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A theory of a nonlinear antiferromagnetic resonance in the antiferromagnetic CsNiC13 containing 
six sublattices has been developed. Solutions of the equations of spin dynamics describing 
inhomogeneous coherently precessing magnetization distributions similar to those detected in the 
superfluid and normal phases of a liquid helium-3 due to the nondissipative transfer of 
magnetization (spin superfluidity) have been found. The effect of the antiferromagnet domain 
structure on the coherently oscillating magnetization distributions has been investigated. 
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1. INTRODUCTION 

Magnetic domains coherently precessing in nonuniform 
magnetic field were detected in a superfluid 3 ~ e - ~  more than 
a decade ago.' Their existence is related to nondissipative 
spin currents, which redistribute the magnetization through 
the helium volume.2 Like conventional superfluidity, which 
is due to the phase degeneracy of the condensate wave func- 
tion, the spin superfluidity in 3 ~ e - ~  is due to the phase de- 
generacy of the magnetization precession. Spin analogues of 
the effects typical of conventional superfluids have been de- 
tected in 3 ~ e - ~ ,  such as the Josephson effect, phase slipping 
in the magnetization flow through a channel, fourth sound, 
and quantized spin 

Coherent precession of inhomogeneous magnetization 
distributions has been also detected recently in normal Fermi 
liquids, such as the solution of ,He in 4 ~ e  (Refs. 5 and 6) 
and pure ,He (Ref. 7), in the collisionless regime. Unlike 
3 ~ e - ~ ,  in which the phase coherence of the precession re- 
sults from the coherence of spin states in the superfluid 
Fermi-liquid with the triplet Cooper pairing, the precession 
phase coherence in a normal Fermi-liquid in the collisionless 
regime in magnetic field (as well as in superfluid phases of 
helium-3 near T,~,') is due to the Landau spin molecular 
field, which generates a nondissipative spin current of quasi- 
particles. Silin waves in a normal Fermi liquid, in other 
words, zeroth spin sound in a magnetic field arise for the 
same reason.'' 

Nonuniform magnetization distributions may precess 
wherently not only in quantum liquids, but also in magneti- 
cally ordered materials where relativistic interactions do not 
fully lift the degeneracy with respect to the alignment of the 
spin system as a whole relative to the crystal axes. 

In addition to 3 ~ e - ~  and , H ~ - A ,  the theory of coherently 
precessing nonuniform distributions of magnetization has 
been developed only for one magnetically ordered material, 
namely the solid antiferromagnetic 3 ~ e  (Ref. 1 1). Solid 
helium-3 is not quite convenient for experiments in this field. 
Besides the purely technical problems encountered in experi- 
ments at temperatures T< TN- 1 mK, there is a fundamental 
difticulty deriving from the presence of three types of anti- 
ferromagnetic domain in the body-centered cubic lattice. 

Each type of domain has its specific antiferromagnetic reso- 
nant frequency as a function of the external magnetic field. It 
seems to us that it is more convenient to experiment with 
hexagonal antiferromagnets with several sublattices and rela- 
tively high temperatures of magnetic ordering, namely 
CsNiC1, (TN= 4.4 K), RbNiCl, (TN= 11 K), and CsMnBr3 
(TNy8.3 K), which have been extensively studied in con- 
nection with the quasi-one-dimensional ordering in them at 
temperatures T> TN . These materials have been studied both 
theoretically and experimentally for small deviations of the 
magnetization and order parameter from their equilibrium 
values.12 The solutions of spin dynamical equations for arbi- 
trary angles between the magnetization and external mag- 
netic field reported in this paper demonstrate that the antifer- 
romagnetic resonant frequencies in domains of different 
types are equal. Besides, it is probably true that, although the 
transitional regions between domains create additional inho- 
mogeneities in distributions of magnetization and order pa- 
rameter, they do not destroy the coherence of the precessions 
over the entire sample. 

