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A general method for identifying models that allow for soliton solutions from general classes of 
models of nonlinear wave processes with fixed dispersion laws is examined. The method 
uses the generalized Lagrange identity for adjoint equations and is universal in relation to the type 
of dispersion of the initial class of equations and their vector dimensionality. This makes it 
possible to build generalized versions of known and new exactly solvable equations such as 
nonlinear Schrodinger equations, Korteweg-de Vries equations, etc., by specifying 
explicitly the type of the L-A pair for each equation, which makes it possible to immediately 
apply the inverse scattering method. The new method can also be used to build 
generalized versions of models of the interaction of N waves in media with a quadratic dispersion 
law. O 1996 American Institute of Physics. [S 1063-776 1(96)025 12-71 

1. INTRODUCTION 

With the arrival of the inverse scattering method physics 
acquired an entirely new class of universal exactly solvable 
models describing, from a unified standpoint, nonlinear wave 
processes in various dispersive media in conditions when 
nonlinearity and dispersion are balanced. Among the models 
are those based on Korteweg-de Vries equations, nonlinear 
Schrodinger equations, modified Korteweg-de Vries equa- 
tions, the three-wave interaction, etc.' In addition to exact 
integrability, the importance of these models is determined 
by the fact that the nonlinear wave processes (solitons, kinks, 
breezers, and the like) described by the models are usually 
stable under external disturbances, which is important be- 
cause of the possibility of observing them in real physical 
systems. Although this class of equations was found to be 
fairly limited, within the standard procedure of multiscale 
expansions in the theory of perturbations with exclusion of 
resonances these models appear regularly in various, often 
unrelated, sections of physics, which is apparently a conse- 
quence of an implicit requirement that the solutions be 
stable, a requirement imposed by the procedure of solving 
equations via perturbation theory with exclusion of reso- 
nances. 

At the same time, equations describing the real problems 
in constructing these exactly integrable models often acquire 
additional terms, which can disrupt the balance of nonlinear- 
ity and dispersion. This leads to rapid loss of the stability of 
nonlinear waves of the soliton type. Hence in such cases it is 
desirable to know under what additional conditions an inte- 
grable model with additional terms still allows for exact so- 
lutions of the soliton type. 

Often in applied problems (see, e.g., Refs. 2 and 3), to 
establish how the dynamics of the solitons is influenced by 
the medium's parameters the researcher is forced to examine 
the evolution of the one-soliton solution under a perturba- 
tion. Usually the problem is solved approximately by 
perturbation-theory techniques. But the perturbation theory 
of solitons (see, e.g., Refs. 4 and 5) does not answer the 
important question is whether the equation in question has 

soliton solutions, i.e., sets of solitary waves interacting elas- 
tically. These properties guarantee that slow variations of the 
properties of one solitary wave are the same as in the set of 
waves. 

The problems whose solution answers this question may 
be formulated in different ways, one of which reduces to 
calculating the general form of the evolutionary equations of 
the model that allow for soliton solutions for a giver order of 
the medium's dispersion and a given number of waves par- 
ticipating in a weakly nonlinear wave process. Different ap- 
proaches have been used in the study of this problem and 
interesting results have been obtained. In Refs. 1,6-8 a way 
of calculating the equations that can be integrated by the 
inverse scattering method was proposed. It was based on the 
procedure of "dressing" the operators of the Lax represen- 
tation. Other methods for calculating the form of the equa- 
tions, methods related to the symmetry algebra of differential 
equation, have also been proposed (see, e.g., Refs. 9,10, and 
11). The Wahlquist-Estabrook also belongs to 
this class of models. The main difficulty in using these meth- 
ods is that the form of the equations obtained with their help 
is not related from the start to the form of the initial equation 
but is determined by the procedure of building such equa- 
tions or the type of symmetry. However, these methods make 
it immediately possible to apply the inverse scattering 
method to the emerging equations, since they provide a pair 
of operators for the Lax representations for each equation. 

Another approach is related to a direct verification of the 
fact that the equations have a rich set of conservation laws, 
which is the Liouville definition of complete integrability of 
equations. In Refs. 13 and 14 this problem was solved by 
proving the existence of solutions of operator equations of a 
certain type related to the initial equation. This makes it pos- 
sible to build lists of integrable equations (see also Ref. 15). 
This approach, however, does not generally allow calculating 
the Lax operators for each equation, which hinders its prac- 
tical use. 
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Another approach to the solution of the problem is based 
on "deformations" of the Lax representations, which actu- 
ally means performing substitutions of a general form of the 
coordinate variables and the spectral parameter in the opera- 
tors of this representation (see, e.g., Refs. 16 and 17). The 
approach requires using from the start an equation with a 
known Lax pair of operators and makes it possible to estab- 
lish new classes of equations that can be integrated by the 
inverse scattering method and are obtained as a result of such 
deformations. 

