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An equation describing evolution of a curved deflagration front of finite thickness is obtained
for the case of an arbitrary equation of state of the «fuel», an arbitrary type of energy release and
an arbitrary type of thermal conduction. The equation is complemented by conservation laws for
the mass flux and the momentum flux through the deflagration front of finite thickness. As an
illustration of the method, the growth rates and the cut-off wavelengths for the linear stage of the
flame instability are calculated for the case of a flame in an ideal gaseous fuel and for the case
of a thermonuclear deflagration propagating in a strongly degenerate matter of white dwarfs.

1. INTRODUCTION

Dynamics of a deflagration wave is a key problem in many physical phenomena from
industrial problems of burning in engines to astrophysical problems of stellar evolution. A
deflagration wave (flame) is a front of energy release propagating due to thermal conduction
with a subsonic velocity [1]. Usual flame supported by chemical reactions of a gaseous or liquid
fuel is a typical example of a deflagration wave. The other examples are waves of laser ablation
in inertial fusion [2, 3], fronts of thermonuclear reaction in Supernova events [4, 5], evaporation
waves in a superheated fluid [6], etc. A deflagration wave may propagate as a planar stationary
front separating cold initial matter (fresh «fuel») from heated products of deflagration. It was
shown by Landau and Darrieus [1,7] that a planar flame front is hydrodynamically unstable
against perturbations which bend the front on large length scales compared to the flame front
thickness. Similar instability is inherent to all waves of the deflagration type. The instability
leads to a cellular structure of a deflagration front [8, 9] or to self-turbulization of the combustion
flow [1,9, 10], which may cause considerable increase of the velocity of the deflagration front.
Because of the Landau-Darrieus instability the configuration of a curved deflagration front is
much more common than the configuration of a planar front. Besides, some external effects
like turbulence may wrinkle a deflagration front as well.

To study propagation of a deflagration wave one has to consider the complete system of
hydrodynamic equations, taking into account thermal conduction and kinetic of the energy
release. This is a rather complicated problem even for numerical solution and any simplification
of the problem is of great interest. The problem may be simplified considerably if the region of
thermal conduction and energy release can be replaced by a surface of discontinuity, separating
the fuel and the products of deflagration. In this case one must specify the evolution equation
for the deflagration front and the boundary conditions at the front. Such a model was employed
first by Landau and Darrieus [1, 7] to study stability of a planar flame front of zero thickness.
However further investigation of the flame front stability showed that finite thickness of the
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front has to be taken into account [9, 10]. The influence of thermal conduction and finite
flame thickness remains important even on the scales exceeding the flame thickness by several
orders of magnitude. At the same time introduction of a discontinuity surface for a flame front
does not necessarily imply that the front has zero thickness: the flame thickness may enter the
boundary conditions and the evolution equation as an external parameter, depending on the
fuel properties. The evolution equation for a flame front of finite thickness and the boundary
conditions at the front were obtained first by Matalon and Matkowsky [11] (though misprints
in the final results somewhat spoil the excellent work). Matalon and Matkowsky considered
the case of a usual laboratory flame propagating in an ideal gas with a large activation energy
of the chemical reaction. The same evolution equation for a flame in an ideal gaseous fuel
was obtained independently in [12]. However diversity of deflagration waves and their similar
properties require development of more general theory of curved deflagration fronts, including
the case of an arbitrary «fuel» with an arbitrary type of energy release. ’

In the present paper we obtain the conservation laws at a deflagration front and the evolution
equation for a curved deflagration front of finite thickness propagating in a «fuel» with an
arbitrary equation of state, an arbitrary type of thermal conduction and an arbitrary type of
energy release. To illustrate the developed method, the growth rates and the cut-off wavelengths
for the linear stage of the flame instability are calculated for a flame in an ideal gaseous fuel and
for a thermonuclear deflagration propagating in a strongly degenerate matter of white dwarfs.
For the particular case of a flame in an ideal gas with large activation energy of the reaction
the obtained equations agree with the results of [11].

