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Average persistent current over a set of diffusive metallic rings with fixed number of electrons
is considered. We study the case in which the phase breaking time is much greater than an inverse
average interlevel distance. In such a case, many return events for an electron must be taken into
account. As a result, one arrives at a nonperturbative problem for a cooperon mode fixed by an
external magnetic field. This multi-cooperon problem has been considered previously by Altland et
al. [17], and in several following papers within the framework of supersymmetric approach. Such
an approach involves very tedious calculations which were performed using a computer algebraic
package. Here we solve the problem in question with the help of a replica trick. It is demonstrated
that the replica trick in combination with a proper analytical continuation in the replica space
allows one to obtain the result in much more explicit way.

1. INTRODUCTION

Magnetic properties of small conductors were studied extensively during the last several
years (see Refs. [1, 2] and the bibliography cited there). It has been understood that the magnetic
moment (and the associated persistent current) induced by an external magnetic flux is a very
specific manifestation of mesoscopic behavior. While originally predicted to appear in clean,
one-dimensional, metallic rings [3], most of the recent discussions about persistent currents have
been focused on metallic rings that contain impurities [4]. Static magnetic properties of small
rings and dots were studied by several authors [5-11]. An important step in the understanding of
magnetization of mesoscopic quantum rings took into account the difference between canonical
and grand canonical ensembles [7, 10, 12-14]. It was shown that the magnetization of isolated
rings with a fixed number of particles is much larger than that of the ensemble of rings kept
under fixed chemical potential. As a result, the main contribution to the magnetic moment
was expressed in terms of the fluctuation of the number of particles at fixed chemical potential,
((6N)?). The latter quantity was analyzed in Refs. [10, 14] under the condition /AT, > 1.
Here A is an average interlevel distance at the Fermi level, A~! = vV (v is the density of states
at the Fermi level, and V is the volume) and 7, is the phase-breaking time.

Let us discuss the physical meaning of the parameter /A7,. As is well known [15], in the
absence of an external magnetic field the quantum correction to the conductivity is proportional
to the classical probability W for an electron with a velocity v and momentum p to return to the
vicinity of the starting point (more exactly, into the volume of the order of v dt (h/p)?, which
is important for quantum interference). The probability W is given by the expression [15]

'th Té
W 7/ dt P(r,t)| _,, (1)
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where P(r,t) is the probability density. Here we employ the fact that in a diffusive regime it
is a smooth function of coordinates at the scale of the mean free path £. To estimate P(0,t)
we take into account that the electron diffusion is restricted by a finite volume of the sample.
In such a case, we have

P(0 t)ocizexp -D ”—2+ﬁ)t] )
' % R & '

n,nL

Here D is the diffusion constant, R is the radius of the ring, and d is its transverse dimension.
The numbers n, n; have the meaning of quantum numbers for longitudinal and transverse
diffusive modes, respectively. For a thin ring, d;, < R, only n; = 0 is important. We can
see that at D7y / R? > 1 the sum over discrete n, n; in (2) cannot be replaced by an integral.
Otherwise, only n = 0 is important, and W ~ 74A/h. If this quantity is small, we can restrict
the analysis to a single return event.

Let us now concentrate on the case of external magnetic field. In a magnetic field, the
number n in the expression (2) must be replaced by n — ®/®,, where @ is the magnetic flux
embedded in the ring, and ®, = whc/e [16].1t is clear that the quantum contribution is maximal
if ®/®, is close to an integer number ng. If the difference 72 = ng — ®/®y = 0, we have the
same situation as that in the absence of a magnetic field — only the mode with n = ny is
important. One can expect that this property is also the case at finite |2| < 1. Indeed, for
n # ny

A AR?
W o Z Da /R +1jr, ~ D

(for the last estimate we have assumed D7y /R2 > 1). Consequently, if W <« 1 one can
ignore the contributions of all the modes with n # n, to the probability for the return. However,
the corresponding contribution of the mode with n = n, is not small at A, /h 2 1. Hence,
we arrive at the problem of calculating of the localization contribution in the case

D/R*> AW 2 1]y,

In this region we can still use a single-mode approximation, but the perturbation theory involving
a single return event fails.