The problem of finding the form of equations that allow 
for soliton solutions was solved in Ref. 18 for the three-wave 
interaction model by a method based on the Lagrange iden- 
tity. The main idea of using the Lagrange identity for solving 
the problem is that the Lagrange identity provides a simple 
and universal way of building all the conservation laws for 
any system described by finite-order partial differential equa- 
tions. To establish when the problem is completely or par- 
tially integrable we must extract additional information about 
the structure of the laws, i.e., we must check whether they 
are in involution or not. In Ref. 18 it was shown that the Lax 
representation is a direct consequence of the Lagrange iden- 
tity. An appropriate interpretation of this fact immediately 
provides a way of formally building such representations 
(even in the case where the equations are not integrable). The 
problem that follows consists in finding the conditions under 
which the obtained representation is exactly of the Lax type, 
i.e., contains a spectral parameter in an explicit and non- 
trivial manner. Actually this approach makes it possible to 
obtain all the equations in the general class of initial equa- 
tions of l + l dimensionality that allow for soliton solutions 
together with all admissible deformations of such equations. 
In contrast to the approaches and methods mentioned earlier, 
this approach provides a universal scheme for calculating the 
equations that is independent of the type of dispersion and 
the vector dimensionality of the initial equation. 

The present paper studies the application of this method 
to solving the general problem of the existence of soliton 
waves in media with quadratic, cubic, etc. dispersion and 
propagating in a one-dimensional nonlinear medium. First 
the method and its main elements are illustrated by an ex- 
ample of solitary waves propagating in media with quadratic 
and cubic dispersion, with the nonlinear Schrodinger and 
Korteweg-de Vries equations being typical examples of the 
corresponding equations. The equations of this type are well- 
known, but not all types of deformations given here have 
been described before. Vector and multicomponent 

comprise a poorly studied area of the theory of 
equations that admit for soliton solutions. The aim of the 
present work is to apply the method to problems in which a 
finite number of waves interact in media with quadratic dis- 
persion, with the three-wave interaction used as an example. 
The problem is important from the practical standpoint for 
analyzing the propagation of short and ultrashort optical 
pulses in nonlinear optical media.21.22 

2. THE LAGRANGE IDENTITY FOR THE EQUATION OF A 
SINGLE WAVE PROPAGATING IN A MEDIUM WITH 
QUADRATIC DISPERSION 

Let us take as an example the model of a single wave 
propagating in a one-dimensional nonlinear medium with 
quadratic dispersion. The wave process of this type is repre- 
sented by the real-valued function 

which describes the deflection of the medium (or the field in 
the medium) from equilibrium as the wave passes through a 
point with a coordinate x  at time t .  Here u ( x , t )  is the wave's 
complex-valued amplitude, and k and w are the wave num- 
ber and frequency. The general equation describing the slow 
variation of the function u ( x , t )  in a medium with quadratic 
dispersion has the form 

Here &=const, and the following notation has been intro- 
duced: 

du d u  d2u  
u  =- 

I d t '  
1 4 X = - ,  uxx=- 

d x  d x 2 t  " '  

The coefficients r i ( x , t ;  u ) ,  i = 0,1,2, considered as functions 
of x  and t  describe the variation of the medium, while their 
dependence on the functions u ( x , t )  describes the nonlinear 
properties of the medium. An important problem that 
emerges in the study of such models is finding the form of 
the coefficients r i ( x , t ; u )  for which Eq. (1) admits for mul- 
tisoliton solutions. 

By analogy with linear differential equations, we can 
introduce for Eq. (1) the concepts of an adjoint function and 
an adjoint equation. The general theory of linear differential 
operators states that for a linear operator L  acting on func- 
tions u ( x , t )  the action of the adjoint operator is defined in 
such a way that for any functions 4 ( x , t )  and u ( x , t )  in a 
domain O C R ~  of variation of the arguments x  and t  we 
have 

l n 4 ( L u )  d x  d t -  ( C 4 ) u  d x  dr I, 

where Q = ( Q o , Q , )  is a vector field on whose form is 
determined entirely by the operators L and L' and can be 
calculated by using the generalized Lagrange identity 

Assuming that for Eq. (1) 

rl d2 d 
L = E  - + r 2 ( x , t )  --T + r , ( x , t ) - + r o ( x , t ) ,  d t  r%T rlx (3 )  

we can find the adjoint operator: 
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In the above equations the explicit dependence of ro, r , ,  and 
r2  on the unknown function u ( x , t )  has been dropped for the 
time being, i.e., it is assumed that the dependence on x. and 
t  takes into account the possible dependence on u ( x , t ) .  The 
components of the vector field Q ( x , t )  corresponding to (2) 
are 

Let u ( x , t )  and q!~(x, t)  be the solutions of the respective 
equations, 

Then, according the Lagrange identity (2), the following 
generalized differential conservation law holds: 

