XITD, 1997, mom 111, eun. 3, cmp. 787-795 © 1997

REDUCTION OF THE FINITE GRAND UNIFICATION THEORY
TO THE MINIMAL SUPERSYMMETRIC STANDARD MODEL

I. N. Kondrashuk*

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research
141980, Dubna, Moscow Region, Russia

Submitted 29 May 1996

The recently proposed mechanism for reducing the finite SU(5) grand unification theory
(GUT) to the minimal supersymmetric standard model (MSSM) is reanalyzed and simplified.
For the scalar SU(2) x U(1) invariant Higgs doublet potential that results from SU(5) symmetry
breaking to have no dangerous directions, a restriction on the parameters of the unified theory
should be imposed. At the same time, this restriction guarantees that the scalar Higgs doublet
potential has a minimum at zero at the GUT scale, and the low-energy theory appears to be
exactly the MSSM.

1. INTRODUCTION

The supersymmetric (SUSY) field theories have remarkable properties in the ultraviolet
range. The no-renormalization theorem for N = 1 SUSY theories [1] guarantees absence
of divergences in quantum corrections to the superpotential. The only possible divergences in
these theories (in the background field method) are the logarithmic divergences of the two-point
Green functions of gauge and chiral superfields. If the group and the multiplet contents of the
N =1 theory are chosen in some particular way, these divergences disappear at the one-loop
level too. This occurs as the result of mutual cancellation of the divergent contributions from
gauge and Yukawa interactions [2]. The gauge groups and the multiplet contents of the theories
for which this cancellation is possible have been classified in [3]. In Refs. [2,4] it has been
shown that one-loop finiteness guarantees two-loop finiteness of the theory without imposing
new conditions, but this requirement appeared to be insufficient for the theory to be free from
ultraviolet divergences at the three-loop level [5]. However, an algorithm for constructing an
N = 1 SUSY field theory finite in all orders of perturbation theory has been proposed and
a finite SU(5) grand unification theory (GUT) was constructed [6]. The method used there
was based on fine-tuning of the Yukawa coupling constants in each new order of perturbation
theory. The only requirement imposed on the theory for this algorithm to work is one-loop
finiteness (and, automatically, two-loop finiteness) [6].

The idea of complete finiteness of the unified theory is very attractive, and it is not surprising
that many efforts have been made to derive low-energy predictions of the finite unified theory
and compare them with modern experimental data [7]. For this purpose the standard approach
is used: it is assumed that SU(5) symmetry is spontaneously broken at the unification scale,
and the unified theory is reduced to a low-energy supersymmetric theory with the corresponding
boundary conditions for the coupling constants of the low-energy Lagrangian at the GUT scale.
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Then, the renormalization group equation method is applied to get quantities of the Lagrangian
at the electroweak scale, where spontaneous breaking of the electroweak symmetry occurs [8, 9].

Although the one-loop finiteness conditions fix the gauge groups and the multiplet contents
of the finite V = 1 SUSY theory, they allow considerable arbitrariness in the Yukawa and
mass matrices [10]. In this situation the main guiding principles in choosing the finite GUT
are simplicity and aesthetic attractiveness of the unified theory. In Ref. [11], the finite GUT
satisfying these requirements was completely investigated in consistent way. The model was
based on the SU(5) gauge group and is the simplest finite GUT compatible with the low-energy
phenomenology. Its distinction from the minimal SUSY SU(5) GUT model is in the extension
of the Higgs sector: it contains eight Higgs superfields instead of two in the minimal SU(5)
GUT [12]. The Yukawa and mass parts of the Lagrangian are chosen in the most economic
way. Soft supersymmetry breaking takes place at the Planck scale Mp due to the appearance
of soft terms in the Lagrangian [13, 14]. A universal form for these terms at the Planck scale is
assumed [14]. In Ref. [11], the condition of finiteness was extended to them, which resulted in
the completely finite theory between Mp and Mgy . Complete finiteness in this case means
that no charge or mass coupling of the theory changes in this energy range. To get the small
initial mass parameters of the low-energy theory from the large mass parameters of the unified
theory, the usual fine-tuning procedure was used in Ref. [11]. This procedure generates the
hierarchy of the mass scales in the doublet part of the SU(5) superpotential which decouples
from the triplet part of the latter after spontaneous breaking of the SU(5) symmetry.

In the treatment of the low-energy part of the finite GUT model in Ref. [11], in addition
to the matter superfields of the minimal supersymmetric standard model (MSSM) three Higgs
doublets were included in the low-energy Lagrangian. To get the Higgs potential at the
electroweak scale, the renormalization group equations for the parameters of the potential
were used. According to the radiative symmetry-breaking scenario [8], the parameters of the
scalar Higgs potential yield nontrivial vacuum expectation values of the scalar Higgs fields at
the electroweak scale. Due to the degeneracy of the Yukawa couplings with respect to the
generations of the matter superfields [11, 15], the quark and lepton mass spectrum at the GUT
scale in this model is completely determined by the spectrum of vacuum expectation values of
the Higgs fields at the electroweak scale.