2. A PLANAR STATIONARY DEFLAGRATION FRONT
As usual the deflagration velocity is essentially subsonic so that the flow caused by a
deflagration wave can be treated as incompressible. The equations describing propagation of a
deflagration wave are

? + V(pv) = ) 1)
+ (VW F VP = ppav+ (s + 50 V() )
p%él_ + WH = V(kVT) + 2= QW(T), 3)

where H is the enthalpy per unit mass, « is the coefficient of thermal conduction, pxr and
1s are the coefficients of first and second viscosity respectively, which may be taken constant
for majority of physical problems. For incompressible matter the density, the enthalpy and the
thermal conduction depend only upon temperature p = p(T), H = H(T), k = k(T). The
last term in Eq. (3) describes the energy release in the deflagration wave, 7y is a constant of
time dimension, @ is the energy release per unit mass. For given enthalpy of the «fuel» (label
«—») the enthalpy of deflagration products (label «+») is computed through the conservation of
energy: H, = H_+Q. Then the equation of state gives the final temperature of the deflagration
products T = T (H,), and the final density p, = p(H,). The dimensionless function W (T")
gives the temperature dependence of the reaction rate; this function vanishes for the initial
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matter and for the deflagration products W (T.) = 0, W (T) = 0. Strictly speaking, the
process of energy release should be described by a separate kinetic equation: the equation of
chemical kinetic, the equation of laser light absorption, etc. However in many cases the kinetic
equation together with the equation of energy transfer may be reduced to an equation of the
form of Eq. (3). This is an exact result for a flame in a usual gaseous fuel with the Lewis number
equal to unity, when the coefficients of mass diffusion and thermal diffusivity are equal [9, 10].
This simplification can be made also for the case of negligible mass diffusion, when the electron
thermal conduction or thermal conduction of radiation are the dominant processes, as it is for
the thermonuclear reaction fronts in Supernovae [13], for laser ablation [3] and for many other
physical processes.

Egs. (1)<(3) have a stationary solution which is a planar deflagration front propagating
along z-axis. In the frame reference co-moving with the deflagration front the stationary
solution consists of the upstream homogeneous flow of the cold matter, the transition region of
heating and energy release, and the homogeneous downstream flow of the deflagration products.
For the stationary flow we have pu = p_Uj = const and the speed of a stationary deflagration
is determined as an eigenvalue of the equation (3) of energy transfer

dH _ d p-Q
p—Uf—E;_dz( dz> TR = 7D *)

with the boundary conditions 7" = T_ ahead of the deflagration front and T = T behind the
front.

It is convenient to introduce the dimensionless variables and parameters r = p/p_, © =
=T/T_,h=H/H_,01 =(P-P.)/p.U}, x = k/k_, Prps = ppsH_[T_k_, A=
=QL/ (H _Uy TR) , and the dimensionless coordinate £ = z/L, where Uy is the velocity
and L=«_T_/ (H_ p-U f) is the thickness of the planar stationary deflagration front. The
parameter A is an eigenvalue of the dimensionless equation of heat transfer

d [ do\ dh _
2 ("E) - AW @ =0, (5)

with the boundary conditions © = 1 for £ — —o0 and © = @, for £ — o0.

Let us consider the approximate analytical solution of Eq. (5) for the case of negligible
thickness of the zone of energy release using the method proposed by Zel’dovich and Frank-
Kamenetskii [10]. Outside the reaction zone W =~ 0 and temperature obeys the equation

X=—=h-1. 6
d{ (6)

Neglecting the second term in Eq. (5) inside the thin zone of energy release and using Eq. (6)
as a boundary condition upstream the zone we obtain the following approximate value of A

-1

5 o, :
A % / w@®@de| . %)
/ ,

Eq. (7) makes it possible to obtain the deflagration velocity depending on the particular function
of the energy release as follows Uy = \/Qn_T_ /AH2p_TR.
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3. EVOLUTION EQUATION FOR AN INFINITELY THIN DEFLAGRATION FRONT

Let the curved deflagration front be described by a function z = Rf (x, t) , so that evolution
of the front is characterized by the length scale R > L and by the time scale R/Uy. It is
convenient to introduce the dimensionless time 7 = Ut/ R, the transverse coordinate = x/R
and the small parameter ¢ = L/R < 1. In a coordinate system co-moving with the flame front