If the function u ( x , t )  is fixed, $ ( x , t )  satisfies a linear 
equation and therefore is formally a function of a single 
spectral parameter k. Consequently, Eq. (6) contains not a 
single conservation law but a set of such laws, which are the 
coefficients of the series expansions of the components of the 
vector field Q  in powers of the spectral parameter k as 
k 4 m .  Hence, under certain additional conditions the system 
of equations (5) may prove to be either totally or partially 
integrable. The conditions can be formulated as restrictions 
imposed on the properties of the initial equation interpreted 
as an infinite-dimensional Hamiltonian system. Direct verifi- 
cation of these conditions is usually extremely tedious, how- 
ever. There is another, simpler and more constructive, way of 
establishing these conditions, at least those involving the par- 
tial integrability of (I), i.e., the conditions in which Eq. (1) 
allows for multisoliton solution. It amounts to building for 
this equation a Lax representation, which is the starting point 
in applying the inverse scattering method to this equation. 
Let us see how this approach can be realized. 

If we introduce into r k ( x , t , u )  an explicit dependence on 
the unknown function u ( x , t )  and its derivatives, the first 
equation in (5) becomes the initial equation (I), and the sec- 
ond equation in (5 )  and Eq. (6) become the starting point for 
building the pair of operators of the Lax representation for 
(1). 

Equation (6) is equivalent to the equations 

where $ (x , t )  is a auxiliary function, which in a certain sense 
can be thought of as being the Wahlquist-Estabrook 
pseudopotential.109'2 Indeed, since by introducing the depen- 
dence of 4 on the spectral parameter k mentioned above we 
made the function $ depend on k ,  the coefficients in the 
series expansion of this function in powers of k provide a 
denumerable set of pseudopotentials. 

We introduce the auxiliary vector function 

The combination of the second equation in (5 )  and Eq. (6) 
can be written in the form of a system of two vector equa- 
tions in the vector function W ( x ,  t ) ,  

where U ( x , t )  and V ( x , t )  are 2-by-2 matrices. To  this end we 
must augment the second equation in (5) and Eq. (6) by a 
relationship of the type 

where a ( x , t )  and b ( x , t )  are functions that have yet to de- 
termined. The introduction of such a large number of auxil- 
iary functions is justified by the fact that the initial equation 
(1) and two additional equations for the auxiliary functions 
a  and b  comprise the condition for the compatibility of the 
pair of equations in (9). 

The matrices U ( x , t )  and V ( x , t )  can easily be calcu- 
lated: 

where 

The condition for compatibility of the pair of equations 
in (8) can be written in the form of the Zakharov-Shabat 
zero-curvature condition' 

where the square brackets stand for the ordinary matrix com- 
mutator. Plugging U ( x , t )  and V ( x , t )  of (10) into (I 1) and 
doing a direct check, we conclude that Eqs. (1 1) are equiva- 
lent to (I) and the two additional equations 

Thus, we have found that an arbitrary equation of the form 
(1) can be represented in the form of a representation of the 
Lax type. However, this representation cannot be used di- 
rectly in the inverse scattering method for building soliton 
solutions. This requires the spectral parameter to be included 
in the representation operators explicitly rather than for- 
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nially. The general meaning of this requirement is that if 
such a parameter exists, by expanding the components of the 
vector Q in power series in the parameter and using (6), we 
can obtain an explicitly infinite sequence of conservation 
laws, which, as noted earlier, is necessary for complete inte- 
grability. The need for such a parameter can be justified 
more rigorously by using, for instance, the Gel'fand-Dikii 
approach.23.24 

According to the Gel'fand-Dikii theory, the Hamil- 
tonian nature and the integrability of equations with a Lax 
representation, which means the possibility of applying the 
inverse scattering method to such equations, are linked to the 
existence of a special expansion of the resolvent of one of 
the representation's operators in powers of the spectral pa- 
rameter. Hence the first necessary condition for using the 
inverse scattering method to solve Eqs. (1) is an explicit 
dependence of the matrices U(x,t) and V(x,t) in the repre- 
sentation (8) on a complex-valued parameter A that trans- 
forms the systems of linear equations (8) into a nontrivial 
system of spectral problems. Here the unknown function 
u(x,t) is assumed independent of A.  This spectral parameter 
provides the expansions of the functions + and q5 in the 
conservation law (5) that are needed for integrability, at least 
partial integrability. 

3. CONSTRUCTING EQUATIONS THAT ALLOW FOR 
SOLITON SOLUTIONS 

The only way to introduce into the system of equations 
(8) a spectral parameter (with u(x,t) independent of A) is to 
assume the existence of an explicit dependence on A in the 
functions a and b: i.e., a=a(x,t,A) and b=b(x,t,A). 