In this paper, the low-energy part of this finite theory is analyzed in a simpler and more
efficient way than that of Ref. [11]. Namely, the finite GUT is shown to reduce to the MSSM
after spontaneous breaking of the SU(S) symmetry at the unification scale. The parameters of
the electroweak Lagrangian need not be evolved down to low energies in this approach.

2. FINITE GUT

In this section, a brief review of the main points of the softly broken supersymmetric finite
SU(5) model constructed in [11] is proposed. The multiplet contents of the model and its
Lagrangian were described there. The sector of the chiral matter and Higgs superfields has the
following contents (in terms of the irreducible representations of SU(5)):

Matter fields: ¥, -3, A;—10, i=1,23,
Higgs fields: @, -5, ®, -5, £-24, a=1,273,4,

where 7 and a are the generation indices of the matter and Higgs superfields, respectively.
The most general form of the superpotential for the theory having this field content is [6]
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where 28797 is a completely antisymmetric tensor. The last three terms, which would violate
the baryon and lepton numbers at the tree levels and lead to (B — L)-nonconservation, are
usually ignored.

The one-loop finiteness conditions of the two-point Green’s functions in the theory with
the above potential are [6]

42A (A%) + 4ane(cbe>*+42 (Be)* = 52g260b,
323“(3" y o+ 24Zcm<ceb) +—ZFm(Eb> - 2 dbu,

42A3k(A;’k) + 2 5 ZFH,(FN)*MZG Gh) = ngéij, )
Lk

22,4 e +3Zng(B;k) +2Z E’) +2ZG (Gl = 1589 65,

S CuslCas)” + 2—DD* " Falha =57
a,b

In [11] the following simple ansatz for the Yukawa matrices of the superpotential was
proposed:

!
W =y WV, Ky @A + 3| Wi DA, + %‘Dil\z‘/\i + %d’“\i/\i +

_ _ _ _ M,
+ 438,50, + i BT, + %23 B M0, + BMOy + 05 @)

where the SU(5) indices are omitted, but can easily be recovered in a covariant manner. The
potential (2) is taken in this form so that each generation of the matter interacts with its pair
of Higgs fields, while the fourth pair of the Higgs fields is coupled with all the generations of
matter as well as the Higgs pair of the minimal SUSY SU(5) GUT. In [6] it is demonstrated that
the Yukawa matrices corresponding to this specific ansatz will not be changed by the quantum
corrections if the Yukawa couplings in (2) satisfy the conditions of one-loop finiteness (1) and
if their necessary fine tuning is performed in each order of perturbation theory step by step.

The presence of unitary K and S matrices does not contradict the finiteness conditions (1).
The matrix K is necessary to create the initial mixing of the quark fields at the unification
scale (that is, initial values of the Cabibbo-Kobayashi-Maskawa matrix). As for the matrix S,
it contains all initial information about the hierarchy of the quark mass spectrum at this scale.
This role of S will become clear below.

From the no-renormalization theorem for the superpotential [1] it follows that the mass
parameters My, M, and M,; are not fixed by the requirement of one-loop finiteness. If M,
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is negative, the unified SU(5) symmetry is broken by the vacuum expectation value of T [11]:

/v

where V ~ M,/ys ~ 10'® GeV.
After breaking of the SU(5) symmetry, the Higgs quintets ®, and ®, split into doublets
and triplets. As can be seen from (2), their mass terms look like

_ [ S,V + M
ygﬁSij(E)(Dj +6iM,'j(Dj =, ( —%y3S,~jV + M,'J‘ ) (Dj, (3)
and
nv+M
yg$4(2)¢4 + 64M(D4 = 64 ( . _%ygv +M ) ¢4. (4)

All the mass parameters in these relations are on the order of the M cuT scale. To generate
light initial boundary values for the masses in the doublet part of the Higgs sector of the unified
theory, which should be radiatively corrected to give the mass parameters at the electroweak
scale, it is necessary to carry out a fine-tuning procedure. For this purpose, the following trick
was used in Ref. [11].

First, the unitary matrix S was represented as

[0 0 i o
S=X| 0 €% 0 |xXT=XxDxT, XTXxX=1, XTX=1,
0 0 e

where X and X are real orthogonal matrices, D is a unitary diagonal matrix, and I is a unit
matrix. The solution of the one-loop finiteness conditions for the specific ansatz of the Yukawa
matrices used in the superpotential (2) has still some arbitrariness [11], which can be used to
set y3 = 0. This allows one to absorb one common phase into the redefinition of the fields.
Therefore, in what follows it is supposed that §; = 0. It is necessary to note that y; = 0 implies
that the fourth pair of the Higgs doublets (4) remains heavy in any case.