The paper is organized as follows. Section 2 describes 
the structure of ABX, antiferromagnetic materials and 
Hamilton's equations applied to the nonuniform spin dynam- 
ics. In Sec. 3 we will discuss periodic solutions of the non- 
linear equations in the spatially nonuniform case. Section 4 
gives a coherently precessing domain-wall solution for the 
region between domains with magnetizations parallel and an- 
tiparallel to the external magnetic field. In Sec. 5 we will 
discuss a solution describing a quantized spin vortex. Section 
6 is devoted to the study of coherent precessing solutions for 
mulitdomain samples. The results are summarized in the 
Conclusion. The present theory applies to the entire class of 
ABX3 antiferromagnets, but numerical data are discussed 
only for the case of CsNiCI3. 

2. MAGNETIC STRUCTURE AND HAMlLTONlAN DYNAMICS 

Below the N6el temperature, CsNiCI, is a hexagonal an- 
tiferromagnet with six sublattices. In each basal plane, Ni 
atoms with S =  1 form a triangular lattice. In the ground state 
the exchange interaction orders the spins so that the total 
spin of each triangle should be zero, and the spin contigura- 
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FIG. 1.  Spin order in CsNiCI,. The spins lie in the vertical plane: I,=;, 
I2=x, and n=$. 

tion is reproduced in translations in the basal plane through 
spatial vectors which are multiples of the basis vectors. In 
the adjacent basal plane the spin vectors are reversed (Figs. 1 
and 2). Given that the mutual orientation of spins is the 
same, the antiferromagnetic order can be described in terms 
of a pair of mutually orthogonal unit vectors 1, and 12, which 
define the basis in the plane of spin vectors. The vector 
n= I ,  X l2 is orthogonal to this plane. 

Owing to the relativistic interaction, the vector n has a 
fixed orientation with respect to the hexagonal axis i: 

In CsNiC13 the anisotropy constant satisfies a>O, and 
the spins are aligned as shown in Fig. 1. In CsMnBr,, on the 
other hand, we have, a<O, and the resulting spin configura- 
tion is shown in Fig. 2. The anisotropy constant a is notably 
smaller than the exchange interaction amplitude. 

There is also anisotropy in the basal plane defining the 
orientation of the projections of I ,  and l2 on the xy-plane 
(i.e., the projections of spin directions on the xy-plane). It is 
quite obvious that there are six different equilibrium orienta- 
tions of I ,  and l2 projections on the basal plane, i.e., six types 
of antiferromagnetic domains. The corresponding energy 
density is expressed as 

The basal-plane anisotropy is very weak in comparison with 
that described by Eq. ( l ) ,  so we will discuss effects deriving 
from Eq. (2) only in Sec. 6, devoted to the antiferromagnetic 
domains. 

FIG. 2. Spin order in CsMnBr,. The spins lie in the basal plane: I ,  =x, 
I,=$, and n=;. The dashed lines encloses an area of the basal plane cor- 
responding to that shown in Fig. 1. 

Since the spins are aligned with the plane perpendicular 
to n, the magnetic susceptibility in such antiferromagnets is 
described by a uniaxial tensor: 

and the Hamiltonian density in an applied magnetic field has 
the form 

Here y is the gyromagnetic ratio and yS= M is the magnetic 
moment per unit volume. 

Since we have X I I > X ~  in CsNiCl,, a magnetic field di- 
rected in the basal plane stabilizes the equilibrium orienta- 
tion of the vector n aligned with the field direction. If the 
field satisfies HI/;, then the vector n lies in the basal plane 
for H<Ho= d m ,  and the equilibriun~ spin per unit 
volume is s = ~ , H ~ I  y. For H>Ho the sublattices are re- 
aligned (spin-flop takes place), so that the spins are directed 

in the basal plane, n= ;, and the equilibrium spin per unit 
volume is s = ~ ~ ~ H ~ I ~ .  The spin-flop field in CsNiCI, is 
Ho= 1.9 T. Compare this to the field H,y=73.5 T in which 
the antiferron~agnetic order is destroyed (a spin-flip 
occurs) .I3 

If the spin configuration is not uniform in space, the 
Hamiltonian of a unit volume defined by Eq. (4) should be 
supplemented with the gradient energy term 