The problem in question was addressed by Altland et al. [17,18] (see also Refs. [19-
21]). The authors used the so-called Q-Hamiltonian approach within the framework of the
supersymmetric method. An intrinsic feature of this method is that one has to cancel out
specific nonphysical contributions. Therefore, the supersymmetric approach involves tedious
algebraic calculations. Consequently, the authors of Refs. [17, 18] extensively used a computer

_algebraic package. As a result, the intermediate equations have not been published, because,
as it was stated, the computer printout had many pages.

On the other hand, another approach — the so-called replica method — exists [22].
According to this method, one has to replace the system under consideration by IV systems which
are identical to the original one and at the end tend N — 0. Usually, after such a procedure
one obtains relatively simple expressions. The limiting transition NN — 0 (if done properly)
automatically cancels out the nonphysical contnbutlons which has to be done explicitly within
the supersymmetric approach.
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To take the full advantage of this property, one needs a regular procedure to calculate the
limit N — 0. The aim of the present paper is to suggest a procedure of analytical continuation
of a nonperturbative two-particle Green’s function from integer N to the whole complex plane
which includes the point N = 0. Such a procedure allows one to calculate the limit rather
automatically,without the need of direct cancellation of nonphysical contributions. We obtain
an analytical nonperturbative expression for the persistent current in a mesoscopic diffusive ring
and compare it with the results of Refs. [17, 18].

The paper is organized as follows. In Sec. 2 the basic equations for the fluctuation of the
number of particles, as well as for the persistent current are analyzed. The effective action
in the single-mode approximation is considered in Section 3. In Sec. 4 the particle number
autocorrelation function and persistent current are calculated in the nonperturbative region,
and results are summarized. In the following calculations we set = 1. Then A will be restored
in the estimates and final results.

2. BASIC EQUATIONS

According to Ref. [10], the main contribution to the persistent current I can be expressed
in terms of the magnetic flux ® embedded in the ring as follows:

cA 0
I== a_(ﬁ((éN)z)yP(p.) , (3)
where ((6N)?) .= u) is the particle number autocorrelation function, calculated at a given value
of chemical potential. The latter can be expressed in terms of single-electron Green’s functions
as [23].

0
(6N)) = / derdes K (€1, €2), @

—p

where

K(ey,6) = w—lz- /drldrz X
x {(ImGE&(ry,r) ImGE(ry, 1)) — (ImGE(r,r))(IM G (ry, ) } . ©)

Here (...) means the usual impurity average. The quantity (5) has been calculated in Ref. [10]
in the limiting case AT, < h. Our aim is to go beyond this limiting case, i.e. to calculate the
correlation function for arbitrary A7, /h, keeping prpf >> h. For this purpose we employ the
method used by Efetov, Larkin, and Khmelnitskii [22] with minor modifications. Namely, we
will use the so-called Q-Hamiltonian approach within the framework of the replica trick. The
confined expression for the correlation function K(w) (w = €; — €;) can be written in the form
(cf. Ref. [22])

1/2
N2 [ DQexp(—F)

Kw) = / dr, dr; / DQe™F Tr [AQE)I Tr (AQ)]|  , ()

N—0

where
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12

. 2
F= dz Tr [D (VQ + EA[Q,A]_) +2 (iw - i) AQ} . )
4 C T¢

Here A is the vector-potential, and [A, B]_ = AB — BA. Taking into account only the elastic
scattering by short-range, nonmagnetic impurities, we can specify Q as 2N x 2N Hermitian
matrices, Q> =1, Tr Q =0, N is the number of replicas, while

‘ 10
A= .
(0 5):

where 1 is the N x N unit matrix. The parameter 7, !is introduced phenomenologically. We
assume that the phase breaking is due to the inelastic processes. Following [22], we use the
parameterization

Q=neww), w=(_§. 7).

where B is an arbitrary N x N matrix.