¢(=&-fmnfe, n=n 71=7 (®)
the hydrodynamic equations take the form
or am
— +
es-t 3 eV, (rv) =0, )
ov ov an
— +m—+ =_ + — +
eraT mac er(wV v eV, Vlf ac
P’I‘F a /m
+Prracy + (Prs + T) (evl V.f C) (& (7) +eV_|_v) ., (10)
ou ou an
— + + =——+
araT m6C er(wVyi)u ac .
Prg\ 0 (0 /rm
+ — ==+
+PrpAcu (Prs + 35 ) 5 (ac ( - ) eV_Lv) , (11)
oh Oh , 0 00
— +m—+ — )+
eraT mac eruV_ h=N C(X C)
+eVy [x (EVJ.G Vlfac)] EV.LfaC xV.ie)+w(e), (12)
where the mass flux m is given by the expression
m=ru—r§i—rvvlf, (13)

or

u = v, /Uy, v = v, /Uy are the components of the dimensionless velocity, V , is the part of
the operator V related to the coordinate 7 along the front surface. The Laplace operator in
the introduced variables takes the form

62

= 2—-—
ac=Ngs

- eﬂf% _2x 2 (vipv+evd, (14)

aC
where N =+/1+(V_f )2. It is convenient to rewrite Egs. (10), (11) in another form, extracting

the expression for the momentum flux in the left-hand side

mc%(v+uVJ_f)——er (%*ﬂ)Vl) (w+uV,f)teru (c’% +vVJ_> Vif-

—eV T+ Prp (A + Vi fAcu) +¢ (Prs + P’F) V. (;)C %)+ eV_Lv) (15)
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¢ or or? or
—erv(WV )V, f+ €VJ_fVJ_n+PTFA(‘ ( ) + P’I‘FUA(VJ_f + PrpA¢ == gf
Prp , 0 0 /m
+ —- 1
(Prg : )(N 5 av+fvl) (ac( )+eviv). 6
We expand a solution of Egs. (9)-(12) in the power series of the small parameter e: m =

=mg+em;+0 (e2), ©= 0 + 0, + O (¢2), etc. Then Egs. (9), (12), (15), (16) with the
accuracy O (¢) take the form

2 ' 2
N2 2 < m+ i) = -ga—m- - eV (mv) — er?— - 2ETUVJ_‘a—f -

?a% -0, (17)
C (v +uV, f)= PrpN28<2 (w+uV,f), (18)

5} m?\ (4 , 0 /m
NZaC ( +NT7') = (SPTF'*‘PTS)N acz (_)7 (19)
H o)

It follows from Eq. (17) that m = mq(n, 7) + O(¢e). Similar to Eq. (5), solution of Eq. (20) can
be presented in the form:

=0, (¢/N), mom,7)=N=/1+(V_of), (21)

where © = ©,(€) is the temperature profile for a planar deflagration front, which is solution of
the ordinary differential equation (5). The equation of state of the fuel gives us immediately

7‘0=T(@0)=Tp (C/N), h0=h(@o)=hp (C/N) (22)

Egs. (18), (19) being integrated across the deflagration front supply the conservation laws for
the momentum flux at the infinitely thin surface of discontinuity. Particularly, we find from
Eq. (18)

v+uVlf=v_+u_VJ_f+O(e). (23)
Egs. (13), (23) give the solution for the velocity components
1 r-1
=y_ — — +
uSu -~ — O(e), (24)
v=v_ +—V1¢f 106 (25)
The expression for pressure follows from Eq. (19)
4
n= + | =Prrp+ Prg Ni ! + O(e). (26)
3 A \r

Egs. (13), (21) give the evolution equation for an infinitely thin deflagration front

d
A o vif 1+ - =06 27)

Evolution equation Eq. (27) and the relations (24)-(26) determine the dynamics of an infinitely
thin deflagration front, which is, in fact, the Landau-Darrieus model of a deflagration front.
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4. INFLUENCE OF FINITE THICKNESS OF A DEFLAGRATION FRONT
ON THE FRONT EVOLUTION