Here the spin velocities 

and cp is the vector of rotation of the order-parameter refer- 
ence. The reference orientation (I, , I 2  ,n) at a point (r,t) is 
obtained by the rotation cp(r,t) of the initial orientation 
(110,120,no) through the angle \ ( P I  around the direction of 
6. The spin density tensor 

1218 JETP 83 (6), December 1996 V. P. Mineev 1218 



is uniaxial with respect to the spin indices a and p ,  and 
(owing to the hexagonal symmetry of the crystal) the orbital 
indices i and j. The parameters X I  and x2 have dimensions 
of susceptibility, and ell and c, are the velocities of the spin 
waves. 

The evolution of the system parameters is described by 
Hamilton's equations of motion for the conjugate variables 
Q and S: 

Equation (9) can be rewritten in the form 

where 

is the spin current. 
The motion of the spin degrees of freedom in the system 

can be described, of course, in terms of the evolution of the 
magnetization density and rotation of the order-parameter 
reference only if variations in time and space do not lead to 
notable distortions of the magnetic structure. This is the case 
when the following conditions are satisfied: the typical fre- 
quencies of motion are smaller than yH, , and the distances 
over which the magnetic parameters change significantly are 
larger than the interatomic distances. 

It is convenient to describe the motion of the order- 
parameter reference (1, ,I2 ,n) with respect to its initial orien- 
tation at t = 0, (I,o,120,no), in terms of Euler rotations. For 
example, 

Here k , ( a )  is the operator for rotation around the z-axis 
through the angle a(t), etc.; R ( ~ , P ,  y) is the operator of 
three-dimensional rotations described by Eq. (12). The 
angles a ,  P ,  and y are canonically conjugate to the projec- 

tions of S on the i ,  p = t x z " ,  and t = ~ ( a , ~ , ~ ) z " ,  axes re- 
spectively. For HI(;  we can solve the problem of the periodic 
motion of the magnetization yS for any angle P between S 
and the magnetic field H. At the same time, if H < H o  holds 
and the vector io lies in the xy -plane, we can obtain a solu- 
tion of this problem only numerically. We will limit our 
analysis to the field range H > H o  (HI/;). In this case we 
have no=; and the Han~iltonian density has the form 

y2 s , - s 5 c 0 s p  y2 
= -  ~ x L  sin p )2]+-s:-ys,H XII 

If the field lies in the basal plane of the crystal, the 
problem of the periodic motion of the magnetization can be 
also solved. In this case it is more convenient to align the 

;-axis with the magnetic field H and the ;-axis with the 

hexagonal crystal axis. Then we have no=;, the anisotropy 
energy equals (l12)an: and the Hamiltonian density is 

S,-Sc cos p y2 
%= - y2 [ ~2 p + ( s i n p  ) 2 ] + G ~ ; - y ~ z ~  

~ X . L  

In magnetic fields HPH, ,  the last term in this equation 
can be treated as a perturbation. At resonance, for 
a+y-const ,  its contribution has a low amplitude 
[ - ( H ~ I H ) ~ ]  and a frequency twice that of the fundamental 
harmonic, a=  - w,t. Therefore this contribution can be av- 
eraged over the precession period 2 TI w,, , which is equiva- 
lent to the substitution cos2 y-4112. This means that for 
H > H o  the Hamiltonians containing the magnetic field 
aligned with the hexagonal crystal axis and with the basal 
plane differ only in the sign of the anisotropy constant a .  
Given this relation, we will only consider the Hamiltonian 
defined by Eq. (13). 

If we use the relation 

where R,, is the operator introduced by Eq. ( l l ) ,  it is con- 
venient to transform the gradient energy density in Eq. (5) to 

where 

After substituting into Eq. (16) spin velocities expressed in 
the explicit form4 

Ex;= -sin /3 cos y V i a +  sin yV$, 

Eyi= sin p sin y V i a +  cos yViP, 

Gz;= cos pv;a + v i y ,  

we finally obtain 
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The gradient energy density is derived from Eq. (19) in the 
case when the z-axis lies in the basal plane and the x-axis is 
aligned with the hexagonal crystal axis after the exchange 
x-z. 