3. EFFECTIVE ACTION IN SINGLE-MODE APPROXIMATION

Let us consider a ring with the radius R and the width d; <« R. We can therefore, take
into account only the dependence of the matrices B on the angular coordinate ¢. Expanding
this dependence into the discrete Fourier series, B = Y. Brnexp(ing), we introduce the
mode number n. As was explained in Sec. 1, only one mode with n = ng corresponding to
min(n — ®/dy) is important (this assumption will be justified at the end of Sec. 4A). Retaining
only this mode and assuming V,, = (1/R)3/d¢, we obtain WV ,W + V,WW = 0. Hence,

0o i’no

1 w 1

We can then expand sh*W = (1/2)(ch2W — 1) as a series in

2k
% — (_y¢ [ VBroBr, 0
W ( 1) ( 0 V B:I-.oBﬂo ) .

The item Tr (AQ) can be treated in a similar way. As a result, we obtain the following expression

for F:
‘1% (no - %)2 Tesin® (/B By, ) +2 (z’w - %) Tr cos ({/B.. B2, )

We must now consider an important point. An arbitrary complex N x N matrix B can be
described by two Hermitian IV x N matrices. These matrices are defined as

s

F=_—
2A

. (8)

B =pexp(ip), B’ =exp(—ip)p. ®

The quantity F depends only on the matrix p. On the other hand, an arbitrary Hermitian
matrix could be diagonalized, the eigenvalues being real. One can immediately see that the
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integral over p in the expression (6), with F' taken from Eq. (8) for the correlation function
diverges. This divergence, in fact, does not occur, because the eigenvalues of p must be defined
in a finite interval. Indeed, one has to define the variables p in a way to obtain a one-to-one
correspondence between p and Q. On the other hand, one can explicitly show that

1 +
cosvV BB* MB

T cos sinp e*?
QA =| VBB - (e_ws{’np gt ) (0
B*——— —cosVB*B
vBB*

where p” denotes the transposed matrix p. Here we have employed the relation

o7 = Ve pte®, (1)

which is a consequence of the symmetry properties of the initial replica Hamiltonian (see
Appendix A). It is clear that the matrix () is a periodic function of p, and that one has to specify
a region at least not larger than one period in order to obtain a one-to-one correspondence.
Moreover, to obtain proper analytical properties (damping is the lower semi-plane of the w-
variable) of the action F' (8), we must define the integration limits as (— /2,7 /2). Finally,
the action F' reads as

.7 | D o> . , 1
F=EZ[F (no—a(;) Trs1n2p+2(zw—;_;) Trcosp]. (12)

Now let us transform the variables from B, B* to p,u = exp(ty), where the Jacobian is (see
Appendix B)

s,

DB,B") _ 2(det u™!p)VN . (13)

D(p, )
We see that the variables u can be integrated out and cancelled with the denominator in Eq. (6).

4. PARTICLE NUMBER AUTO-CORRELATION FUNCTION

A Eigenvalue representation

Let us now return to Eq. (6). Since Tr AQ = 2 Tr cos p, we see that the integrand depends
only on the eigenvalues of p. Hence, we should transform the variables to the eigenvalues and
some other ones which could be integrated out in the numerator and the denominator. This
transform is outlined in Appendix 5. As a result, we obtain

2

/ N PR ¢))
(Vo) / {dr}00D) [ cos >
0 =1

Ky = , (14)

N? fl{dA} 0(\@)
0

N-1
where {d\} = [] dAP|AP?|%*N and
i=0
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nD _ 2.2(71-1)_# (1 — €) 1 T (15
~SATE g o sin 5 N 1(e; 62—7—_; cos(T) . )