Gel'fand and ~ i k i ? ~ , ~ ~  showed that in order to relate a 
given first-order matrix operator to a new operator or a set of 
operators commuting with it and, as a consequence, a set of 
nontrivial nonlinear equations with a Lax representation, its 
matrix U must have the form 

with two conditions being imposed: (1) 
D= diag(d,(t),d,(t)) is a diagonal matrix with 
d l ( t ) f  d2(t), and (2) the diagonal elements of the matrix 
Uo vanish. In Refs. 23 and 24 it was assumed that 
dl#d2=const. The main results in these papers do not 
change if d l  and d2 are dependent on t. 

For the sake of convenience we say that a representation 
of the form (8) equipped with a spectral parameter is a true 
Lax representation or simply a Lax representation if at least 
one matrix of the representation has the form (13). Represen- 
tations that do not obey this condition will be called pseu- 
dorepresentations or representations of the Lax type. 

We start with the case where r2= 1, which corresponds 
to a situation in which the quadratic term in the dispersion of 
the medium is neither inhomogeneous nor nonlinear. Follow- 
ing (13), we put 

Substitution of (14) into (10) and the transformation 
q-+exp{A0(x,t)}q allow the matrix U in the form 

where 

The matrix UI is a lower-triangle regular matrix and there- 
fore can be reduced to diagonal form by a similarity trans- 
formation independent of A, which induces a gauge transfor- 
mation of the operators L, = J x  - U and L2 = d,- V of the 
Lax representation (Eqs. 8-10). In the process the matrices 
U and V are transformed as follows: 

where 

As a result U1 becomes a diagonal matrix, 
U1 = diag{d = 8, ,d2 = b,(x,t) + Ox), and the matrix Uo be- 
comes 

( - e y ; l b l  eu )  
Uo(x,t) = 

Bo ' 

where 

Hence, if we assume that 0,=a=const and Eq. (12) still 
allows for the solution b = b ( t ) ,  the gauge transformation 
with matrix (16) reduces the representation (8)-(10) to a 
form for which the first condition in (13) is met. 

We perform the substitutions 

and at the same time assume that 

Here 

x ua,  2a,u 
( t  = - d ,  v(x,r) = - (T + bo) dx. 

b l 

As a result the matrix Uo has a zero diagonal and the matrix 
U assumes the form 

where ~ o = ~ o ( x , t ) e v .  This implies that for this operator the 
conditions for the applicability of the Gel'fand-Dikii 
method are met. Gauge transformations do not alter the in- 
tegrability of the equations. Hence the representation of the 
Lax type (8)-(10) corresponds, according to Ref. 24, to the 
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partial-derivative representation of the equation of the gen- 
eral type (I), which makes it possible to use the inverse 
scattering method. 

A prominent factor in the above constructions is that 
now we have a graphic way of relating the Lax representa- 
tion to the structure of the initial equation. The function 
space that is conjugate to the solutions of the initial equation 
plays an important role in the structures of these representa- 
tions. The representation operators act in the space of two- 
component functions *, with one component being the func- 
tion q5 (the solution of the equation conjugate to the initial 
one) and the other the function @ (the Wahlquist-Estabrook 
pseudopotential corresponding to the Lagrange identity). The 
existence of soliton solutions is observed if the nonlinearity 
of the original and adjoint equations is such that after conju- 
gation the nonlinear terms of the initial equation are trans- 
formed into the nonlinear terms of the adjoint equation with, 
possibly, an additional explicit transformation of coordinates 
and the unknown functions. 

4. ONE-WAVE EQUATIONS IN MEDIA WITH QUADRATIC 
NONLINEARITY 

The equations corresponding to the conditions (14) can 
be derived directly by plugging (14) into (12). If by analogy 
to (18) we put 

where 

we arrive at the following equations for the functions 
q x , t ) ,  ao(x,t), and (x,t) (we drop the tildes for brevity): 

d 
~ ~ ~ ~ ~ , , ~ ~ ~ ~ ( ~ ) ~ ~ 9 ( f ) ~ ~ ~ ~ ~ ~ ~ P ( ~ )  - ( a P 2 )  dx 

- 2&aou2+[r2(t)- eq I ( t ) ] ~ = O ,  

- &ao,+ao,,- [r ,(t)-  &9(~)x1aoJ-2~P( t )  

d 
~ - ( a ~ a ~ u ) - 2 & a ~ u + [ r ~ ( t ) + ~ ~ ( t ) ] a ~ = 0 ,  

ax 

- & a l , , + a l , , - ( r , ( t ) - ~ 9 ( t ) x ) a l , - 2 & ~ ( t )  

d 
X-(ayu) -2&aoa1u+ r2(t)aI  =0. 

ax (21) 

Here r (t), r2(t),  and p(t) are arbitrary functions of t, and 

The meaning of the substitution (20) is that the function 
bo(x,t) is eliminated from the equations, which can be con- 
sidered a deformation of Eqs. (21) to standard form. 