3. PERIODIC SOLUTIONS IN THE SPATIALLY UNIFORM 
CASE 

The Hamiltonian in Eq. (13) (when the field H is parallel 
to the hexagonal crystal axis and we have H > H o )  is inde- 
pendent of the angles a and y, which means conservation of 

the total spin projections on the axes z" and g: 

and allows us to seek periodic (cyclic) solutions 

a = - w p t + a O ,  (22) 

y=w,t+ YO 

of the Hamilton equations 

. d% y2 S,- St cos /3 
a=-=- 

dS, xI sin2 /3 - YH, 

d B  y2 &-St cos p Y2 

sin2 /3 
cos P+ - S t ,  (25) 

XI1 
such that the remaining variables Sp and /3 are independent 
of time: 

. 8% y2 S,- St cos PSI- S, cos p sp=-dp= -L 
sin p sin2 p 

+ a  cos p sin P= 0. (27) 

It follows from Eq. (26) that Sp= 0 holds, i.e., the vector 
S is in the Equation (27) relates the conserved 
values S, , St , and p to each other. After deriving the ex- 
pression for S,= S,(St , P )  and substituting into Eqs. (24) 
and (25), we obtain, with due account of Eqs. (22) and (23), 
expressions for the precession frequency w,, of the magneti- 
zation and the rotation frequency w, of the order-parameter 
reference around the magnetization vector. It is easier to per- 
form this procedure analytically in the limit H S H o -  &. If 
this inequality holds, Eq. (27) has two solutions: 

Xla . 
1) S,= St cos P+- sin2 /3 cos /3, 

Y 2 s t  
(28) 

X l a  . 
2) SI= S, cos P+- sln2 P cos p. 

y2s,  
(29) 

The first solution describes uniform precession of the mag- 
netization with a frequency 

a 
wp= w[,- - COS p 

l 
(30) 

around the magnetic field vector, and w,,= yH. In this case 
the integral of motion Sl is expressed in terms of w, as 
follows: 

At resonance, when w,,= o, holds, the parameter St is close 
to its equilibrium value 

and to the same accuracy the precession frequency is equal to 

y2a 
wP=WL-- cos p. 

XIIO~ 

In the case of the second solution we have 

a C O S ~  p 
o,= y"L - l) s, cos p+ 

XI1 XI S, - 
Under the resonant condition, up= wy , we have the approxi- 
mate expression 

It demonstrates that the magnetization component along the 
magnetic field equals the equilibrium value, and the vector 

n =  g rotates around the z-axis with the frequency wp. The 
vectors I ,  and l2 rotate around n with the same frequency. 
Although the magnetizat~on in the second mode does not 
precess around the magnetic field vector, a precessing mag- 
netization component S p ~  H I  is generated if there is a mag- 
netic field componenl H, ( t )  rotating in the xy -plane with the 
frequency w,, . This means that, as in the first mode, high- 
frequency electromagnetic power should be absorbed at the 
resonance. 

4. COHERENTLY PRECESSING DOMAIN WALL 

Let us consider the situation when the field satisfies 

~ l l z = n  and is aligned with the hexagonal crystal axis. Sup- 
pose that H > H o  holds and there is a field gradient along the 

z-axis. The equation system takes the form 

where .%is defined by Eq. (13), and Fv defined by Eq. (19) 
is considered as a function of only the coordinate z. Like 
anisotropy, weak nonuniformity acts as a small perturbation 
of the fundamental precession mode with the Larmor fre- 
quency. Therefore, as in the case of the uniform configura- 
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tion, we seek a solution of Eq. (37) periodic in a and y and 
stationary with respect to the rest of the variables: 

a= -wpt+a(z ) ,  

y =  w,t+ Y(z), 
. . 

sz=sg=sp=p=O. 
According to Hamilton's equations, 

c i 
+;rx2( ff: sin2 p): 7 (41) 