The expression (15) contains three dimensionless parameters:

6(x) = exp

ﬂ, QEw(el—ez)’ g,_h1an ’
Té A 2R2A

Y (16)
where i = (ng—®/®,). It is important to keep in mind the following. If max (v, Q) > 1, only
- the small \’s are important. Hence, one obtains at the result which is found in the framework of
the perturbation theory [10, 14]. However, if both v and Q are small one must sum the multi-
cooperon contributions, which cannot be done in the framework of the perturbation theory.
There is a substantial simplification in the case

- hnD

nLl, but Z.= 2RA > 1. a7
In this case, only one mode with |ny — ®/®y| < 1 is important; this is the case in which
Eq. (15) is valid. Consequently, we consider the case in which the inequalities (17) hold,
but the quantities v and Q can be arbitrary. In fact, the mode ny must be considered in
a nonperturbative manner, while the other modes can be treated in the framework of the
perturbation theory.

B.Analytical continuation

We are not able to analytically calculate the expression (14) for an arbitrary N. Instead,
we will perform analytical continuation of this expression to arbltrary N, and then calculate
its limit as N — 0.

We introduce the quantity

N-1 |
=11 / drpz**No(zy) (18)
k=0
where
8(z) = exp [ & sin’(rz/2) — (iQ — ) cos(wz/2)] . (19)

It is convenient to define
(v=InZy =R+ ¢4,

where

a\
|||
N -
i'zM |
o\._

z .
!

dz ka_l+60(.’B),

(20)

|
Nl

A
BN
1]

Nl —

1
ln/dx T2k 1*8g(z),
0

-
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Fig. 1. The integration contours C'y for Fig. 2. The integration contours C'y for
N=4 N=4

4 is a small positive number which later will vanish. We introduce this parameter to keep the
important integrals convergent in the limit N — 0. The first step is to express the sum over
k in terms of the contour integral over complex k. For this purpose we should keep in mind-
that the derivative 8 f[2mi(k + 1/2)1/0k [where f(z) = (e* + 1)~!] has second-order poles at
integer numbers. Consequently, one can express (g(4) as

Cruy = / dk (L(az,’c”—“) FE(R), 1)
c=
k 1
Fi(k) = % / dk' In / dx o ~1*8g(z) | (22)
0

The contours C* are shown in Fig. 1. These expressions are correct only if other singularities,
except for the poles of f, are not important. We can show that the function F*(k) has
singularities only in the left-hand semi-plane of the complex variable k, while the function
F~ has singularities onls; in the right-hand semi-plane of k. To prove this statement, one
must expand the function #(x) in a Taylor series. For the following, it is convenient to rotate
the k-plane through 7 /2 by introducing a new variable, k; = 2wik. The transformed contours
C* are shown in Fig. 2.

Making use of exponential convergence of the integral due to the properties of 3 f /dk, we
transform the contour integrals to the integrals along the real axis. For simplicity let us assume
that IV is even. As a result, we have

[o e}

= Of )\ [ps (kEnNY _ [y (k3N
SRy T“/”"“(%)[F( 27 ) F( 27 )] (23)

We can now perform an analytical continuation over N. For the functions F'% the continuation
must be done in a different way for the reason to be discussed later. For this purpose we replace
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1N by £Ny in the functions F*, respectively. Here N, is a real, positive quantity which will
eventually tend to zero. Finally, we have

o o (2105 - 2520 o () - ()] o

As a result, the lowest-order term in the Ny-expansion of the function (y, is o< NZ. Finally,
we obtain

o) 1
2
¢ = 2niN? / dk (%) In / dz z~*/"=1%g(z)| . (25)
—00 0

The reason for splitting the function (x into ¢(® and ¢(# with the replacements N — =+iN,
is as follows. As NN tends to zero, the integration contour comes infinitely close to the cut of
the logarithm functions in the expressions for F'*. Such a situation is not the case for any
finite NV, and it leads to a nonphysical pinch which should be subtracted. Within the above
mention procedure such a contribution is purely imaginary, while the one of interest to us is
real. The imaginary contributions to F* and F~ have opposite signs. Thus, the nonphysical
contribution is automatically cancelled in the sum ¢F + (4. We note that these terms are of
the first order in Ny, and that they must vanish; otherwise, the two-particles Green’s function
would be divergent. ‘ '

