,ph, (19)

92.0n = 0. (20)

We shall consider the case g3, = 0. The integration in (19) and (20) is taken from Er to
wo ~ wplwy), where wp(wg) is the renormalized value of wp [3]. As a result, the combined
action of different scattering processes is described by

9 =g + gl 1

The properties of the system at energies small compared to wy are derived from a model with
single interactions g7 and bandwidth wy.

Now we examine the solutions of Egs. (14), (15), (19), and (20). The initial conditions for
(14) and (15) are defined by (13). The initial conditions for (19) and (20) are defined by (17)
and (18). We write g, = —v, g}, = —7. If g{” > 0 holds (we shall see that this is the
situation in the interesting region), from (12) we find that g, scales toward small positive values
gt < g{”. Note that in the case § < 1 we have g\, ~ g}, ie., ¥ ~ v. From (13) it
follows that g7 —2¢5 = gﬁm — 2g?2). A positive derivative in (19) implies that 91,ph Scales toward
large negative values. We consider the opposite case g{'ph < 0. Then, at least initially, g, ,n
will scale toward a small negative value. Therefore we demand that

3ol o, .0 o4 2

2gl 2gc gl,ph > ) ( )
since g, ,» < 0. The inequality (22) can not be valid throughout the scaling process, since g,
scales to small values. Therefore the value gl*'ph may not be very small. We do not require
|97 ol <€ 7; for our purposes it is sufficient that g} ,, > v — 27 holds, as we show below. The
value g, . is not scaled as follows from (20), i.e., 92 ph = —4. This value does not contain the
renormalization coefficient sinf. As a result of scaling we have the state with g; = g7 +g; .
The ground state of the system with the new scaling amplitudes has dominant divergent SC
susceptibility if

o7 =gl — 297 =g\" —2¢ + g} n + 27> 0. (23)

Since we assume that gi’:ph ~ g n < 0, we have a state with spin gap A,. Therefore the
dominant singularity is the singlet SC response with SC correlation function

1+g7/2
R@) ~z V% K, = ‘/% > 1. (24)
c P

In this case the CDW response can be divergent with a correlation function oc z=%¢. The
inequalities (22) and (23) define the region in which the singlet SC correlations are dominant.
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In terms of u = (Ua/2) sin* 8, v = Vasin® 6@ cos? § we rewrite (22) and (23) as

'y+2v(1+2cos-7-rz—p)<u<2'y*—2v(2+cos-1;—p), (25)

where 2v* = 2% + g7 .. It is easy to obtain the solution of (25). This is the region ABCD
in Figure bounded by the lines u =0,v=0,u =y —-2v, u =27+ 9l ph — 2v. Recall that in
the limit # < 1, Eq. (12), the bare repulsive energies satisfy U ~ u/6*, V ~ v/8* > ~. Thus

our model includes the case of strong electron repulsion. For any point (u,v) in the region
ABC'D the inequality (25) is valid for

2, u—vy—2v ¥ —-4v—u
p> p cos (max{ ™ , o }) . (26)

In the limit {/A <« 1 we can obtain the phase diagram in terms of the bare values U
and V. Then the coordinates of the points A, B,C, and D are A = {0, (4v*)(A/t)*}, B =
= {0,2v(a/t)*}, C = {(v/2)(A/t)?,0}, and D = {(v*/2)(A/t)?,0}. The SC region is deformed
to include region II due to the sin(wp/4) term. The equation of the curve EF is

_A (@ -kt 41697 A
V=F Tmmragiay VS W @7)

In the limit k — oo we have U oc V2, but in this region p ~ 1/U 1/4 _, 0. The inequality (25)
with ¢/A < 1 becomes <

(U +8Vi)y? — 6Viy — v > 0,
(28)
(4Vy = Uyy? — 6Viy + 29" > 0,
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where V; = V(A/t)?, U1 = (U/2)(A/t)*, y = sin’(mp/4). In region I the solution of (28) is
po < p < 2, where sin’ (mpo/4) = yo is the largest root of Eq. (28). In region II we have
(U, V) < p < po(U, V), where p; and p, can be easily obtained from (28). If V 0 holds,

the solution is
4 _ ([~ 1/4 4 (2 1/4
= sin ( ) <p < 7, (29)

for Uy > «; if U = 0 holds, then in the region 7/2 < V; < v* the solution is sin?(xp/4) > yo,
where 3, is the largest root of Eq. (28) for U = 0.