Generally, the analysis of the gauge transformations that 
reduce the initial Lax representation to the standard one can 
be considered a deformation in the sense of Ref. 17. Here the 
function b(x,t,A) = b (t)A + bo(x,t;u) is simply a spectral 
parameter of general form, which depends on position and 
time and, possibly, on the unknown function u(x,t). From 
this viewpoint the suggested method provides almost all pos- 
sible deformations of the standard representation. This can 
easily be verified if we seek the solution of Eqs. (12) with 
respect to the functions a(x,t,A) and b(x,t,A) in the form of 
polynomials of an arbitrary finite degree in A whose coeffi- 
cients depend on x and t. In this case all solutions are re- 
duced to those of Eqs. (21). Other solutions are possible only 
in the limit where the degree of the polynomial goes to in- 
finity. Equations of this type, if they exist, apparently com- 
prise a special class of equations. 

After the additional reduction 

the equations for the complex-valued function u(x,t) assume 
the form 

with variable coefficients for an arbitrary dependence on t of 
the functions Rl(t),  R2(t), and Q(t). This equation is en- 
countered in nonlinear optics in problems of Raman scatter- 
ing (see, e.g., Refs. 21,25, and 26) in media with quadratic 
dispersion and cubic nonlinearity. 

One of the typical examples that generalize the descrip- 
tion of wave propagation in such media when the refractive 
index of the medium varies in space and time is the nonlinear 
Schrodinger equation with a parabolic profile of the refrac- 
tive index.27 This type of equations can be obtained from 
(23) via the reduction P=O and an additional substitution 
p = uexp{- iQ(t)x}. 

The general form of Eqs. (23) can be broadened still 
further by the following observation. Since the function 
v(x,t) in Eqs. (15) is arbitrary, there is a class of equations 
related to Eq. (22) by the transformations (18) (deforma- 
tions) in which v= v(x,t,lul). If the equations for u, ao, and 
a l  together yield a certain conservation law, the law can be 
identified with the equation for bo. Let us put Q(t)=O. Then 
the simplest conservation law identified with the equation for 
bo yields 

v(x , t )= ia  luj2 dx, I 
which leads to the Eckhause equation (see, e.g., Ref. 28) 
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At the same time the function 

p = u  exp - iu 1uI2 dx I I  I 
satisfies Eq. (23) at Q(t)=O. Obviously, a similar procedure 
is possible for any other conservation law for Eq. (23), so 
that there is an hierarchy of equations linked to Eq. (23) by 
relationships of the form 

p = u  e x p ( - i l  i ( u , g  dx], 

where I(u,ii) is a conserved density of the equation for u. 

5. NONLINEARITY AND INHOMOGENEITY OF QUADRATIC 
DISPERSION 

In the case r2(x,t)+ I ,  i.e., when the medium has such 
properties that the value of the quadratic term in the disper- 
sion of the medium may depend on position and time (inho- 
mogeneity; see, e.g., Refs. 2 and 3) and on the parameters of 
the wave process proper (nonlinearity), it is possible to re- 
duce the problem of describing all models that allow for 
soliton solutions in media of this type to the previous case. 

To this end we perform the following change of vari- 
ables in the functions in (1): 

In terms of the new variables, when 

the initial equation becomes 

where 

Since the existence of multisoliton solutions does depend on 
the choice of the independent variables, by applying the 
above procedure to Eq. (26) we can obtain all the types of 
nonlinear equations with an inhomogeneous quadratic dis- 
persion law (the linear part) that allow for soliton solutions. 
Here Eq. (25) determines the characteristics along which the 
solitons move in the x,t plane. If the coefficient r2(x,t;u) 
explicitly depends on u(x,t), this equation and the equation 
u(x,t) = u(0,t)  must be solved simultaneously. In this case 
the characteristic depends on the solution. 

Note that in contrast to Refs. 2 and 3, the given method 
provides the conditions for the existence in a medium with 
variable parameters not of a single wave of the soliton type 
but of an arbitrary set of waves interacting elastically, which 
actually is the definition of the very concept of a soliton. In 
comparison to the solitons of "unperturbed" equations, the 
solitons of the above equations can also change their param- 
eters, such as the amplitude and width. However, this evolu- 
tion is in strict conlpliance with the requirement that the 
solitons interact elastically with each other. 