Second, the requirement of one-loop finiteness does not restrict the mass matrix Mﬁ. This
matrix can be written as :

M= X(RI+T'D)XT,
where R and 7' are some heavy mass parameters,
R~T ~V.

Now, if the fourth pair of the Higgs doublets and its Yukawa interactions are omitted, the
SU(2) x U(1) invariant superpotential at the Mgy scale can be represented as

790



XOT®D, 1997, 111, ein. 3 Reduction of the finite grand unification theory. . .

W= (ﬁgczﬁ-KﬁFIﬁDi v [Tortize s \/l—ngi?HfUi> w +

+{ A2 [XRI+TD)XT], H?} eas, 5)

where a,b = 1,2 are the SU(2) indices and €, = 1, and the following notation is used

3
T= Tl - iygv

The three pairs of Higgs doublets have the quantum numbers

- 70 +
a(12-3)= (7). m(123)=(%). ®)

while the other superfields in (5) are the usual matter superfields of the MSSM [16]. '
In addition, the following soft supersymmetry breaking terms must be added to the
superpotential (5):

1
Wssp =mj] Z i + 3 (m1/2 z Ak g + H.c.) +
1 k
+ B{A: [XRI+TD)XT] H +cc.fea+
+ (ADyDa?KijI-{f‘zi + Apy DHEE + Auyo @ HE, + C.C-> €abs (7

where (; denotes all scalar fields with common mass m} at the unification scale, and Ay, are the
gauginos with common mass m, /, at the same scale. Aside from the gauginos, ail other fields
in Wssp are the low scalar components of the corresponding superfields. The notation for the
scalar Higgs doublets in (7) coincides with the corresponding superfield notation (6). These soft
supersymmetry breaking terms can be reduced from the corresponding SU(5) invariant terms
of the unified theory after the SU(5) symmetry breaking [11].

Having rotated the superfields H; and H; as

H,=(X H'); = X; H| + XpH; + X3 H3, (@)
H;=(X H'), = Xy H| + XpH, + X3 Hj, ©)

where H! and H ! are the new Higgs superfields, one can conveniently rewrite (5) as

W = (ypQ Ky X Hi* Di + yL LI X HEEi + yu QP Xk HiUs) € +
+ [HI*(RI + TD);; HP) €a, (10)

and (7) as

1
Wssp = m% Z |<Pi|2 + 3 (ml/z Z ApAp + H.C.) +
i k
+ B [H]*(RI + TD);;H’ +c.c]€a +
+ (ADyDagKinikHLaJi + Apyr L X Hi2E + Apyo @ X Hi W, + c.c.) €ap. (11)
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To get the light Higgs doublet pair, a fine tuning procedure should be performed:
R+T=p~ 10° GeV. (12)

The fine-tuning procedure is more meaningful than in the other GUTs, since in the finite model
none of the parameters is running above the GUT scale.

As can be seen from (10) and (11), the first two components in the decompositions (8)
and (9) remain heavy, while the third components H} and H3 become light. By the decoupling
theorem [17], only this pair need be taken into account in the effective low-energy theory, whose
superpotential takes the following form at the unification scale:

W = (ypmiQ K Hi* D; + y i LY HP By + yuniQRHUs) € +
+ B (uHi"HY?) €as, (13)

where
n,; 3, N4 3 n; ] n; .
1 1

The corresponding soft supersymmetry breaking terms are

1 _
Wssp = m% Z |cpi|2 + 3 (m1/2 Z A Ap + H.C.) +B (/,LI{:;LI ;b + C.C.) €qap T
1 k

+ (ADme?]?KijFI;“[l; + Apypmll Hi%E, + Ayyuni @ Hi%u,; + C-C-) €. (14)

Here ¢, denotes all light scalar fields of the effective low-energy theory. In analogy with (7), the
notation for the scalar Higgs doublets in (14) coincides with the notation of the corresponding
superfields.

Equations (13) and (14) are the usual superpotential and soft supersymmetry breaking
potential of the MSSM [16], respectively. As is well known, in the MSSM there is no problem
with unification of the gauge coupling constants of MSSM at a single point at a very high
scale [18]. Moreover, only in the supersymmetric model with two Higgs doublets this unification
is possible [19].

As can be seen from (13), all information about the quark mass hierarchy at the GUT

scale is contained in the Higgs sector of the finite unified theory, namely, in the unitary Higgs
mixing matrix S :

vl =ny¥, yP=ny", yF=m",
4 2
U D _ _ L _
=— , =y = —= , 15
] /—ISQGUT Y Y \/EQGUT (15)

where gy is a gauge coupling constant of the unified theory.