Evolution of a deflagration front depends essentially upon the finite thickness of the front
even on the length scales which exceed the front thickness by several orders of magnitude [9, 10].
Next terms of the expansion in e describe the influence of the finite thickness of the deflagration
front. The equation for the mass flux, Eq. (9), with the accuracy €2 may be written in the form

omy ., (0N V.fV.N _
a—C =N (—37' +v_V N+ N ) a¢ =5 ((ro — 1)¢)
ON
N (F‘J'Vl (Nv_)+ V% f) -Viv_. (28)

The solution of Eq. (28) is

m;=mi- —(V,iv_+ (%—Jj’*‘l)_le"‘ W) %(TO_ 1)
_(?9_N+VL(NU )+ V2 f) (C) (29)
where
¢/N
J (-1%) = / (rp(v) — 1) dv. (30)

Substituting the expression for the mass flux Eq. (29) into the equation of thermal conduction
Eq. (12) and extracting the terms of order of O (¢) we have

ml_%—(aN*-Vl(N _)) ¢ Ohy (BN V. (Nv_)+ V2 f) (i) 6ho

¢ F) Na¢ \o 8(
VIN O [, 860\ _
VLN - g () -
, 8 NO (dh dw
= N5 (@) = Ny ( o ) + =50 G1)

One can check by simple substitution and comparison with Eq. (5) that the right-hand side of
Eq. (31) is zero for ©; = 80,/9( :

5 (99 232(@>_ i(ﬁ@) dW 96y _
F(ac) Naa\xac) Nac\aeac ) ae ac (32)

The operator E (©,) can be reduced to a Hermitian form FH (1) by the substitution

¥ L7 an

= L — —-1777P

o= e | 3 / %' Jord (33)
¢-IN
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where (_ is an arbitrary position since the operator F (@) is linear. The expression I:“H @)
becomes zero for

¢/N
98, 1 _1dh
Wo =X ?f%xp -3 / xpldepdu : (34)
¢-/N

If we write the right-hand side of Eq. (31) in the Hermitian form, multiply it by 1), and integrate,
we obtain the relation

m1_=(%—N-+V¢(Nv )+ V3 f) ((£+J(£)) )

d¢
) dh de, V.fV.N de,

Vlf< dep+"7-'t'é'>+2 N <d§( . >> 39

where
( / w%tg) ( / ”‘l”dﬁ) ' (36)

and
de dh '

‘Pz—xgg—exp —/x;ld —2dv|. 37

£

Profiles of temperature, enthalpy and density for a planar stationary deflagration front ©, =
=0,(8), hp = hyp (§), pp = pp (€) follow from Eq. (5) and the equation of state. Taking into
account Eq. (35) we obtain the evolution equation for a deflagration front of finite thickness
with the accuracy O (¢?)

af*" Vif- 'U'—+N=“5(%]X+VJ_(N‘U )+ Vi f) <(€+J)—‘Z2—”>+
+eV3 f<£— %> —2€VLf]3.LN<d£ (E d_£)> (38)

where N = /1+(V_.f )7. Eq. (38) is obtained for the case of an arbitrary equation of state
of the «fuel», an arbitrary type of thermal conduction and an arbitrary type of energy release.

Let us consider a deflagration wave, for which energy is released in a zone of negligible
thickness compared to the total thickness of the deflagration front. For a usual flame this case
corresponds to a reaction with large activation energy. In this case we have from Eq. (6) ¥2 = 1
for £ < 0 and ¥2? = 0 for £ > 0, so that the averaging Eq. (36) becomes

0

@) = [ od. (39)

-0

Calculating the coefficients in Eq. (38) we can write the evolution equation for the deflagration
- front in the form

% 520



XITD, 1997, 111, ewn. 2 On the Dynamics of a Curved. . .

gf+'v Vif—-u_ +N—ea(%—N+VJ_(Nv )+ V2 f) (40)

Eq. (40) describes the influence of the front stretch and the finite thickness of the deflagration
wave on the velocity of the front. The numerical factor depends on the «fuel» properties

o, e,
h+ 1-rh
+ . 4
h+_1/rxd6 /h—lxde 41)
1 1

For many physical problems the dimensionless equation of state for an isobaric flow have the
form rh = 1. It takes place when pressure is determined by an ideal gas, by a non-relativistic or
ultra-relativistic fermi-gas, by radiation pressure, etc. In thi§ case the numerical factor becomes

a=

0.

