МАГНИТНОЕ УПОРЯДОЧЕНИЕ АТОМОВ Fe В ИКОСАЭДРИЧЕСКИХ КВАЗИКРИСТАЛЛАХ Al_{70-x} B_x Pd_{30-v} Fe_v

И. С. Любутин, Ч. Р. Линь*, С. Т. Линь*

Институт кристаллографии Российской академии наук 117333, Москва, Россия * Национальный Чен-Кунг Университет, Тайнань 70101, Тайвань

Поступила в редакцию 28 июня 1996 г.

В системе $A_{170-x} B_x Pd_{30-y} Fe_y$ для 5 < x < 10 и 10 < y < 20 обнаружены новые икосаэдрические квазикристаллы, в которых атомы железа имеют магнитный момент. Соединения обладают ферромагнитными свойствами, величина T_C лежит в пределах 280–340 К, максимальная намагниченность $\sigma_s (5K) \approx 7.5 \, \Gamma c \cdot c M^3/r$. Методом мессбауэровской спектроскопии установлено, что только часть атомов Fe (около 12–15%) магнитно упорядочена при 4.2 К, среднее поле насыщения $\langle H_{hf} \rangle = 96 \, \text{к} \Im$. Значения изомерного сдвига подтверждают предположение о том, что атомный объем Fe-узлов магнитного типа больше, чем немагнитного. Магнитные свойства этих квазикристаллов можно объекснить в предположении существования больших магнитных кластеров размером примерно от 185 Å до 290 Å. Этот размер соответствует приблизительно 4·10⁴ «элементарным ячейкам», так что магнитное состояние близко к состоянию объемного материала. Предполагается, что локальный момент на атомах Fe возникает, в основном, за счет образования связей между Fe и В подобно тому, как это происходит в аморфном сплаве Fe~50 B~50.

1. ВВЕДЕНИЕ

Магнитные икосаэдрические квазикристаллы (i-QC), содержащие железо, не были известны до самого последнего времени [1–4]. В отличие от i-QC, содержащих Mn, квазикристаллы даже со значительным содержанием железа обычно немагнитны [3]. Так, например, в $i-QC \operatorname{Al}_{65}\operatorname{Cu}_{20}\operatorname{Fe}_{15}$ атомы Fe не обладают магнитным моментом, по крайней мере, при T > 1.5 К [3]. Икосаэдрические $QC \operatorname{Al}_{70}\operatorname{Pd}_{20}\operatorname{Fe}_{10}$ [5] и Al₇₀Pd₁₆Fe₁₄ [6] также немагнитны выше 4.2 К. Квазикристаллы на основе Al-Mn с малым количеством Fe парамагнитны [7-9]. В ферромагнитных *i*-QC Al-Si-Mn присутствие железа приводит к упорядочению типа спинового стекла, которое при низких температурах сосуществует с ферромагнетизмом, но атомы Fe не имеют магнитного момента [7]. В ферромагнитных i-QC Al₄₀Ge₂₅Mn₂₅Cu_{10-x}Fe_x атомы Fe не имеют магнитного момента при 100 K, а небольшое сверхтонкое магнитное поле на ядрах железа ($H_{hf} = 9 \text{ k}\Theta$) наводится от атомов марганца [10]. Однако недавно Насу с сотр. [11–13] обнаружили в квазикристаллах Al-Ge-Mn-Cu-Fe магнитный переход при 30 К, а также присутствие магнитных и немагнитных позиций железа ниже 30 К. Стадник с сотр. [14, 15] нашли, что в *i-QC* Al-Ge-Mn и Al-Ge-Cu-Mn с очень малым содержанием железа часть атомов Fe имеет небольшой магнитный момент при 4.2 К, но существуют также узлы немагнитного типа, в которых атомы Fe не обладают магнитным моментом.

Недавно Иокогама с сотр. [16, 17] обнаружили, что добавление атомов бора в немагнитный QC на основе Al-Mn приводит к появлению магнитных моментов на атомах марганца. Величина намагниченности Al-Mn-Pd-B квазикристаллов зависит от содержания бора и максимальна при 10% В. Магнитное состояние Al-Mn-Pd-B-системы является свойством квазикристаллической фазы, и намагниченность полностью исчезает, когда икосаэдрическая фаза переходит в кристаллическую. По аналогии с Mnсистемой мы недавно обнаружили новый железосодержащий магнитный икосаэдрический квазикристалл Al_{62.5}B_{7.5}Pd₁₅Fe₁₅ [18]. Он является ферромагнетиком с точкой Кюри $T_C = 305$ K; при T = 5 K его намагниченность $\sigma_s = 4.2$ Гс·см³/г, коэрцитивная сила равна 1.2 кЭ, а величина магнитного момента μ_{eff} по оценке составляет 1.63 μ_B на атом Fe. Заключение о том, что магнитное состояние является свойством именно квазикристаллической фазы Al_{62.5}B_{7.5}Pd₁₅Fe₁₅, а не связано с примесью или кристаллическими фазами, было подтверждено многими аргументами в [18].

Мессбауэровская спектроскопия является одним из наиболее плодотворных методов изучения локальной атомной и магнитной структуры квазикристаллов, содержащих атомы Fe. Обзоры по этой теме недавно опубликованы в [3,4,12]. В настоящей статье излагаются результаты магнитных измерений и детальных мессбауэровских исследований новых железосодержащих ферромагнитных i-QC системы $Al_{70-x} B_x Pd_{30-y} Fe_y$.