These conclusions are natural and correct, and there are no subtle points if the full scalar
Higgs doublet potential has no dangerous directions (along these directions it can be unbounded
below) and has absolute minimum at zero at the unification scale. Since the full scalar Higgs
potential has a rather complicated structure because of the large number of Higgs fields, this is
~ not obvious. In the next section, a condition will be written for the parameters of the unified
superpotential which is necessary to guarantee this.
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3. DOUBLET POTENTIAL AT THE GUT SCALE

The scalar Higgs doublet potential arises from the superpotential (13) and minimal SUSY
gauge interaction, when all nondynamical components of the Higgs and gauge superfields are
eliminated, and from the corresponding soft supersymmetry breaking part (14) [16]. Hence,
the full potential has the following form at the unification scale:

V(H],H]) = (m} + R’ + T?) (Z |HI?+ Y |H] |2) +
+RT(D* + D);; (A H) + H['H}) + B [A}*(RI + TD);H} + c.c.] eqs +
2
ALk [ZIH’P I, |2] (ar)" (1)) - (ZIFI{P) +
+(H;TH;)*(H;TH;) <Z|H'|2> 2 (& ’TH') ()|, (16)

where summation over the repeating Higgs generation indices is implied. Also, it is assumed
for brevity that

\HP = [HP+ P, H = |H] P+ =P
It is more convenient to introduce the new notation
M} =mj+ R*+T?+2RT cosby, Mie" =R+Te'®, A,=|R+Te?|,
M?=m}+ R*+T?+2RT cost,, Mre"" =R+Te'% A,=|R+Te',
m —m0+(R+T)2 u=R+T,
and rewrite the potential (16) as
V=M (|H]]? + HIP) + M} (B + [HP) +m? (|H + | H3 ) +
+ B (MM HPPH + A" H Hy + pH HiY) €05 +

92[Z|1¥;|2—Z|H:|2]2+i—2 (atm;) (AtH;) - (ZlH'P) +
+ (atE) (rE) - (S |HP e (are)| . (17)
] -\

Having parametrized the Higgs doublets as

Hi=Ui(0>7 I'-Ii=Ui(m),
v; 0
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where U; and U, are some SU(2) matrices, and v; and T; are positive, one can derive that
when the quartic terms in (17) vanish the condition for positivity of the quadratic part of (17)
is

Mi(ai + ) + Mj(o} + B3) + m*(e} + B3) —
— 2|BA a8 — 2| BA |03 — 2| Blasfs > 0, (18)
where
a%+a%+a3= 17 /812+/6§+/6§= 17

Ui = gy iﬁz, v; = Biv/ i’Ug.

This requirement is necessary to provide stability of (17) in these directions. The quadratic
form (18) is obviously positive if the following conditions are satisfied:

M} > |BA|, (19)
M} > |BA,), (20)
m? > |By|. 1)

The conditions (19) and (20) hold in any case due to our fine-tuning procedure (12) (it is
assumed that B ~ ). Note that if (21) is violated, the quadratic form would be negative when

o =m=8=0h=0.
Thus, the condition
m+u’ > | By (22)

is necessary for the stability of the potential (17) for large fields. At the same time, as can be
seen from (18) and (19)-(21), the restriction (22) guarantees the positivity of the scalar Higgs
potential (16) on any field configurations. This means that after spontaneous breaking of the
SU(5) symmetry the scalar Higgs doublet potential has its only and absolute minimum at zero
at the GUT scale.

4. CONCLUSIONS

In this paper, the SUSY SU (5) finite theory with an R-symmetrical and (B —L)-conserving
superpotential has been considered. The Yukawa matrices of this theory were chosen in the
simplest possible way, and their values were fixed by the condition of finiteness up to some
arbitrariness. This arbitrariness, and the arbitrariness in the choice of the mass matrices that
are not restricted by the condition of finiteness, can be used to reduce the finite GUT to the
MSSM after the SU(5) symmetry breaking at the unification scale. Reduction to the MSSM is
necessary because only in a SUSY theory with two Higgs doublets the unification of the gauge
couplings of the MSSM at a single point is possible [18]. In the supersymmetric theories with
a more extended Higgs sector such a unification is problematical [19].

In this work, the analysis of the reduction of the finite GUT to the MSSM is simpler than
that in [11]. For the low-energy theory to be self-consistent, it is necessary that the scalar
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Higgs doublet potential have no dangerous directions and have an absolute global minimum at
zero at the unification scale after the SU(S5) symmetry breaking. These requirements impose
the restriction (22) on the parameters of the finite GUT. If this restriction holds, both the
requirements are met. As for the rest, after the SU(S) symmetry breaking one gets the MSSM
as the low-energy theory with the boundary conditions at the GUT scale for the Yukawa
couplings (15).
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