_ _h
«a P / rxdO. 42)
1

For the particular case of an ideal gas (r® = 1) with a constant coefficient of thermal conduction
(x = 1) the evolution equation obtained by Matalon and Matkowsky [11] is recovered from
Eq. (40).

5. CONSERVATION LAWS AT A DEFLAGRATION FRONT OF FINITE THICKNESS

The evolution equation Eq. (40) should be complemented by the conservation laws at the
deflagration front which take into account the finite thickness of the front. These conservation
laws follow from Egs. (9), (15), (16) integrated with the accuracy O (52) . The conservation
law for the mass flux follows immediately from Eq. (29)

=cJ; (a—N +V, (Nv)+ V2 f) (43)

(TU—T'UVJ_f—Tg—i) 3

where the numerical factor is given by the formula
d
a= / 2 4 (44)

To obtain the conservation laws for the momentum flux we need to integrate Egs. (15), (16),
which have the form with the accuracy O (€?)

o a o}
aC(U+UVJ_f)_—ET (5; +v_Vl) v_—erV.f (E +U_VJ_) U_ —

VLAV Y — eV~

—s——r—l (i +v_V_L+VJ'fV_|_) Vlf+st'Ni (CT— 1) +

N \or N N o¢ T
+Pr N2i92—(v+uv f)—ePrpV N2 o (r-1 (45)
FN e L FVLN 55 )
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2 4 2
N?— 9 ( I+ l) = <§PTF+P1“5) Nza— (%) —Ea—N —eVi(Nvo) -

aC¢ N2r aC? or
d? of o (r—12 V.fV.N
—er=— —2er_V, == —2e(r—1) | =— —v_ - -
sraTZ _ sm') V. 3 e(r—1) (GT v _VJ_> N-—¢ - N
—erv_ (W_V )V f+eV fVIN_ —el— Vi f+

4 -
+e (§PTF +P7's) NV, (v;f) (%(T - 1) . '(46)

Integrating Eqs. (45), (46) and taking into account asymptotic behavior outside the deflagration
front we obtain the jump of the components of the momentum flux across the deflagration front
of finite thickness

+

v r+ — 1V, N
+ +
(v uVlf)|_ PTFN(ac V_Lfac> —ePrp - N
+edi (Dv_+VifDu_+ NTIDV.f), (47)
m*\|" V.f
(m )| e () +
EJ] 32f o) VlfV_LN
N (a 2 +2v - 57 VJ_f+U (v VJ__)V_Lf+2DN T +
4 a rmy|" . re—1 V.f
+(<Prp+P —(=)| +
(3 i TS)(ag(r)_ T VL(N) “)
where the coefficient J; is
-= 7 £ drp
2 _/ e 49)
and the differential operator D is introduced for convenience
) = %+v-V_L + N7V, fV,. (50)

It can be obtained using the hydrodynamic equations Egs. (9)-(11) outside the deflagration
front [11] that

v * re—1[ = . 1 - re—1 VN
=— + +— + —_—

(04 *Vifaz )_ e (Dv- V.fDu_ NDVlf) i 6D
a my|" _ r—1 V.f
% (P (). (”’

Taking into account Egs. (51)-(52), we can rewrite the conservation laws Egs. (47), (48) in
the form
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@+uV L)} = = Prp(rs — 1)) (Dv_ +V, fDu_+ N"ﬁVlf) . (53)
2 + V
(n+;\7—2) —Esz_L ( J\lff) +
J (& 9 N v N
EN‘ (a{ W_V, af +y_(_V,)V,f+2DN— —ifgi—) (54)