2. ЭКСПЕРИМЕНТ

Мы пытались получить квазикристаллы различных составов в системе Al_{70-x} B_x Pd_{30-v} Fe_v. Икосаэдрические QC-материалы были получены дуговой плавкой смеси исходных компонент высокой чистоты Al (99.999 вес.%), B (99.9 вес.%), Pd (99.9 вес.%) и Fe (99.995 вес.%) в очищенной атмосфере аргона. Быстрая закалка сплавов достигалась путем разлива расплава на медный цилиндр диаметром 15 см, вращающийся со скоростью 6000 об/мин. Рентгеновские дифракционные спектры измерялись с использованием рентгеновской трубки с вращающимся анодом (Cu K_{α} , 50 кB, 200 мA) с графитовым (002) монохроматором. Измерения намагниченности выполнены с помощью SQUID-магнетометра (типа Quantum Design MPMS-5) в интервале температур 5-400 К и во внешнем магнитном поле H_{ext} до 5.5 Тл. На некоторых образцах измерялось также электросопротивление в диапазоне температур 4.2-300 К. Мессбауэровские спектры ядер ⁵⁷ Fe в температурном интервале 4.2-400 К были получены на стандартных спектрометрах с постоянным ускорением в геометрии пропускания. Источник гамма-лучей ⁵⁷Co(Rh) находился при комнатной температуре. Для измерений при температурах 4.2-295 К использовался проточный гелиевый криостат типа OXFORD Instrument CF-506. а для диапазона 295–400 К — вакуумная печь типа AUSTIN Instrument Inc. VF-1000. Эффективная толщина наших поглотителей по оценкам [19] составляла ~ 0.08. Это означает, что при анализе спектров мы можем пользоваться «приближением тонкого поглотителя» [19]. Все значения изомерных сдвигов приводятся в тексте относительно металлического Fe при комнатной температуре.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

3.1. Образование и стабильность квазикристаллических фаз

В системе $Al_{70}Pd_{30-y}Fe_y$ нам удалось получить однофазный квазикристалл $Al_{70}Pd_{20}Fe_{10}$, а также аналогичное соединение $Al_{70}Pd_{20}Fe_8Mn_2$ с частичным замещением железа на марганец. Соединение $Al_{70}Pd_{15}Fe_{15}$, кроме *i*-*QC*-фазы, содержало небольшую часть кристаллической фазы. Однако несколько однофазных *i*-*QC* были получены при

Рис. 1. Области составов, где в сплавах Al-B-Pd-Fe образуются однофазные икосаэдрические квазикристаллы: (•) образуется только икосаэдрическая фаза; (о) кристаллическая фаза и/или декагональные квазикристаллические фазы появляются вместе с икосаэдрической фазой, но икосаэдрическая фаза доминирует

частичном замещении алюминия бором. Мы построили фазовую диаграмму для системы $Al_{70-x}B_xPd_{30-y}Fe_y$ и нашли, что составы с однофазной икосаэдрической структурой образуются в области 5 < x < 10 и 10 < y < 20 (рис. 1). В частности, однофазные *i-QC*-материалы были получены в системе $Al_{62.5}B_{7.5}Pd_{30-y}Fe_y$ при y = 12.5, 15 и 17.5.

Рентгенограммы *i-QC* этой системы приведены на рис. 2. Все линии проиндексированы как икосаэдрические пики по схеме Элзера [20,21], предложенной для идентификации икосаэдрических квазикристаллических фаз. Это означает, что образцы полностью однофазны, и структуру можно идентифицировать как шестимерную гранецентрированную икосаэдрическую решетку. Согласно Элзеру [20], квазирешеточная константа a_R определяется длиной ребра ромбоэдрических ячеек, образующих трехмерную мозаику Пенроза. Из рентгеновских данных для Al_{62.5}B_{7.5}Pd₁₅Fe₁₅ мы нашли $2\theta = 42.3^{\circ}$ для интенсивного рефлекса (422222) (рис. 2), для которого $Q_{100000} =$ $= 4\pi \sin \theta/\lambda$ [20]. Используя соотношение $Q_{100000} \times a_R = 13.308$, полученное для гранецентрированной икосаэдрической структуры [20, 21], мы нашли $a_R = 4.5217$ Å.

Мы также исследовали процесс трансформации i-QC в равновесные кристаллические фазы. Квазикристалл $Al_{62.5}B_{7.5}Pd_{15}Fe_{15}$ отжигался шаг за шагом при некоторой температуре T_a между 400 и 1000 К в течение двух часов, и после каждого шага отжига снимались рентгенограммы и мессбауэровские спектры. Мы нашли, что при $T_a \leq 800$ К структурных трансформаций не происходит. При дальнейшем отжиге до 1000 К i-QC начинает разлагаться на кристаллические фазы. Исходя из рентгенограмм, эти фазы идентифицированы как Al-Fe, Fe₂B и FeB. Мессбауэровские спектры этих кристаллических фаз сильно отличаются от спектров квазикристаллической фазы и поэтому служат хорошим дополнительным контролем фазового состава.

3.2. Данные магнитных измерений

Зависимости намагниченности от поля $\sigma(H)$ при 5 К приведены на рис. 3. В сильных полях кривые почти насыщены и указывают на типичное ферромагнитное поведение для всех икосаэдрических составов. Гистерезисные свойства намагниченности, типичные для ферромагнитного состояния, наблюдались при всех температурах вплоть до точки Кюри T_C [18]. Мы нашли, что величина намагниченности насыщения σ_s возрастает с ростом концентрации Fe и B (рис. 4). Значения σ_s одинаковы для ленточных

Рис. 3. Зависимость намагниченности от магнитного поля в квазикристаллах различного состава $Al_{70-x}B_xPd_{30-y}Fe_y$ при 5 К: 1 - x = 7.50, y = 17.5, 2 - x == 10.0, y = 15.0, 3 - x = 8.25, y = 15.0, 4 - x = 7.5, y = 15.0, 5 - x = 6.25, y = 15.0, 6 - x = 5.0, y = 15.0, 7 - x = 3.75, y = 15.0, 8 - x = 7.50, y = 12.5

Рис. 4. Зависимости намагниченности насыщения σ_s от концентрации Fe (при фиксированной концентрации бора x = 7.5) и от концентрации B (при фиксированной концентрации железа y = 15) в квазикристаллах Al_{70-x} B_x Pd_{30-y} Fe_y при 5 K

Рис. 5. Температурные зависимости намагниченности в поле 20 Э для квазикристаллов $Al_{70-x}B_xPd_{15}Fe_{15}$ с различным содержанием бора x. Вставка: зависимость температуры Кюри T_C от содержания бора x