The stationarity condition for Sc and Eq. (42) yield 

a: cos p+ yi  = const, (43) 

i.e., the corresponding component of the spin current along 
the z-axis is constant. ' f i e  spin current should be zero on the 
sample boundaries, i.e., at z =  +d/2, which results in the 
equation 

ff; cos p + y ; = o  (44) 

that holds at all z. By substituting Eq. (44) into Eq. (41) and 
using the stationarity condition S, = 0 ,  we obtain the relation- 
ship 

a: sin2 p= const. (45) 

This constant must also be zero because the spin current is 
zero on the boundary. Since we are looking for a distribution 
that is nonuniform with respect to the angle P ,  the left-hand 
sides of Eqs. (44) and (45) can equal zero only if 

With due account of Eqs. (38), (39), and (46), we derive 
from the rest of Hamilton's equations the following rela- 
tions: 

y2 S,-Sg cos p 
up= w,(z) - - xI sin2 p ' 

Y 2 ~ g  Y2 S,-Sg COS p 
@ Y = -  - XI1 XI sin2 p cos p. 

Y2 S,-Sg COSp Sf-S,  COS p 
-- +a  cos p sin fi 

XI sin p sin2 p 

where wL(z) = yH(z). 
The solution that will be given below indicates that the 

last two terms on the right-hand side of Eq. (50) (those due 

FIG. 3. Approximate form of the solution of Eq. (55). 

to the anisotropy and inhomogeneity) are of the same order 
of magnitude. Therefore, as in Eq. (28), we derive from Eq. 
(50) at H + H o  the expression 

XI a XI x2c; 
S,=Sg cos p+ - cos p sin2 p+- p" sin p. (51) 

y2 sg y4sg 

The substitution of Eq. (51) into Eqs. (47) and (48) yields 

X2 
7c;j3"+a cos p sin p-Sr[wL(z)- w,,]sin p = 0 ,  (52) 

respectively. Equation (53) determines the spatial distribu- 
tion of the parameter Sg(z), which is a constant in the 
lowest-order approximation: 

We recall that in the resonant conditions, when my= wp 
holds, Sg is close to its equilibrium value. 

Equation (52) can be conveniently transformed to 

z-zo 1 
p v = x 3  sin P--2 sin p cos P. 

A, 

Here we have w,,(z) - wp = V W(Z - zO) , 

The boundary condition for Eq. (55) is zero spin current 
on the upper and lower boundaries of the sample, i.e., 
Pr = 0 at z = + (112. If the sample dimension along the 
z-axis is much larger than the inhomogeneity dimension in 
the distribution of the angle P ,  this boundary condition is 
equivalent to p%+0 for z%+).m. A solution of Eq. (55) sat- 
isfying these conditions is plotted in Fig. 3. This distribution 
of the angle P describes a domain wall between a domain 
with magnetization antiparallel to the applied magnetic field 
(the region of lower fields, z-+ -a, P=  w )  and a domain 
with magnetization parallel to the applied field (region of 
higher fields, z-++m, P = 0 ) .  The function p (z )  has three 
inflection points. They can be found by solving the equation 
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A' 
z -z , ,=7 cos p. 

A" 

Inside the domain wall the magnetization precesses co- 
herently with the frequency up= uL(z0), p ( ~ ~ )  = 7~12. The 
wall thickness is determined to order of magnitude by the 
expression 

This parameter can be easily estimated using the approxi- 
mate relation 

12- - 
HVH 

Let us recall that Ho=1.9 T. If we take H=lOHo and 
VH= 1 0 - ' ~ ~ l c m ,  then A= 1 cm. Note that in samples with 
thickness d- A the width of the inhomogeneous distribution 
of the coherently precessing magnetization is determined by 
the sample thickness d. 