Equations (43), (53), (54) represent the conservation laws for the mass flux, tangential and
normal components of the momentum flux for a deflagration front of finite thickness for the
case of an arbitrary fuel. The left-hand sides of these equations represent the conservation
laws for an infinitely thin deflagration front, the right-hand sides describe the influence of the
transport processes and the finite thickness of the deflagration front. The dependence upon the
equation of state of the «fuel» and the particular type of the energy release enters the conservation
laws through the coefficients J;, J,. For the common case of a thin zone of energy release the
coefficients take the form

0. o,

1—
Ji= / rxdo + / FTThxde, (55)

1 1

O. o,
/ xde + / _Thxde (56)
1

The evolution equation Eq. (38) and the conservation laws Eqgs. (43), (53), (54) determine
dynamics of a curved deflagration front in a «fuel» with an arbitrary equation of state and an
arbitrary type of energy release. It should be mentioned that second viscosity does not enter
either the evolution equation or the conservation laws, though this process has been taken into
account in calculations.

6. SUMMARY OF THE RESULTS AND DISCUSSION

In the present paper we have obtained the evolution equation for a curved deflagration front
of finite thickness propagating in a «fuel» with an arbitrary equation of state and an arbitrary
type of energy release. The evolution equation is complemented by the boundary conditions:
the conservation laws for the mass flux and for the momentum flux through the deflagration
front. Let us write the obtained results in dimensional units in a coordinate free form. For a
deflagration front described by a function F (z,x,t) = 0 (for example, F' = z — Rf (x,t) = 0)
we have N = |VF| and therefore the evolution of a deflagration front is described by the
~ equation

nv_+%%—};=Uf—aLK, 57
where v_ is the flow velocity at the cold boundary of the deflagration front, n = VF/|VF|
is the unit normal vector directed towards the products of deflagration, K is the front stretch,
which may be written in a coordinate free form as [11]
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1 ON 1 '

and the numerical factor for the case of a narrow zone of energy release is given by

T+ . TQ'
a=Q+H_/ pkdT + p_H_—pH kdT (59)

Q p—r_T_ H-H_. p_k_T_

Taking into account Egs. (57), (58) we can write the conservation laws in the following
coordinate free form

+

1 OF
p (nv+ NW) = p_LJlK, (60)
v = Uif <J1 +Prpf= '_”*) nx D (v_ —Usn), (61)
(P +pom?)|" = —Lp_U2J,Vn +
+Lp_J; (%f)N+n% +n(v_V)v_) (62)

where the dimensional form of the operator Dis

b= % +vV_V — UV (63)

and the coefficients J;, J; for the common case of a deflagration wave with a thin zone of
energy release are given by the formulas

T. T.

pK p-H_. —pH kdT
= | —— _dT+ 4
Ji /p_n_T_dT / H-H. p_k_T €4
T T
i T o H_ —pH kT |
K p_H_ —pH &k
= | — 4T + . 65
T2 / i / p(H—-H_) k_T_ ©®5)
T_ T_

The evolution equation Eq. (57) and the conservation laws Egs. (60)-(62) determine the
dynamics of a deflagration front in a flow of a «fuel» with an arbitrary equation of state, arbitrary
type of thermal conduction and energy release. An essential advantage of the present model
is possibility to apply it to physical problems of different nature, i.e. flame propagation in a
chemical or thermonuclear fuel, propagation of an ablation front in a laser target, evaporation
- front in a superheated fluid, etc.

Let us apply the obtained results to some particular physical situations. In the simplest
case of a flame in an ideal gaseous fuel with a large activation energy and equal coefficients of
thermal conductivity and fuel diffusion the evolution equation (57) and the conservation laws
(60)—(62) coincide with the equations derived in [11]. The well known expression [14-16] for the
instability growth rate o of perturbations at a planar flame front of finite thickness may be also
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derived directly from the obtained equations. The linearized equations (57), (60)—(62) couple
the amplitudes of the perturbation modes generated by an unstable flame front in the upstream
and the downstream flows. Taking into account the explicit expressions for the perturbation
modes [16] one finds the instability growth rate from the consistency condition of the linearized
equations (57), (60)—(62):

cr=SUfk(1—k/\c/_27r), (66)
where S = (1+7y)7! (\/1 +1/ry — 714 — 1) is the coefficient obtained in the Landau-