Рис. 6. Температурные зависимости намагниченности в поле 20 Э для квазикристаллов $Al_{62.5}B_{7.5}Pd_{30-y}Fe_y$ с различным содержанием железа y. Вставка: зависимость температуры Кюри T_C от содержания железа y

и порошковых образцов. Однако значения σ_s и T_C для образцов одинакового состава, приготовленных в одинаковых условиях, но в разное время, немного различаются. В частности, значения σ_s и T_C для образца $Al_{62.5}B_{7.5}Pd_{15}Fe_{15}$, найденные в настоящей работе, немного отличаются от данных, опубликованных в [18]. Зависимость намагниченности от температуры (рис. 5 и 6) имеет сложный «размытый» вид и трудно найти модель ее обработки во всем интервале температур. Для грубой оценки значений T_C мы использовали линейную экстраполяцию кривых $\sigma^2(T)$ к $\sigma = 0$, полученных из данных по намагниченности при охлаждении в поле. Найденные таким способом значения T_C возрастают с ростом концентрации Fe, но уменьшаются с ростом концентрации B (см. ниже табл. 2 и вставки на рис. 5 и 6).

Ферромагнитные свойства и увеличение намагниченности с ростом содержания бора были также найдены в марганцевых аналогах наших квазикристаллов $Al_{70-x} B_x Pd_{15} Mn_{15}$ [17], хотя интервалы концентраций, при которых существуют однофазные QC, различны для этих двух систем. Ферромагнетизм квазикристаллов $Al_{70-x} B_x Pd_{15} Mn_{15}$ в работе [17] объяснен на основе существования Mn-Mn кластеров, при этом роль бора состоит в усилении магнитных взаимодействий пар Mn-Mn за счет связи Mn-B, а также в увеличении размеров кластеров.

3.3. Анализ мессбауэровских спектров

Типичные ⁵⁷ Fe-мессбауэровские спектры i-QC системы $Al_{70-x}B_xPd_{30-y}Fe_y$ показаны на рис. 7. При низких температурах спектры состоят из центральной интенсивной компоненты, характерной для немагнитного состояния атомов Fe в QC, и сильно расщепленной менее интенсивной компоненты. Из температурной зависимости формы

спектров можно заключить, что менее интенсивная компонента относится к субспектру с магнитным сверхтонким расщеплением. Это означает, что часть атомов Fe при низких температурах находится в магнитоупорядоченном состоянии. В интервале температур 4.2–250 К магнитная и немагнитная компоненты сосуществуют. Сосуществование магнитной и немагнитной компонент недавно наблюдалось также в ЯМР-спектрах ядер ⁵⁵Mn в QC-системе Al-B-Pd-Mn [22].

Мы испытали разные модели для обработки экспериментальных спектров $Al_{70-x}B_xPd_{30-y}Fe_y$. В качестве примера в табл. 1 приведены сверхтонкие параметры, полученные при обработке спектров образца $Al_{62.5}B_{7.5}Pd_{15}Fe_{15}$ по нескольким моделям. Немагнитная часть достаточно хорошо описывается моделью распределения квадрупольных расшеплений P(QS) (см. рис. 8a, 6 u табл. 1), в которой мы использовали приближение Виндоу [23]. Для учета асимметрии экспериментальных спектров, мы ввели линейное соотношение между величинами квадрупольного расшепления QS и изомерного сдвига IS [24, 25]: $IS = IS_0 + nQS$, где IS_0 соответствует QS = 0, а n — параметр корреляции. Однако мы обратили внимание, что центр тяжести магнитной части. Тогда мы попытались описать немагнитную часть двумя дублетами D1 и D2 с разными IS, но близкими QS (табл. 1). Эта модель дает хорошую аппроксимацию (см. рис. 9), но площади дублетов немонотонно меняются с температурой. Для лучшего разрешения магнитной части спектра немагнитная часть (предварительно обработанная по модели QS-распределения) вычиталась из полного спектра. Как видно из рис. 9, такая про-

Таблица 1

Параметры сверхтонкого взаимодействия, полученные при обработке мессбауэровских спектров квазикристалла $Al_{62.5}B_{7.5}Pd_{15}Fe_{15}$ с помощью различных моделей, IS изомерный сдвиг относительно металлического железа при комнатной температуре, $QS = e^2 q Q/2$ — величина квадрупольного расщепления, H_{hf} — сверхтонкое магнитное поле, A_{rel} — относительная площадь спектра, Γ — полуширина линии, M_i — магнитные секстеты, D_i — парамагнитные дублеты, $\langle M \rangle$ и $\langle D \rangle$ соответствуют средним значениям параметров для магнитной и немагнитной компонент

Τ,	M,D	IS,	QS,	$H_{hf},$	$A_{rel},$	Γ,	χ^2	Молот
Κ		мм/с	мм/с	кЭ	%	мм/с	X	модель
	$\langle D \rangle$	0.340	0.503	-	88.0	0.280	2.304	1
4.2	$\langle M \rangle$	0.512	-0.069	95.5	12.0	0.334		
	D	0.368	0.495	-	87.7	0.454	6.393	
	M1	0.514	-0.067	105.6	5.4	0.351		2
	M2	0.528	-0.107	85.5	6.9	0.250		
	D1	0.398	0.526	_	52.5	0.369	2.148	
	D2	0.256	0.425	-	35.5	0.415		3
	M1	0.509	-0.054	106. 6	4.9	0.342		
	M2	0.515	-0.084	85.9	7.1	0.330		
293	D1	0.399	0.417		18.2	0.310	2.314	4
	D2	0.213	0.445	_	81.8	0.429		
350	D1	0.368	0.395	_	20.0	0.241	2.269	4
	D2	0.187	0.439	-	80.0	0.385		
	$\langle D \rangle$	0.210	0.454	-	100.0	0.280	2.191	5

Примечание: 1. Модель обработки с распределением квадрупольных расшеплений P(QS)для центральной немагнитной части спектра и средним значением поля $\langle H_{hf} \rangle$ для магнитной части спектра. 2. Модель, аппроксимирующая спектры одним асимметричным парамагнитным дублетом и двумя магнитными секстетами. 3. Модель с двумя симметричными дублетами и двумя секстетами. 4. Модель с двумя симметричными дублетами. При 293 К площадь магнитной части равна ~ 0.4% и ею можно пренебречь. 5. Модель распределения P(QS).