In a uniform magnetic field (or in a sample with 
d<A) ,  the domain wall thickness is infinite, i.e., the coher- 
ent precession of the two-domain structure transforms to a 
uniform precession of magnetization. The domain wall posi- 
tion zo is determined by the initial conditions, i.e., the total 
longitudinal magnetization, $S,dz. A CsNiCI, domain wall 
coherently precessing in a nonuniform magnetic field can be 
observed in experiments with continuous antiferromagnetic 
resonance. In this case the precession frequency up should 
equal that of the transverse high-frequency field, and the wall 
position can be tuned through duration and amplitude of the 
driving pumping. 

Now recall that in CsMnBr, the anisotropy constant sat- 
isfies a<O. A similar situation takes place in CsNiC13 when 
both the magnetic field and its gradient lie in the basal plane 
[the Hamiltonian (14)]. Equation (55) is expressed in this 
case as 

p" = uL(z)-up 
1 

x3vw 
sin /3+T sin /3 cos p ,  

A, 

where 

The solution of Eq. (61) with the same boundary condi- 
tion also describes a domain wall between domains with 
magnetizations parallel and antiparallel to the applied mag- 
netic field (Fig. 4). The distribution P(z)  has in this case 
only one inflection point determined by the equation 

A 3  
z-zo= - 7 cos p ,  

X u  

i.e., P(zo)=.rr/2. The wall has a thickness A,= lop6 cm. 
The precession frequency in the wall equals the Larmor fre- 
quency at z=zo, i.e., up= uL(z0). Such walls also occur in 
absolutely uniform magnetic fields. 

To sum up, coherently precessing domain walls in a non- 
uniform magnetic field (H  and VH) in the same material 

FIG. 4. Approximate form of the solution of Eq. (61). 

CsNiC13 may have thicknesses differing by several orders of 
magnitude, depending on the magnetic field alignment with 
respect to the hexagonal axis, so emitted induction signals 
may also differ enormously. In a field aligned with the hex- 
agonal axis and with the gradient also directed along this 
axis, the wall thickness is controlled by the field gradient 
[Eqs. (59) and (60)], and in a field directed in the basal plane 
a wall can be generated even when the field is uniform, and 
the wall thickness is controlled by the anisotropy parameter 
[the last term in Eq. (61)]. 

5. SPIN VORTEX 

Beside the solutions describing coherently precessing 
domain walls, the equation system has quite different coher- 
ently precessing solutions with circular nondissipative cur- 
rents, called spin vortices. Such solutions were originally 
derived in the case of superfluid 3 ~ e , 1 4  and later such vorti- 
ces were detected in  experiment^.'^ 

Let a uniform magnetic field H > H o  be aligned with the 
hexagonal axis. We look for axially symmetrical coherently 
precessing solutions of Eq. (37) in the form 

s,=s,= s,=fj=o. (67) 

Here p and cp are polar coordinates in the basal plane. The 
parameters a and y as functions of coordinates are deter- 
mined by the equations 

+x, cos PAy]=O, (68) 

Here A is the two-dimensional Laplace operator. The deter- 
minant of this linear equation system is nonzero, so its only 
solution is 

Aa=O, (70) 
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Hence we have y2u  .. XI1 6'1. + --, sin /3 cos P - - ( w L -  o,)sin p = O .  
X2C1 x2c1 

y(cp)=N2cp+ Y O .  (73) 

N l  and N 2  are integers because the orientation of the order- 
parameter reference at a given point cp  specified by rotations 
through the angles a ( q )  and y ( p )  is uniquely determined. 
The distributions of the angular variables a and y  corre- 
spond to vortex distributions of spin velocities with quan- 
tized circulation: 

Equation (82) describes the spatial distribution of the angle 
p in a spin vortex similar to the order-parameter distribution 
in a quantized vortex in a traditional superfluid. The preces- 
sion with a definite frequency 

Y a  
up= W L -  - COS po 

Xll'"~ 

determines a constant value of the angle /3 at a large distance 
from the vortex axis: 