In fact, a similar trick has been used by Matsubara to formulate the thermal Green’s
function technique (see, ¢.g. Ref. [24]). Let us compare our analytical continuation of the
function { to the analytical continuation of the two-particle Matsubara Gregn’s function
K(Q,,), where Q,, is the external Matsubara frequency. In each case one must use two
functions, which are regular in the upper (retarded) and the lower (advanced) semi-plane,
respectively. The two above-mentioned functions can then be combined into one with a cut
in the complex plane. The physical reason for such a splitting into R and A parts is to cancel
the nonphysical contributions. In the Matsubara case the nonphysical contributions to K (Q,,)
arise at the point Q,, — 0 and cancel out after a similar continuation Q,,, — 1Q of the sum
over Q.

C.Persistent current

Following Ref. [10], we express the current according to Egs. (3) and (4). On the other
hand,

—¢ & ¢
K(e,e) oxxe 3616628 .
Finally, we obtain
_ cAd . (n(e=e=0)_ .
R  TE 29

where Jp = hcD/R*®, = eD /7 R?, and
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1
oo ) [ dz sin’(rz/2)z=*/"=1*¥g(z, Q = 0)
9’=i/dkaf(k)° . 27)

ok? ! )
[ dz z—ik/7=1*6¢(z, Q = 0)
0

One can check directly that at

AL h < hD 7| < 1
Ts R’
the above expressions lead to the expressions obtained in Refs. [10, 14]. One can calculate the
integrals with the help of the steepest-descent method to find [10, 14]

eA D1y

I=—J1'ﬁ, J[=F’§2—

(28)
In the region

171, Tc>F>1

one can also develop a perturbation theory. Indeed, only small values of z in the integrals
in Eq. (27) are important. The physical reason for this is the magnetic-field-induced phase
breaking. In this region we obtain the result

_ 1 RA 1 eA -
T=amwp ITTmmn (29)

This result agrees with the asymptotic result of Ref. [14] for v > 1, \/R?/D1y < 7t € 1.
Note that the result (29) obtained for v < 1 is valid in the region

RAWD < i < 1.

Forthecase y < 1, ¥ < 1, where the perturbation theory is not applicable, we set 0(z,Q=
=0) = 1. As a result, we obtain & = 0.21, and the current being

eD .

We observe a maximum at 7 ~ \/R2A/hD, where the maximal current is

Inax ~ e/ADJREC. (1)

Expressions (29) and (30) are fully consistent with the curve calculated in Refs. [17, 18] with
the help of a computer algebraic package. Let us consider the dependence of the maximal
current on v = h/Ats. Aty 3> 1 the perturbation theory [10, 14] predicts the maximum of
the current at 7 ~ \/R?/D7y4; the maximum value is

A [14D
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Consequently, Imax < 7v~'/2 at v > 1, and it is y-independent at v < 1. In this region we

estimate the persistent current to
J evgp /A‘re,
max R h ’

where 7, is the elastic relaxation time. The quantity Ar,; /h for a typical metal can be estimated
as (//R)(a?/A) where ¢ is the mean free path, a is a typical interatomic distance, and A is the
cross section of the ring. Equation (30) shows that at Ar;/h >> 1 the phase-breaking time 74
is not contained in the expression for the persistent current. Returning to Eq. (1) we have to
conclude that at t 2 h/A the electronic wave packet is not smeared in space. This means that
the no-mode of the cooperon is localized in a sense; the localization length is of the order of
VhD/A. Of course, this does not mean localized, because other modes are still under weak
localization conditions.