6. EQUATIONS FOR MEDIA WITH HIGHER-ORDER 
DISPERSION 

There is little that has to be modified in the given 
method so it can be used to study the types of nonlinearity of 
a one-dimensional medium in which solitary waves can 
propagate and in which the dispersion order is higher than 
two, e.g., in the case of cubic dispersion. If the order of 
dispersion is N, the general equation describing the variation 
of the complex-valued amplitude of a weakly nonlinear wave 
in such a medium can be written as 

N 

E U ~ +  C r k ( ~ , t ; ~ ) ~ [ k l = O ,  
k=O 

(27) 

where 

Among the equations that belong to this type are, for in- 
stance, the Korteweg-de Vries equations and the modified 
Korteweg-de Vries equations. The suggested scheme for 
such equations does not involve serious modifications---only 
the volume of calculations increases. As an example that is 
important for applications we give the general form of the 
matrices of the Lax pseudorepresentation for the case 
N =  3. Here the pair of operators of the Lax pseudorepresen- 
tation, constructed in a way similar to the above case, has the 
same general form (8), the only difference being that the 
elements of the matrix V have a more complicated depen- 
dence on the coefficients rk(x,t) of L. The matrix U has the 
same form as in (10). For N = 3 and r3(x,t)= 1, 

where 

After we substitute (14) in the Zakharov-Shabat equations 
(1  1) and perform transformations similar to (20), the equa- 
tions become 
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Here r , ( t ) ,  r 2 ( t ) ,  r 3 ( t ) ,  and q ( t )  are arbitrary functions of 
t .  By appropriate reduction these equations are transformed 
into the Korteweg-de Vries equation, the modified 
Korteweg-de Vries equation, and a set of equations encoun- 
tered in nonlinear optics when the cubic dispersion of the 
medium is taken into account.21 

All the main conclusions of Secs. 3  and 4 concerning 
equations with quadratic dispersion remain valid when ap- 
plied to equations of the form (27) .  For instance, the gauge 
transformations that transform the matrix U into (13)  have 
the same form as in (15)  and (16) .  When r , ( x , t )  # 1 holds, 
the conclusions of Sec. 4 remain valid, the only difference 
being that now the equation for the characteristics assumes 
the form 

The coefficients of the equation with the independent vari- 
able O= O(x, t)  can be calculated directly by replacing x  with 
O(x, t ) .  For instance, for N =  3  

An example of an equation of this type is the well-known 
equation u ,  = u3uXx,. 

7. EQUATIONS WITH D'ALEMBERT AND LAPLACE 
OPERATORS 

To a great extent the above examples serve as a demon- 
stration of the calculation techniques used in the proposed 
method, since most of the equations obtained here are 
known. This is especially true of the equations with a qua- 
dratic dispersion law, for which Refs. 1 1,13 and 15 list the 
completely integrable scalar equations. Less studied and 
more diversified (and hence more complicated for investiga- 
tion) is the case where the equations contain a d'Alembertian 
or Laplacian operator as the linear dispersion part. Such 
problems are often encountered in practice. Among these are, 
for instance, the sine-Gordon equation and its modifications. 
Here we touch on the application of the suggested approach 

to equations of this type, which may serve as a useful ex- 
ample for comparison with the method of deformation of the 
Lax representations.17 

Let us examine an equation of the type 

The suggested scheme for constructing a Lax representation 
for this class of equations leads to a pair of operators of the 
following form: 

where 

The most drastic difference from the previous examples is 
that the auxiliary functions a ( x , t , A )  and b ( x , t ,  A) are in the 
denominator of V. This reveals the explicit analogy with the 
representation with a variable spectral parameter,17 where the 
function A is the parameter. The equations for a ( x , t , A )  and 
A ( x ,  t ,A )  (where b  = A  + q  + i a u )  , which follow from the 
Zakharov-Shabat equations, have the form 

-ax , -a(ua) ,+2arX--sa+qa,+ra , -aA,+  ( a ,  

+ A [ a u r x - a u , q - a s u + a , u , + r u a , - ( q r ) x - r ,  

+ s x ]  + A 2 [ ( a u ) , + q , -  r , ] = 0 .  (33)  

Setting A(x,t)=const, we arrive at a system of equations 
whose Lax representation contains the spectral parameter A  
and, which can be reduced to the "standard" Gel'fand- 
Dikii form (19) by gauge transformations. The system is 

and contains one arbitrary functional parameter, one of the 
functions q ( x , t ; u ) ,  r ( x , t ; u ) ,  or s ( x , t , u ) .  This arbitrariness 
is similar to that in the choice of the function b o  in the 
examples considered earlier and can be eliminated by the 
gauge transformations examined in Sec. 3. Indeed, the matrix 
U in this case can be written as 

where 
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8. INTERACTION OF WAVES IN DISPERSIVE MEDIA 