Inside the vortex core with radius 

The rest of Hamilton's equations yield 

y2 S ,  - S [  cos p 
w p =  WL-  - xL sin2 p ' the angle P tends to zero as p+O: 

where 

The latter formula, however, is exact only if N ,  + N 2  is an 
odd number. In this case /3 goes to zero on the vortex axis, 
and we have singular vortices, i.e., vortices in which the 
antiferromagnetic order is destroyed on the axis. If N 1  + N 2  
is an even number, at distances p<A the distribution of the 
order parameter may "leak into the third dimension," i.e., 
a, p ,  and y  can depnd on on p and q and the gradients of 
the angles a and y  will not have singularities on the vortex 
axis, like the vortices in superfluid helium-3.16 This property 
derives from the fact that for p > A ,  the region within which 
the order parameter varies is s ' X S I  (the domain of the 
variation of the angles a and y ) ,  and at p < A ,  the orienta- 
tions of the order parameter are determined by arbitrary ro- 
tations in a three-dimensional space generating an S O 3  
group. 

y2  S z -  S I  cos p S r -  S,  cos /? 
- - + u  cos sin P 

XI sin p sin2 p 

As in the spatially uniform case, we derive from Eq. (79) 

S , = S I  cos p+ $ f l u  cos P i n  p 

c : N 1  sin p + 
y 2 p 2  

[ X I ( N I  cos P + N 2 ) - x 2 N 1  COS PI 

6. EFFECT OF ANTIFERROMAGNETIC DOMAINS 

In previous sections we have developed the theory of 
nonlinear antiferromagnetic resonance in an ideal single- 
domain crystal of an antiferromagnetic material. Although 
the difficulties in fabricating single-domain samples can be 
overcome, it is interesting to investigate a more realistic case 
of a multidomain antiferromagnetic crystal. As was noted 
above, the degeneracy with respect to the spin directions in 
the basal plane is lifted owing to the interaction described by 

Eq. (2). If we have HI[;, H > H o ,  then by selecting ilo=x and 
f Z o = j  we obtain 

The substitution of this expression into Eq. (77) yields a 
relation between the spatial distribution S & p )  and the distri- 
bution of the angle P ( p ) .  In the case of resonance, 
my= o,, and in the lowest-order approximation St may be 
considered constant: 

After substituting Eq. ( 8 0 )  into Eq. (76) with due account of 
Eq. (8 I ) ,  we obtain 

X I  sin p N:  sin p cos /? 
Ap+ - - N I ( N l  cos / 3 + N 2 ) -  

X2 P p2 

Here R,, and R, ,  are matrix elements of the rotation opera- 
tor defined by E4. (12). In explicit form, 
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In the case of resonance, when a+ y=$ changes little in 
one precession period 27rl w, and the variable 
a- y= -2wpt gives rise to low-amplitude motion 
[ - ( H , l ~ ) ~ b l a ]  at double frequency, averaging Eq. (88) 
over precession period yields 

The minima of the function on the right-hand side at 
a i = O ,  d 3 ,  2 ~ 1 3 ,  T, 4rr/3,57r/3 correspond to six different 
equilibrium configurations of the vectors I ,  and I, in the 
basal plane, i.e., to different antiferromagnetic domains. 

Note that in the nonresonant case we have wp# W, . The 
averaging over the variables a and y can be performed in- 
dependently, the average energy density (FA)  vanishes, and 
the effect of the domains is completely absent. 

Oscillations of @ around its equilibrium values Q i  lead 
to longitudinal oscillations of the magnetization, i.e., oscilla- 
tions of Sc about its equilibrium value xIIHI y. Their frequen- 
cies can be calculated using the equations 

d 6 b  
Ss=- - = - F ( ~ o s  /?+ I ) ~  sin 6 $ ,  

d@ 

Here we have written 3%= %+ F A  and the Hamiltonian den- 
sity determined by Eq. (13) can be represented as a function 
of pairs of the new canonically conjugate variables 
P=S,-Ss  and a ,  Sp and P ,  Ss and $ (cf. Ref. 4). From 
Eqs. (90) and (91) we derive the frequency of small oscilla- 
tions: 

Thus we have found that, as in the superfluid 3 ~ e ,  the 
lifting of degeneracy with respect to @ stabilizes the magne- 
tization against deviations from the equilibrium value. In cal- 
culating the equilibrium value, we neglected the small values 
- (H , /H)~  and ( ~ ~ l ~ ) ~ b l a .  