The range of parameters in which the theory is applicable and where it leads to non-trivial
results can be expressed as follows

1< R/ < K, (1/K)1y/Ter),

where K ~ (pd, /h)? is the number of transverse channels. The left inequality is the criterion
for a diffusive motion, the first right inequality is the Thouless criterion Z. > 1, and the last
right inequality is the condition Aty /h >> 1. We see that one needs low temperatures to satisfy
the inequality 74 /7.; > K > 1, and also samples of very small size. No previous experiments,
to the best of our knowledge, satisfy this set of conditions.

5. DISCUSSION

As one can see from the preceding sections, the results of the replica procedure which are
complicated for arbitrary integer IV, are rather simple in the limit N — 0. In this limit the
nonphysical contributions are cancelled automatically, while in the supersymmetric method
this has been done explicitly. An important feature which leads to such a simplification is the
procedure of the analytical continuation which is done before direct calculations. Specifically,
one has two functions which are analytical in the upper (lower) semi-plane of the complex
plane of N, respectively. The proper analytical continuation is a combination of these two
functions. Consequently, it has a cut at Im/N = 0. The procedure used above allows one
to cancel automatically the nonphysical pinch in the two-particle Green’s function, which
otherwise would exist at Ny = 0. We believe that such a construction is important, in general,
for the calculations involving the replica trick. In such a way we reproduce analytically and
rather simply the results obtained in Refs. [17, 18] by a computer algebraic package.

We wish to thank V. L. Gurevich, V. Yu. Petrov, and A. D. Mirlin for valuable comments.
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within the Cultural Exchange Program (KAS).
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APPENDIX A

Effective action—derivation

Here we rederive the expression (6) following Ref. [22], in order to clarify important
symmetry properties. Following Ref. [22] we use the replica trick and introduce field operators:

Ui
|
‘l’={1/11w--a¢Nﬂ/’1+,---,1/11+v}, ¥ = _,:Zl
—YN
Here ;9] +17; = 0. The action can be written as follows:
F=i / dn ¥ ((E - Z)¥ (),
E=EI,
% = [Hy+Ua)] ] - (% +z'6)A. A1)

Here Hy is the free-electron Hamiltonian, I is the 2N x 2N unit matrix, and Ug(r) =
=0y wa 6(r — r;), where M is the total number of impurities. The first N rows of Z# describe
the evolution of the retarded Green’s functions, while the last N rows describe an evolution of
the advanced Green’s functions. The following step is the averaging over the positions of the
impurities. We have

M

M dr 2N
Vo Y W (r)¥(r) | = / VH (1 +iUi ;@) . (A2)
i=1 f=1

_ ul dr;
I= H v exp
i=1

Here we have taken into account that only the linear terms in 1/1} and 9y can enter the continual
integral for the correlation function (Grassman algebra). For the same reason, one must allow
for only the terms with different f when calculating the product. For a weak scattering and
in the thermodynamic limit M,V — oo, M/V = const,

z ~ exp(ép +1iI),

o= [arw oo,
2
r= 92_0 dr > YO, (O, (r) . v 9

f#9

Here 64 is a shift in the chemical potential, and g2 = 2MUZ/V (g is the coupling constant). By
analogy with Ref. [22], we introduce an auxiliary scalar field which is represented by Hermitian
matrices Q. As a result, the effective 1* interaction can be decoupled as follows:
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exp / dr S 6w v @, m)| =
f#g

_J29 exp [- Tr [ dr(nv/47.)Q*(r) — (1/27e))¥ (r)Q‘l’(r)]
[ @Q exp [- Tr [ dr(rv/47)Q3(r)]

Here we used the definition 2rvgdr,; = 1. This expression is the same as Eq. (17) from
Ref. [22]. To analyze the symmetry properties of the impurity-averaged Hamiltonian, we take
into account that the initial Hamiltonian possesses the property ;; |l <N =X, N,j+N- This
property must be kept after impurity averaging and after introducing tﬁe field Q. In terms of
Q it reads as 1Q;; = —iQ}, N,j+N* Taking into account Eq. (10) we obtain the relation (11).
The following steps are exactly the same as those in Ref. [22].