Another rich and, therefore, poorly studied class of equa- 

The matrices U1 and Uo and the matrices of the gauge trans- 
formations become the corresponding matrices of (15)-(19) 
if we perform the substitutions 

and the additional transformation 

Note that in the case of complex-valued variables Eq. 
(19) allows for an interesting reduction: a = i ~ u * .  In this 
case the equation for a is the complex-conjugate of the equa- 
tion for u and the functions q,  r ,  and s have the following 
form: 

tions is that of multicomponent equations allowing for soli- 
ton solutions. A complete list of such equations has yet to be 
put together, but they are important from the practical angle. 
Let us see how the proposed scheme is modified in the case 
of multicomponent nonlinear equations, for instance, the 
equations describing three-wave interactions" and, in gen- 
eral, the interaction of N waves. The statement of the prob- 
lem for this case is as follows. Suppose that initially M 
almost-periodic waves propagate in a medium. The waves 
have different, but fixed, wave numbers and frequencies, and 
their amplitudes slowly vary in space and time: 
ai=ai(x,t) ,  i =  1,2, . . . ,M. If the medium is nonlinear, 
these primary waves interact with each other and generate a 
spectrum of new waves with other frequencies and wave 
numbers. In many cases that are important in practice this 
spectrum contains only harmonic waves whose parameters 
obey strict conditions of synchronism with the parameters of 
the primary waves and with each other. In view of this the 
number K of the generated waves proves to be finite, and the 
amplitudes a j  , j=  M + 1 ,M + 2, . . . , M + K, of these waves 
are coupled by a finite number of equations and depend on 
the amplitudes of the primary waves. The representation of 
the total perturbation field in this case is 

where g and a are new unknown real-valued functions, and 
M + K  

f(x) and h(t)  are arbitrary real-valued functions. The func- 
tion a can be eliminated from the equations by the substitu- g (x )  = [a,(x,t)exp(i(k,x- w,t)} 

m= 1 
tion 

I - \ +ai(x,t)exp( - i(k,x- o,t)}]. 
u=v(x,t)exp - i  a d x  , ( . I  i Generally, the equations of the slow evolution of the 

The equation for g can easily be obtained and integrated. It 
contains nonlinearities of the second and fourth orders in u.  
However, due its cumbersomeness we do not write it here. 
An interesting aspect of Eq. (35) is that it describes the 
propagation of electromagnetic waves (in conical variables) 
in a medium with a cubic nonlinearity of a certain type with- 
out the parabolic-equation approximation. The study of this 
equation constitutes a separate interesting problem. 

These transformations and other possible function repre- 
sentations of A (for instance, A = X + Lo(x,t), can be con- 
sidered deformations of Eqs. (34), whose set is apparently 
more rich than the set of deformations of the evolutionary 
equations considered above. We see that, in contrast to Ref. 
17 and other papers, this set of deformed equations follows 
immediately from Eqs. (33) after we have explicitly fixed the 
function form of the spectral-parameter variable and requires 
no further calculations. For all deformations of this type the 
Lax representation is defined simultaneously and can be used 
in the inverse scattering problem. 

where the operators L, describe the dispersive properties of 
the medium, and the matrix W= (w;,,) the interaction of the 
primary waves with each other and with the generated sec- 
ondary waves. Basically the operators L, and the matrices W 
are determined by the properties of the medium in which the 
wave process takes place and the geometry of the boundary 
of the medium if the waves have the meaning of excitations 
of various modes in cavities or waveguides. Actually the 
separation of the waves into primary and secondary is purely 
arbitrary and can be done only by specifying the initial and 
boundary conditions for the various almost-periodic compo- 
nents of the wave process. 

For such systems we can also pose the problem of find- 
ing all types of media for which the system of equations (36) 
allows for multisoliton excitations, which usually are stable 
localized excitations. 

We seek the solution to this problem by employing the 
Lagrange identity by analogy with Ref. 18, using the ex- 
ample of N interacting waves propagating, however, in a 
medium with a quadratic dispersion law. In this case the 
evolution of a system of n primary waves can be written as 
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Here the vi(x,t) are the group velocities of the primary 
waves, and the di(x,t) are the coefficients of the quadratic 
term in the law of dispersion for frequency. In addition to 
(37) we examine the adjoint system of equations 

n 

=Z wji+j, i,j= I , .  . . ,n. (38) 
j= 1 

Here the 4; are the adjoints of the functions a ; .  Forming the 
left scalar product of Eqs. (37) and 4; and the right scalar 
product of Eqs. (38) and ai  and subtracting the products, we 
arrive at the following generalized conservation law 

which is automatically satisfied if 

for an arbitrary differentiable function $(x,t). As before, the 
emergence of a conservation law as a result of combining 
adjoint equations is a consequence of the Lagrange identity. 

Let us now take an auxiliary vector function 
W=($,+, ,49, . . . ,+n)T, auxiliary n-by-n matrices with 
the elements bij, and vectors ci such that 

Then the combination of Eqs. (38), (39) and (41) can be 
written in the form of a system of two vector equations in the 
vector function *(x,t), 

where U and V are two ((n + 1 )-by-(n + I )) matrices of the 
form 

with 
11 

A;= j= 2 I (djajbji) - (v;-d;,,)a;-diai,, , 

The complete set of Zakharov-Shabat equations (11) 
corresponding to the matrices (43) is 

n 

Ui,l-Ai,x+ 2 (akBk;-Akbki) - Dai=O, 
k =  1 

i,j= 1,. . . ,n. (44) 

The equations for a;  and ci prove to be self-adjoint, so that 
the ci can be interpreted as being the conjugate amplitudes of 
the primary waves. The equations for bij and bji with i# j 
are also adjoints, with the result that the off-diagonal ele- 
ments bij can be interpreted as being the amplitudes of the 
secondary waves. 