цедура позволяет хорошо разрешить магнитные компоненты. Средние значения сверхтонких параметров H_{hf} , QS и IS для магнитных компонент в квазикристаллах разного состава даны в табл. 2. При дальнейшем анализе мы используем среднее значение сверхтонкого магнитного поля $\langle H_{hf} \rangle$, которое определяется как $\sum H_i A_i / \sum A_i$, где A_i — относительная площадь *i*-ой компоненты. При высоких температурах магнитная компонента переходит в немагнитную, типичную для QC-фазы, и никаких дополнительных линий, относящихся к посторонней фазе, в спектре не появляется. Это может быть проверено с большой точностью благодаря высокой чувствительности фактора χ^2 к вариантам подгонки, и это дает дополнительный аргумент против наличия посторонних фаз железа в квазикристаллах $Al_{70-x}B_x Pd_{30-v}Fe_v$.

Рис. 8. Мессбауэровские спектры квазикристалла $Al_{62.5}B_{7.5}Pd_{15}Fe_{15}$ при 350 К (*a*) и 4.2 К (*б*). Показана аппроксимация экспериментальных спектров по модели распределения параметра квадрупольного расщепления P(QS). Вставки: кривые распределения P(QS) для парамагнитной части спектра

3.4. Сравнительные магнитные и мессбауэровские параметры квазикристаллов и подобных им аморфных и кристаллических соединений

Очень важно сравнить макромагнитные характеристики и сверхтонкие параметры мессбауэровских спектров наших QC с данными для соответствующих аморфных и кристаллических соединений. Сдвиг центра тяжести CS мессбауэровского спектра и H_{hf} зависят от температуры. При T > 0 CS состоит из изомерного химического сдвига IS и доплеровского сдвига второго порядка SODS, в то время как H_{hf} может изменяться за счет релаксационных эффектов. Поэтому сравнение параметров различных соединений следует проводить при одной и той же температуре, близкой к 0 К. В системах Al-Fe, Al-B-Fe, Al-Pd-Fe и Al-B-Pd-Fe мы не нашли кристаллических и/или аморфных соединений со значениями IS, H_{hf} и T_C , близкими к наблюдаемым в наших QC. В частности, известно, что железо только в очень небольших количествах растворяется в гранецентрированном металлическом алюминии, а при больших концентрациях Fe твердый раствор Fe-Al сосуществует с соединением Fe₄Al₁₃ [26]. Как в разбавленном сплаве Fe-Al, так и в Fe₄Al₁₃ атомы железа немагнитны, и $IS(4.2 \text{ K}) \approx 0.6 \text{ мм/с } u \approx 0.12 \text{ мм/с соответственно} [26]. Эти характеристики исключают присутствие Al-Fe-фаз в наших <math>QC$.

Квазикристаллы Al₇₀Pd₂₀Fe₁₀ [5] и Al₇₀Pd₁₆Fe₁₄ [6] немагнитны выше 4.2 К. Поэтому появление ферромагнетизма в квазикристаллах $Al_{70-x}B_xPd_{30-y}Fe_y$, содержащих В, по-видимому, связано с образованием локальных связей между Fe и В подобно тому, как это происходит в Mn-содержащих *i*-QC [16, 17]. Сверхтонкие мессбауэровские параметры, а также температуры магнитного упорядочения в аморфных и кристаллических соединениях Fe-B различных составов были тщательно изучены Чиеном с сотр. [27-29]. Существуют три кристаллических Fe-B-соединения: FeB, Fe₂B и Fe₃B. Их параметры H_{hf} (4.2 K) и T_C равны соответственно (131 кЭ, 598 K), (242 кЭ

Таблица 2

Параметры сверхтонкого взаимодействия для магнитной компоненты мессбауэровского спектра в икосаэдрических кристаллах $Al_{70-x}B_xPd_{30-y}Fe_y$ при T = 4.2 К. IS — изомерный сдвиг относительно металлического железа при комнатной температуре, $\varepsilon = e^2 q Q/4$ — квадрупольный сдвиг, $\langle H_{hf} \rangle$ — среднее значение сверхтонкого магнитного поля, $A_{rel} = A_m/A_{tot}$ — относительная площадь магнитной компоненты. Значения температуры Кюри T_C и намагниченности насыщения σ_s получены из магнитных измерений, μ_{eff} — магнитный момент на атом Fe

		IS	£	$\langle H_{1,\ell} \rangle$	<i>A</i> ,	T_{α}	σ	11.00
\boldsymbol{x}	y	мм/с	мм/с	кЭ	%	K	Гс∙см ³ /г	(μ_B)
5.0	15	0.516(5)	-0.097(5)	97.5(5)	14.1(5)	304	4.3	1.55
10.0	15	0.502(5)	-0.062(5)	96.4(5)	14.3(5)	258	7.2	2.50
7.5	12.5	0.520(5)	-0.087(5)	95.0(5)	10.0(5)	247	3.6	1.86
7.5	15.0	0.508(5)	-0.082(5)	95.3(5)	12.3(5)	287	5.8	2.37
7.5	17.5	0.497(5)	-0.068(5)	95.5(5)	14.1(5)	294	7.8	2.69

 $Al_{70-x}B_xPd_{30-y}Fe_y$ (см. табл. 2). Кристаллический FeB имеет самое близкое к квазикристаллам значение $H_{hf}(4.2 \text{ K})=131 \text{ k}$ 9, но его изомерный сдвиг IS(4.2 K)=0.37 мм/cсущественно ниже величины IS(4.2 K)=0.51 мм/c, типичной для магнитного типа атомов Fe в QC (табл. 2). В кристаллическом Fe₂B значение IS(4.2 K) еще ниже (~ 0.22 мм/c). Следовательно, ферромагнетизм, наблюдаемый в икосаэдрических квазикристаллах $Al_{70-x}B_xPd_{30-y}Fe_y$, не может быть связан с кристаллическими Fe-Bвключениями в исследуемых сплавах.