(A4)

APPENDIX B

Calculation of the Jacobian
Let us arrange the columns of the 2N? x 2N? matrix 8(B, B*)/8(p, u) as
{Bu,...,Bn1;B12,...,BNN;Biyy- - Bun}
and the rows as
{p11s- s PN P12, - PN2y - NN

Ully- e yUNT UL2y oo -y UN2y - - -y UNN }-

Taking into account the matrix identities
dB =dpu+ pdu,

dB* =u"'dp—u"duup (B.1)

we express (B, B*)/8(p,u) as follows:

(B, B") — (Au AIZ ) (B.2)
a(p,u) Ay Ay,
where fiik are the N? x N2 matrices. One can show that
Ap=uxi, Ap=-@'pxu’,
Ap=p®p®...p,
N
Ap=v'®u'®...ul. (B.3)

Here x means the Kronecker product, and ® means the direct product [25]. Making use of
the identity [25]

det (A x B) = (det A)? (det B)?

(where ¢ and p are the ranges of the matrices A and B, respectively), and of the Laplace
expansion of the determinant [25], we obtain Eq. (13).
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APPENDIX C

Variable transformation

Let us consider the set of variables which includes the eigenstates Ay and N eigenvectors

X®. One can see from the definition py X = A®;, X that any vector of the type ex'x®
(where x is an arbitrary phase) satisfies the equation with the same A®) and p,;. Consequently,
one must exclude N extra variables x*). We therefore require the diagonal elements X f.") to be
real. Consequently, the matrix X ,(f) can be constructed according to the following procedure.
The first column, X fl), contains N — 1 variables X f 1), 1 # 1, while the last (real) column, X m,
is calculated from the requirement of normalization. In the next column, X 52), the last N -2
variables are chosen independently. The element X fz) is determined by the orthogonality of
the vectors X® and X, while the last element, X§2) is determined by the normalization of
|X|. The following elements are determined by continuation of this procedure. Note that since
all the off-diagonal elements are complex, we can consider the real (U ,(ci)) and the imaginary
(Vk“’) parts. In this way we can present N? independent elements of the matrix p in terms
of N eigenvalues A, and N? — N independent variables UL and V”’. From the definition,
=3, XEARXE* we can express p in terms of {U,V, A} as

%l'_ = \(® [U;k)(l + 6ij) _ iVj(k)(l _ (51']‘)] ,

U

Jp; .

ax% = \® TP~ 6;)+ VO + 8]

apl] = U(’C)U(k) + V(k)V(k) +3 V(k)U(k) _ U(k)V(k)) (C.1)
BN i Y5 i Y g ( i Yj i vj . .

Note that the above formulas do not contain summation over repeated superscripts. To calculate
the Jacobian, we arrange the corresponding N2 x N? transformation matrix in the following
way. The columns are labeled by N? «old» variables

{PilaPiZ,-~~,PiN}~
The rows are labeled by N2 «new» variables
WL, U2, 8% V0, (W (R %)
W—’ N e’ N !
N 1 N 2 1 N 1 N 2 1 N

Consequently, as follows from Eq. (33), the first (N — 1) rows contain the common factor
A times the quantities which depend only on {U,V'}. The next (N — 2) lines contain the
factor A@, etc. The last N lines are {\}-independent. As a result, the Jacobian can be

expressed as [TV, [A¥] AN=9  (some function of {U, V'}). This expression has to be multiplied
. \N
by (det p)N = (Hfi, ,\M) , and we obtain at Eq. (14).
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