In using the RG approach, we supposed as usual that g;/mvr < 1. For small ¢t/A we
have the initial value v(o) ~ (t*/A)sin(mp/2). Recalling that g; ~ Vltsin(wp/4)/A]* or
Ultsin(wp/4)/Al%, g2on = const, we can regard our results as reasonable if we are not too
close to band edges, where vp — 0, i.e., € < p < 2- e and p # 1 (g3 = 0). It follows from
our analysis that in region III we have the large spin and charge gaps, so that there is only a
CDW divergent response. In region IV we have g7 < 0, small g7 < 0 and thus divergent
CDW and SDW (in the limit g} — 0) responses.

' We considered the effect of the lower band only through the renormalization of the bare
values U and V. Thus, we did not take into account the terms (V©? + U)¥ ¥, ¥} ¥, + (V+
+U@%)¥{¥¥;¥;. Therefore our results are valid in the region U,V < Eg, ~ A. In order to
estimate the effect of the cross term, we can rewrite our two-band model in terms of two-chain
model and use the results of RG investigation [5]. It is easily to see that electron-hole pair
interchain hopping is irrelevant (scales to small values), if U > V. Thus we can consider the
region of large values U and V (U > V) in comparison with the upper-band width ~ t2/A < A.

In this treatment we have not taken into account the effects of U, repulsion. This is easily
achieved by substituting u into (20) in the form u = (Uasin® 05 + Upa cos*@r)/2. For small
values of U, the RG approach remains valid, and all results continue to hold in terms of the
new u and v. For t/A < 1 we have cosfr ~ 1, so that we cannot consider the large-U,, limit
in our approach.

4. CONCLUSIONS

In conclusion, using a two-cutoff RG approach we have studied a two-band, 1.D tight-bin-
ding model with e-e and e-p interactions. We included onsite U and nearest-neighbour V'
_electron repulsions, as well as intra- and inter-molecular e—-p coupling. We have shown (in
accordance with [1]) that there is no U,V, p,t,A parameter region with dominant divergent
SC response in the absence of e-p interaction. In the lowest-order RG approach we found
that such a region does occur if we include e-p coupling with optical intra-molecular modes.
Only this form of e-p interaction produces an effective renormalized g, ,» term. We have
found that the singlet SC region includes large values of the U and V repulsive interactions if
tsin(mp/4)/A < 1. Note that a similar behaviour is possible in a one-band model, for which
A = 0. Then, instead of (25), we have

Y+2V [l -2cos(mp)l < U < 27 + g oh 2V [2 - cos(mp)], 30)

where v = —g(O)h, q= —92 ph, 0 < p < 2. The solution of (30) is the same region ABCD in
Figure provxdedp that 2%+ g7 , > 7. However, the bare values U and V' must be small, of the
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order of phonon scattering strengths. Note also that we have used a RG approach. Therefore
we did not consider the strong-coupling limit (V, U > t, A), where a phase separation instability
could take place [1].

The main results of our treatment are the following:

1) Using a 1D two-band model, we have taken into account both e~p coupling and e~
e repulsion and have shown that there is a region of parameters with dominant divergent SC
response. This effect is absent in the model without e~p coupling and is a result of the interplay
of e—e and e—p interactions.

2) We have found that weak e—p interactions and relatively strong e—e repulsions can result
in an effective electron pairing and a divergent SC response. This is possible in the limit ¢ /A < 1,
where we can take into account large U and V values, since effective e—e interactions are scaled
by a factor t/A. As a result we find that dominant divergent SC fluctuations are possible in
the region V (t/A)? ~ U(t/A)* ~ g, V < U < A, as shown in Figure.

3) We have found that dominant SC fluctuation states are possible only in a some interval
p1 < p < pp of band filling.

4) We have found that only e-p interaction with optical intramolecule phonon modes can
result in SC.

5) Our conclusions are valid also beyond the limit ¢/A < 1 for the two-band model and
for the one-band model (A = 0). But in these cases the SC fluctuation ground state is possible
in the region of relatively small repulsive constants (U, V ~ ggp).

This model without e-p coupling was studied in [1] where some indications of SC
fluctuations in the strong-coupling limit were obtained. We have considered a substantially
another region.

We have proposed one possible scenario for the origin of dominant SC fluctuations in
quasi-one-dimensional systems as a result of the combined effect of repulsive e—e and attractive
e-p interactions in a two-band situation. We suggest that features of this picture will survive
in analogous two-dimensional models of high-T. superconductors, in particular in three-band
Peierls-Hubbard models [6]. However, the orbital structure of the order parameter in this case
(s-wave vs d-wave) is unclear without detailed calculations.

One of us (S. M) wishes to thank Los Alamos National Laboratory for support and
hospitality. Work at Los Alamos is performed under the auspices of the U. S. DoE.
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