В аморфной системе $Fe_x B_{100-x}$ [28] мы обнаружили состав $Fe_{45-50}B_{55-50}$ со значениями H_{hf} и T_C , близкими к соответствующим величинам в наших QC, однако параметр IS(4.2 K) в аморфных материалах много меньше, чем в QC. В этой системе аморфный $Fe_{47}B_{53}$ имеет наибольшую величину $IS(4.2 \text{ K}) \approx 0.33 \text{ мм/c}$ [28], которая, тем не менее, заметно ниже, чем в QC. Кроме того, хорошо известно, что аморфные сплавы $Fe_x B_{100-x}$ с $x \le 50$ могут быть изготовлены только методом напыления [28], но не могут образовываться в методе закалки расплава, который использовался в настоящей работе. В действительности мы не нашли никаких признаков аморфной фазы на рентгенограммах (рис. 2). Таким образом можно сделать вывод, что ферромагнетизм в икосаэдрических $AI_{70-x}B_xPd_{30-y}Fe_y$ является внутренним свойством квазикристаллической фазы, а локальные атомные конфигурации вокруг магнитных атомов железа в этих *i*-QC могут быть подобны тем, которые существуют в аморфной фазе $Fe_{45-50}B_{55-50}$.

3.5. Электронные свойства

Из анализа мессбауэровских спектров следует, что в $i-QC \operatorname{Al}_{70-x} \operatorname{B}_x \operatorname{Pd}_{30-y} \operatorname{Fe}_y$ атомы железа распределены по двум типам узлов решетки — магнитным и немагнитным, и около 12-15% атомов железа магнитно упорядочены при низких температурах. Среднее значение IS(4.2 K) для немагнитных атомов железа равно 0.34 мм/с, что типично для многих квазикристаллов [3-5, 12], тогда как для магнитных атомов железа величина IS(4.2 K) много больше (0.51 мм/с). В общем случае увеличение IS указывает на уменьшение плотности з-электронов на ядрах железа и означает, что материал становится менее металлическим и приближается к изолятору. Из измерений электросопротивления мы нашли, что в температурном интервале 4.2-300 К сопротивление квазикристалла Al_{62,5}B_{7,5}Pd₁₅Fe₁₅ составляет ~ 3 · 10⁻³ Ом см. Это на два-три порядка выше, чем сопротивление металлического железа, и близко к значению минимума проводимости Мотта $\sim 200 \; (OM \cdot CM)^{-1}$, ниже которого система становится изолятором при 0 К. Это наводит на мысль об электронной локализации в квазикристаллах [30]. Более высокое значение IS для магнитных атомов железа согласуется с идеей об электронной локализации на узлах этого типа и коррелирует с возникновением магнитного состояния в этих узлах. Мы нашли, что температурные зависимости изомерных сдвигов аналогичны для магнитных и немагнитных атомов железа, однако они не описываются дебаевским приближением.

В работах [8, 31–33] сделано предположение о существовании двух классов узлов для атомов переходных металлов в i-QC. Размер узлов немагнитного типа меньше, чем магнитного. Присутствие двух классов узлов может быть объяснено наличием беспорядка, присущего квазикристаллам i-QC [15], а также вытекает из общих принципов зонной теории для переходных металлов и их сплавов [34, 35]. Эта идея была подтверждена экспериментально в ряде работ [11–15, 32].

Прямое доказательство наличия двух классов узлов для атомов железа в наших квазикристаллах $Al_{70-x}B_xPd_{30-y}Fe_y$ следует не только из факта сосуществования магнитэкспериментально в ряде работ [11-15, 32].

Прямое доказательство наличия двух классов узлов для атомов железа в наших квазикристаллах $Al_{70-x} B_x Pd_{30-y} Fe_y$ следует не только из факта сосуществования магнитных и немагнитных атомов, но и из наблюдаемых величин изомерных сдвигов. Из табл. 1 и 2 ясно, что независимо от модели обработки, величина *IS* для магнитных атомов существенно больше, чем для немагнитных. Последнее означает, что плотность *s*-электронов на ядрах ⁵⁷ Fe меньше для магнитных атомов железа. Это может быть вызвано: а) химическим эффектом различного локального атомного окружения или/и б) бо́льшим атомным объемом магнитных узлов по сравнению с немагнитными [36]. Сравнение с аморфной системой $Fe_x B_{100-x}$ показывает, что механизм а) не может привести к наблюдаемому эффекту и, следовательно, механизм б) наиболее вероятен. Из табл. 2 видно, что значения *IS* в квазикристаллах $Al_{70-x} B_x Pd_{30-y} Fe_y$ очень близки в интервалах $5 \le x \le 10$ и $12.5 \le y \le 17.5$. Это указывает на аналогичный характер связи железо-лиганд в этих соединениях.

Сверхтонкое магнитное поле H_{hf} мало меняется с изменением x и y (табл. 2), и его среднее значение насыщения равно примерно 96 кЭ. Низкое значение $\langle H_{hf} \rangle$ можно объяснить малым магнитным моментом на атомах Fe, что типично для QC-материалов. Поле H_{hf} на ядре атома железа в металлических системах может быть выражено [37, 38]:

$$H_{hf} = a\mu_{\rm Fc} + b\mu,\tag{1}$$

где первый член дает локальный вклад от магнитного момента данного атома железа μ_{Fc}, а второй — вклад электронов проводимости, поляризованных по спину соседними магнитными моментами. Обычно первый член отрицателен, а второй может быть как отрицательным, так и положительным в зависимости от магнитной структуры и типа взаимодействия [39]. Типичное значение константы а для большинства сплавов равно $-142 ext{ k} \Im/\mu_{Fc}$ [37, 38]. Принимая во внимание, что металлическое состояние в наших QC близко к состоянию перехода металл-изолятор, мы предполагаем, что параметром bможно пренебречь. Тогда, используя соотношение $|H_{hf}| = 142 \mu_{Fe}$ и экспериментальное значение $\langle H_{hf} \rangle \approx 96$ кЭ для состава с x = 7.5 и y = 15, мы получили $\mu_{Fe} = 0.68 \mu_B$. Эта величина, однако, гораздо меньше значения, оцененного из наших магнитных измерений $\mu_{eff} = 2.37 \mu_B$ на атом Fe (табл. 2). Подобные результаты были получены Шинохарой с сотр. [22] для магнитных моментов марганца в *i*-QC Al₆₄B₆Pd₁₅Mn₁₅. Величина μ_{Mn} , полученная из резонансной частоты ЯМР для ⁵⁵Mn, значительно отличается от величины, найденной из измерений намагниченности. По-видимому, это означает, что, в отличие от металлических систем, приведенное выше соотношение (1) не подходит для высокорезистивных QC-материалов. Величины μ_{eff} , приведенные в табл. 2, получены из значения σ_s в предположении, что только часть $A_{rel}(\%)$ от всех атомов Fe магнитна (где $A_{rel} = A_m / A_{tot}$ — относительная площадь магнитной компоненты). В системе $Al_{62.5}B_{7.5}Pd_{30-y}Fe_{y}$ мы нашли корреляцию между значениями σ_{s} и A_{rel} , что подразумевает увеличение объема магнитной фазы с ростом концентрации Fe.

На рис. 10*a* и 10*б* показаны температурные зависимости поля $\langle H_{hf} \rangle$ и площади A_{rel} для Al_{62.5}B_{7.5}Pd₁₅Fe₁₅. Мы обнаружили, что A_{rel} не переходит резко в парамагнитную компоненту около точки Кюри T_C . В области 4.2–80 К эта площадь почти неизменна, но выше 80 К она начинает постепенно уменьшаться и полностью исчезает около

Рис. 10. Температурные зависимости среднего значения сверхтонкого магнитного поля $\langle H_{hf} \rangle$ (*a*) и относительной плошади A_m/A_{tot} магнитной компоненты (*b*), полученные из мессбауэровских спектров квазикристалла $Al_{62.5}B_{7.5}Pd_{15}Fe_{15}$. Сплошные линии в (*a*) — теоретические кривые: l и 2— функции Бриллюэна соответственно для спинов S = 5/2 и S = 1, 3— модель коллективных спиновых возбуждений и 4— модель критических коэффициентов для $\beta = 1$ в приближении спинового стекла

 T_C (рис. 106). Температурная зависимость поля $\langle H_{hf} \rangle$ тоже необычна (рис. 10a). Мы попытались описать зависимость $\langle H_{hf} \rangle = f(T)$ различными теоретическими моделями (такими как модель критических индексов, функции Бриллюэна, 2D-модель Изинга, модели типа спинового стекла и коллективных спиновых возбуждений), но ни одна из этих моделей не дала удовлетворительного приближения во всей области температур 4.2 К $-T_C$. Однако описанные особенности позволяют предположить, что магнитные свойства этих *i*-QC могут быть рассмотрены в рамках суперпарамагнитного поведения малых магнитных частиц или магнитных кластеров.

Поведение ансамбля малых магнитных частиц определяется объемом частицы V и зависит от времени релаксации τ [40]:

$$1/\tau = f_0 \exp\left[-KV/kT\right],\tag{2}$$

где K — константа анизотропии, а f_0 — частотный фактор, равный $\approx 10^9 \text{ c}^{-1}$ [41,42]. Из магнитных измерений [18] мы можем оценить значение K, используя соотношение

$$H_c = 2KM_s \left[1 - (25kT/KV)^{1/2} \right],$$

где H_c — коэрцитивная сила, а M_s — намагниченность насышения [40]. Для QC-образца с x = 7.5 и y = 15 при 4.2 К мы нашли $M_s = 4.2$ Гс·см³/г, а $H_c = 1200$ Э [18]. В низкотемпературном приближении это дает $K = 5.38 \cdot 10^3$ эрг·см⁻³. При некоторых допущениях из мессбауэровских данных можно оценить размер частицы для этого образца. Характерное время в мессбауэровском эксперименте определяется временем ларморовской прецессии τ_L в поле H_{hf} и для $H_{hf} \approx 100$ кЭ оно составляет $\sim 0.5 \cdot 10^{-8}$ с. Из уравнения (2) это дает $V \approx 1.6kT/K$. С другой стороны, для частиц постоянного размера существует так называемая температура блокирования T_b , ниже которой в

магнитных измерениях намагниченность стабильна, а в мессбауэровских спектрах наблюдается магнитное сверхтонкое расщепление. Для одноосных частиц $T_b \approx KV/1.6k$. Значение T_b можно оценить из температурной зависимости площади $A_{rel} = f(T)$. Как видно из рис. 106, значение A_{rel} почти постоянно в области 4.2–80 K, затем оно начинает уменьшаться. Принимая $T_b^{min} = 80$ K как наименьшую температуру блокирования, можно оценить минимальный объем магнитных частиц $V_{min} \approx 3.30 \cdot 10^{-18}$ см³, и это, в грубом приближении, соответствует диаметру частицы $D_{min} \approx 185$ Å. Температура, при которой $A_{rel} = 0$, может рассматриваться как максимальная температура блокирования T_b^{max} . Она соответствует максимальному объему частиц V_{max} в мессбауэровском эксперименте. Из $A_{rel} = f(T)$ мы нашли $T_b^{max} = 300$ K и $V_{max} \approx 1.24 \cdot 10^{-17}$ см³, что соответствует $D_{max} \approx 290$ Å.

Таким образом, в приближении малых магнитных частиц минимальный размер частицы составляет около 185 Å. Принимая оцененное выше значение параметра «элементарной ячейки» $a_R \simeq 4.52$ Å, можно найти, что частица минимального объема содержит около $3 \cdot 10^4$ «элементарных ячеек», и, по-видимому, такая частица может рассматриваться как объемный материал. Более того, оказалось, что значение T_b^{max} практически совпадает с температурой Кюри этого образца (305 K). Это означает, что его магнитные свойства могут рассматриваться в приближении объемного материала.