To find the equations that allow for soliton solutions we 
must generally assume that 

b..=~b!!'(x,t) 1 1  11 +bjp'(x,t), 

~ ~ = ~ c { ' ) ( x , t ) + c { ~ ) ( x , t ) ,  i,j= 1 ,  . . . ,n. (45) 

As in the case of one-wave equations, there is a gauge trans- 
formation that transforms the matrix U into (13), which 
makes it possible to construct the solutions to the emerging 
equations by applying the standard techniques of the inverse 
scattering problem. 

For an example of wave interaction we take the model, 
often used in practical applications, of three-wave interaction 
in a medium with quadratic dispersion with dl(x,t)=const 
and d2(x,t)=const. Here n=2 ,  and cjl)=O and b!!)=0 ' 1  
hold for i# j. As a result of plugging (45) into the equations 
(44) and allowing for all the restrictions we arrive at the 
following relationships for the medium parameters and the 
elements of W: 
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We introduce the notation a,= b ,, and c 3 = b 2 , .  Then for 
d = i, after the reduction 

the equations for three-wave interaction assume the form 

where the tilde on the complex-valued amplitudes has been 
dropped and the following notation has been introduced: 

Here q l ( t )  and q 2 ( t )  are arbitrary real-valued functions of 
t .  Usually balancing nonlinearity and dispersion in media 
with a quadratic dispersion law requires a cubic nonlinearity. 
In addition to containing terms with a cubic nonlinearity the 
present equations have terms with a quadratic nonlinearity, 
which is a characteristic feature of the three-wave interaction 
equations in the case of linear dispersion. We also note that 
in a particular case the given system contains equations ob- 
tained earlier by ~ h a s i l e v ? ~  who developed a Lax represen- 
tation for the equations of the two-frequency interaction of 
waves propagating in a medium with a quadratic dispersion 
law and a cubic nonlinearity. 

A remarkable feature of this system of equations is that 
they contain an arbitrary parameter y, and the structure of 
the equations describing the behavior of the secondary wave 
with the amplitude a3 strongly depends on the value of this 
parameter. At y= 4 the dispersion term disappears from the 
equation for a3  and the secondary wave propagates without 
dispersion. This situation can occur in realistic 
 condition^^^.^^ in an anomalous-dispersion region. Other 
"degenerate" variants of these equations, say, the equations 
describing second-harmonic generation with allowance for 
quadratic dispersion, are also of interest. 

9. CONCLUSION 

The above examples and additional investigations sug- 
gest that the proposed scheme for constructing models that 
allow for soliton solutions is fairly universal. All known one- 
dimensional soliton equations can be found within this 
scheme. In addition, the scheme makes it possible to con- 

struct various modifications of known equations by starting 
at specific physical conditions imposed on the model of the 
process by requirements of the dispersion order and the very 
existence of soliton solutions. The merit of the present 
method is that it begins with the specific form of the equation 
being investigated and, in the event of success, immediately 
yields the operators of the Lax representation in explicit 
form, which makes it possible to employ the inverse scatter- 
ing method. Moreover, within this approach all possible 
modifications (deformations) of the equation allowed by the 
existence of soliton solutions are obtained simultaneously. 
This determines the practical value of such an approach. 

To stress the universal nature of the proposed approach 
we point to the natural possibility of applying the ideas of the 
method to the multidimensional case. In the most general 
case the method makes it possible to examine models of 
wave interaction in n-dimensional media with a given order 
of dispersion in each coordinate and to find Lax pseudorep- 
resentations for these models. 

The formal calculation of the n matrices of the Lax 
pseudorepresentation for such model is easy. But finding the 
conditions in which such pseudorepresentations correspond 
to true representations is quite a different matter. In addition 
to purely technical difficulties (lengthy calculations), it is 
difficult to select a dependence of the auxiliary functions on 
the spectral parameter for which the inverse spectral problem 
can be successfully solved. The difficulty here lies in the fact 
that the form of the nonlinearity in the equations that allow 
for soliton solutions is determined not by the general func- 
tional shape of the dispersion hypersurface in the space of 
the wave numbers of its linear part but rather by the shape of 
each dispersion curve parametrized by a single spectral pa- 
rameter, i.e., for each dispersion curve we must establish 
whether the respective soliton equation exists and find the 
type of nonlinearity in this equation. The equations obtained 
by the Lagrange identity method are not sufficiently selective 
in, and sensitive to, the shape of the dispersion curve and 
therefore carry information above several equations with dif- 
ferent types of nonlinearity. Separating these equations con- 
stitutes the main problem, which requires other methods for 
its solution. 
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