Darrieus theory of the flame front instability. The instability is suppressed by thermal conduction
for perturbations of a wavelength shorter than the cut-off wavelength

' 7I'L’I"+ In T+ '
= — 7y — +1+714)).
Ac 2S (S (’r+ T 1) n ’r+) (1 T+ 1 . (2ST+ 1 T+)) (67)

Because of the large numerical coefficient in Eq. (67) the cut-off wavelength ). for typical
laboratory flames (r+ = 0.1 — 0.2) exceeds the flame thickness L essentially, A\, =~ 20L. By
this reason smooth planar flames are observed much more often, than it was expected from
the Landau-Darrieus theory [1,7,10].

Another interesting application of the obtained nonlinear model is dynamics of a
thermonuclear deflagration in Supernova events. It is generally believed that the observed
spectrum of a Supernova of Type Ia is determined mostly by the first deflagration stage of
white dwarf burning [4, 17]. At the same time investigation of the deflagration stage is strongly
complicated by the huge range of the length scales which have to be taken into account. The
hydrodynamic length scale of the deflagration dynamics in Supernovae is about the white dwarf
radius ~ 100km, which exceeds the flame thickness (~ 10~3cm) by 12 orders of magnitude. By
this reason a direct numerical simulation of white dwarf burning is impossible and a simplified
model is required. The most probable scenario of the deflagration dynamics in white dwarfs
is development of a fractal structure, which implies many cascades of cells of different sizes
growing because of the Landau-Darrieus instability [18]. The velocity of a fractal flame increases
with increase of the flame radius R as [18, 19]

(68)

2R\ ¢ ‘
nede )

U= r:‘U,(

where 2+d is the fractal dimension, n. is the critical number of a spherical function for a fractal
accelerating flame found in [19], which determines the upper limit of the fractal structure. The
cut-off wavelength A, gives the low limit of the fractal structure of the deflagration in white
dwarfs. This value may be calculated on the basis of the model Egs. (57), (60)—(62), taking into
account the properties of the white dwarf fuel. In the dense central layers of a white dwarf with
p=3. 109g/ cm® the equation of state is determined by degenerate ultrarelativistic electrons,
so that [20]
4P

H=—, (69)
p

4/3 2/3 M
_ pZ M,’ T
P= 0.77hc(E) (1 +2.06 (p—z—) / %> , (70)
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where eZ and M; are the average electrical charge and the average mass of the ions. Because
of the relatively low temperature the thermal conduction of the degenerate electrons dominates
in a white dwarf over the radiation thermal conduction, therefore [21]

0.81he? [ pzZ\'/?
~ g (5r) T o

where A.; is the Coulomb logarithm. Using the equation of state and the expression for the
thermal conduction we calculate the coefficients of the nonlinear model Egs. (59), (64), (65).
Then similar to the case of a flame in an ideal gaseous fuel, we find the cut-off wavelength of
the Landau-Darrieus instability of a deflagration front in white dwarfs

2L b1 +Sb2

" Sry I+1)S+1 (72)

with the coefficients depending upon the ratio of densities r, of the fuel and the products of
the thermonuclear reaction
3_9pl /3403 +1
=t (33 P ()
6(1—r+/ ) 1274 (1=14) (1+r+/)

b = 1 l—rf (
) = -
27"1/3 (1-r4) 67‘3,/3 (1 +r4+/3)

3+ 21"3/3 + riﬁ) . (74)

The fuel close to the white dwarf center is strongly degenerate so that energy release in the
reaction causes only slight decrease of density of the burning matter, . = 0.85—0.9. For such
small expansion the Landau-Darrieus instability is rather weak, while the thermal stabilization
is strong and the cut-off wavelength exceeds the flame thickness by almost three orders of
magnitude, A, = 410L. This value differs essentially from the crude estimate of the cut-off
wavelength made in [22], where the stabilization of the hydrodynamic instability was expected
on the length scales of about 10L.

The developed model may be useful as well for investigation of the fractal dimension of
the deflagration fronts in white dwarfs, which up to now has been estimated with rather low
accuracy (~ 50%) [18] not acceptable in the theory of thermonuclear Supernovae.
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