3.8. Температурная зависимость сверхтонкого магнитного поля

Из рис. 10*а* видно, что функции Бриллюэна совсем не описывают экспериментальную зависимость $\langle H_{hf} \rangle = f(T)$, но ее можно аппроксимировать двумя линейными законами: одним — в низкотемпературном интервале 4.2–150 К и другим — в высокотемпературном интервале 160–300 К (см. рис. 10*a*). Моруп [43, 44] показал, что для изолированных частиц с одноосной анизотропией в низкотемпературной области коллективных спиновых возбуждений (при kT/KV < 0.1, что в мессбауэровских измерениях соответствует $\tau > 10^{-7}$ с) должна выполняться линейная зависимость наблюдаемого приведенного сверхтонкого поля H_{obs}/H_0 от температуры:

$$H_{obs}/H_0 = 1 - kT/2KV.$$
 (3)

Для QC-образца с x = 7.5 и y = 15 мы нашли, что $\langle H_{hf} \rangle = f(T)$ в области 4.2–150 К можно аппроксимировать линейным законом (3) с наклоном –0.07473 кЭ/град (линия *3* на рис. 10*a*). Используя экспериментальное значение *K*, мы получили из (3) оценку объема частицы $V = 1.65 \cdot 10^{-17}$ см³. Интересно, что эта независимая оценка дает величину *V* очень близкую к значению V_{max} , найденному в разд. 3.7. Это подтверждает пригодность кластерного приближения для описания магнитного поведения этих материалов.

В высокотемпературной области 160–300 К линия 4 на рис. 10*a* соответствует модели критических коэффициентов $H_{obs}/H_0 = (1 - T/T_N)^\beta$ с $\beta \approx 1$, что типично для упорядочения по типу спинового стекла (SG). Линейное убывание намагниченности с температурой при $T > T_{SG}$ было предложено и объяснено теоретически для концентрированного спинового стекла в работах [45–47]. В теории предполагается наличие магнитных кластеров разных размеров, и взаимодействие между кластерами зависит от концентрации магнитной фазы.

Подобное поведение $\langle H_{hf} \rangle = f(T)$ наблюдалось и для других составов системы $Al_{70-x}B_xPd_{30-y}Fe_y$. Таким образом, магнитные свойства этих квазикристаллов мо-

гут быть объяснены с точки зрения поведения малых магнитных частиц или магнитных кластеров. Аналогичное объяснение ферромагнитных свойств квазикристаллов $Al_{70-x}B_xPd_{15}Mn_{15}$ было предложено в работе [17]. Возможное кластерирование атомов Mn в системах икосаэдрических и декагональных Al-Mn-квазикристаллов было проанализировано также в работах [48, 49].

4. ЗАКЛЮЧЕНИЕ

Нами найдена новая система содержащих железо икосаэдрических квазикристаллов $Al_{70-x} B_x Pd_{30-y} Fe_y$ (5 < x < 10 и 10 < y < 20), обладающих ферромагнитными свойствами со значениями T_C , лежащими в пределах 280–340 К, и с максимальной намагниченностью $\sigma_s \approx 7.5$ Гс·см³/г. Магнитные измерения показали, что эти квазикристаллы являются неоднородными магнитными системами. Мессбауэровские данные указывают, что только около 12–15% всех атомов железа обладают магнитным моментом и их магнитное поведение можно объяснить на основе существования больших магнитных кластеров Fe размером примерно 185–290 Å. Кластер такого размера содержит около 4·10⁴ ромбоэдрических «элементарных ячеек», образующих трехмерную мозаику Пенроза и, вероятно, может рассматриваться как объемный материал.

Ни одно из возможных кристаллических или аморфных соединений не имеет магнитных и мессбауэровских параметров, близких к параметрам этих квазикристаллов. Только аморфный сплав $Fe_{50}B_{\sim50}$ имеет близкие значения T_C и H_{hf} , но его величина IS отлична от наблюдаемой в квазикристаллах. Намагниченность насыщения в этих QC увеличивается с ростом концентрации как Fe, так и B, но значения H_{hf} и IS почти не меняются. Это означает, что локальное кристаллохимическое и магнитное окружение атомов железа в кластере одинаково, и только размер кластера или/и число кластеров меняется при изменении содержания B или Fe. Предполагается, что появление локального момента на атомах железа в квазикристаллах обусловлено образованием связей между Fe и B, аналогичных тем, которые образуются в аморфном соединении Fe_{~50}B_{~50}.

В литературе интенсивно обсуждаются два фактора, которые могут привести к одновременному появлению в QC магнитных и немагнитных атомов: существование специфических больших и малых алюминиевых «полостей» для атомов переходных элементов, с одной стороны, и непрерывное распределение межатомных расстояний, с другой стороны (см. [3,4] и ссылки в них). Найденное в нашей работе бо́льшее значение IS для атомов Fe в узлах магнитного типа (по сравнению с немагнитными узлами), коррелирует с идеей о бо́льшем атомном объеме магнитных узлов [36].

Авторы благодарны Т. В. Дмитриевой, Д. М. Линю и Ч. Р. Вангу за помощь в компьютерной обработке экспериментальных данных и плодотворные дискуссии. Работа выполнена при поддержке Национального научного совета Тайваня и Российского фонда фундаментальных исследований.

Литература

- 1. The Physics of Quasicrystals, ed. by P. J. Steinhardt, S. Ostlund, World Scientific, Singapore (1987).
- 2. Quasicrystals, ed. by K. H. Kuo, T. Ninomiya, World Scientific, Singapore (1991).
- 3. Z. M. Stadnik, G. Stroink, H. Ma, and G. Williams, Phys. Rev. B 39, 9797 (1989).
- 4. R. A. Dunlap and D. W. Lawther, Materials Science and Engineering 10, 141-185 (1993).
- 5. C. R. Wang, S. T. Lin, and Y. C. Chen, J. Phys.: Condens. Matter 6, 10747 (1994).
- K. Fukamichi, T. Kikuchi, Y. Hattori, A. P. Tasi, A. Inoue, and T. Masumoto, in *Proc. China-Japan* Seminars on Quasicrystals, ed. by K. H. Kuo and T. Ninomiya, World Scientific, Singapore (1990), p. 256.
- 7. V. Srinivas, R. A. Dunlap, M. E. McHenry, and R. C. O'Handley, J. Appl. Phys. 67, 5879 (1990).
- M. Eibschütz, M. E. Lines, H. S. Chen, J. V. Waszczak, G. Papaefthymiou, and R. B. Frankel, Phys. Rev. Lett. 59, 2443 (1987).
- 9. M. E. McHenry, V. Srinivas, D. Bahadur, R. C. O'Handley, D. J. Lloyd, and R. A. Dunlap, Phys. Rev. B 39, 3611 (1989).
- 10. V. Srinivas and R. A. Dunlap, J. Phys.: Condens. Matter 3, 2411 (1991).
- 11. S. Nasu, M. Miglierini, and T. Kuwano, Phys. Rev. B 45, 12778 (1992).
- 12. M. Miglierini and S. Nasu, Materials Transactions, JIM 34, 178 (1993).
- 13. M. Miglierini and S. Nasu, J. Phys. Soc. Jap. 60, 2135 (1991).
- 14. Z. M. Stadnik and G. Stroink, Phys. Rev. B 43, 894 (1991).
- 15. Z. M. Stadnik and G. Stroink, Phys. Rev. B 44, 4255 (1991).
- 16. Y. Yokoyama, A. Inoue, and T. Masumoto, Materials Transactions, JIM 33, 1012 (1992).
- Y. Yokoyama, A. Inoue, H. Yamauchi, M. Kusuyama, and T. Masumoto, Jpn. J. Appl. Phys. 33, 4012 (1994).
- 18. C. R. Lin, C. M. Lin, S. T. Lin, and I. S. Lyubutin, Physics Lett. A 196, 365 (1995).
- 19. H. Frauenfelder, The Mössbauer Effect, Benjamin, New York (1962), p. 45.
- 20. V. Elser, Phys. Rev. B 32, 4892 (1985).
- 21. S. Matsuo, H. Hakano, T. Ishimasa, and M. Mori, J. Phys. Soc. Jap. 62, 4044 (1993).
- 22. T. Shinohara, Y. Yokoyama, M. Sato, A. Inoue, and T. Masumoto, J. Phys.: Condens. Matter 5, 3673 (1993).
- 23. B. Window, J. Phys. E 4, 401 (1971).
- 24. Z. M. Stadnik, G. Stroink, Hyperfine Interactions 69, 643 (1992).
- 25. V. Srinivas and R. A. Dunlap, Philos. Mag. B 64, 475 (1991).
- 26. R. S. Preston and R. Gerlach, Rhys. Rev. B 3, 1519 (1971).
- 27. C. L. Chien, D. Musser, E. M. Gyorgy, R. C. Sherwood, H. S. Chen, F. E. Luborsky, and J. L. Walter, Phys. Rev. B 20, 283 (1979).
- 28. C. L. Chien and K. M. Unruh, Phys. Rev. B 25, 5790 (1982).
- 29. N. A. Blum, K. Moorjani, T. O. Poehler, and F. G. Satkiewicz, J. Appl. Phys. 53, 2074 (1982).
- 30. T. Klein, C. Berger, D. Mayou, and F. Cyrot-Lackmann, Phys. Rev. Lett. 66, 2907 (1991).
- 31. W. W. Warren, H. S. Chen, and G. P. Espinosa, Phys. Rev. B 34, 4902 (1986).
- 32. M. Eibshutz, M. E. Lines, H. S. Chen, and J. V. Waszczak, Phys. Rev. B 38, 10038 (1988).
- K. Edagawa, H. Ino, S. Nasu, K. Kimura, S. Takeuchi, T. Shinjo, K. Koga, T. Shimizu, and H. Yasuoka, J. Phys. Soc. Jap. 56, 2629 (1987).
- 34. V. L. Moruzzi and P. M. Marcus, Phys. Rev. B 38, 1613 (1988).
- 35. V. L. Moruzzi, Phys. Rev. B 41, 6939 (1990).
- 36. L. R. Walker, G. K. Wertheim, and V. Jaccarino, Phys. Rev. Lett. 6, 98 (1961).
- 37. O. Eriksson and A. Svane, J. Phys.: Condens. Matter 1, 1589 (1989).
- 38. Z. M. Stadnik and G. Stroink, Hyperfine Interactions 47, 275 (1989).
- 39. A. J. Freeman and R. E. Watson, in *Magnetism*, ed. by G. T. Rado, H. Suhl, Academic, New York (1965), Vol. IIA, p. 167.

- 40. B. D. Cullity, Introduction to Magnetic Materials, Univ. of Notre Dame, Indiana (1972), pp. 383, 415.
- 41. W. Kundig, H. Bommel, G. Constabaris, and R. H. Lindquist, Phys. Rev. 142, 327 (1966).
- 42. M. F. Thomas and C. E. Johnson, in *Mössbauer Spectroscopy*, ed. by D. P. E. Dickson, F. J. Berry, Cambridge University Press (1986), p. 143.
- 43. S. Mørup, J. Mag. Mag. Mater. 37, 39 (1983).
- 44. S. Mørup, J. A. Dumesic, and H. Topsoe, in *Applications of Mossbauer Spectroscopy*, Vol. II, ed. by R. L. Cohen, Academic Press, New York (1980), ch. 1, p. 1.
- 45. S. B. Liao, S. M. Bhagat, M. A. Manheimer, and K. Moorjani, J. Appl. Phys. 63, 4354 (1988).
- 46. E. M. Jackson, S. B. Liao, S. M. Bhagat, and M. A. Manheimer, J. Magn. Magn. Mater. 80, 229 (1989).
- 47. M. Lubecka and L. J. Maksymowicz, Phys. Rev. B 44, 10106 (1991).
- F. L. A. Machado, W. G. Clark, L. J. Azevedo, D. P. Yang, W. A. Hines, J. I. Budnik, and M. X. Quan, Solid State Commun. 61, 145 (1987).
- F. L. A. Machado, W. G. Clark, D. P. Yang, W. A. Hines, L. J. Azevedo, B. C. Giessen, and M. X. Quan, Solid State Commun. 61, 691 (1987).