Now let us analyze the precession motion. It is obvious 
that if F i  is added to the Hamiltonian density, the shift of the 
precession frequency will be equal in all the domains. In 
particular, we will have instead of Eq. (33) the following 
formula: 

3 b  
wp= oL- - a cos p- T(cos p+ 1 )5  

2 

Hence it does not lead to any difference in precession fre- 
quencies among different domains. 

The problem is complicated, however, by transitional re- 
gions between neighboring antiferromagnetic domains. Let 
us consider for definiteness a domain wall in the yz-plane 

between two semi-infinite domains. The angle cP is a func- 
tion of the coordinate x and far from the domain boundary it 
equals 

cD(-m)=O, @ ( + m ) = d 3 .  (94) 

Suppose that the magnetic field is directed along the 

hexagonal axis and we have H+Ho. Hamilton's equations 
take the form 

3b 
- T ( ~ ~ ~  P+ 1 ) 6  sin 6@ , 

2 I 
- - -- Y 2  P + s g ( l - c o s p )  Ss(l-cos P ) - P  cos p 

XI sin p sin2 p 
3 b  2 

CI 
+a cos /3 sin P- T(cos P+ 1)' sin /3 cos 6@--T 

2 Y 

x a: sinp+ X2[(a:)2 sin p cos P- P:~]), 

Let us seek a solution periodic in the variable 

a= - wpt+ a ( x )  (101) 

and stationary with respect to the rest of the variables: 

f i = ~ ~ = ~ ~ = p = 4 = 0 .  ( 102) 

As in the case of a spin vortex discussed in the previous 
section, the precession at a long distance from the domain 
boundary with a fixed frequency [see Eq. (93)] 

uniquely determines the angle P :  

P o = P ( z m ) .  ( 104) 

As we will see below, deviations of P(x)  from a con- 
stant value, 
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are very small (-bla).  Therefore in solving Eqs. (95) and 
(96) we may consider P (x )  to be constant. Given the station- 
arity condition, this equation is transformed to 

3by2 
- ( I  -COS Po)arr+@rr=- ( I + cos sin 6 0 ,  

2 5 c : ~ 1  

so the function @(x) is determined by the sine-Gordon equa- 
tion 

@"=A sin 6@, (108) 

Its solution with the boundary conditions (94) is 

The function a is calculated by integrating Eq. (106): 

a (x )  = 
@(XI 

(1  -cos Po)+(x2/x1)(1 +COS Po) '  
(111) 

As in the previous sections, from Eqs. (97) and (102) in 
the limit EIS-H, we find 

P =  - s g ( l  -cos P)+- l a  cos P sin P 
y2sg 

3b  
- T ( ~ ~ ~  P+ 1 )5 sin p cos 6cD 

2 

x lc f  x2cf 
+---T[ai(~~~ P- I)+(Di]a i  sin P+ 7 

Y Y 

After substituting this expression into Eq. (98), we obtain 
with due account of Eq. (101) 

3b  
a cos P sin P-?(cos P 

+ 1)' sin fl cos 6 @  

xlc: 
+ - - T - [ ' Y C ( ~ ~ ~  P- l)+Q)O]a; sin P 

Y 

Given that, as usual, SI-xIIH1 y holds and the angle Po is 
determined by Eq. (103), we obtain by expanding the right- 
hand side of Eq. (1 13) in powers of 6fi 

-x2( ff:)2co~ Po). (1 14) 

Since, according to Eqs. (108)-(11 I), the distance over 
which the angles @(x) and a ( x )  change significantly is 

the parameter SP(x) is of order bla.  It is obvious that de- 
viations of p from Po vanish far from the domain boundary: 

Thus we have demonstrated the in the presence of a 
domain wall, which leads to inhomogeneous distributions of 
the angles a (x ) ,  @(x), and P(x),  and of the values Sg and 
P, there is a coherently precessing solution of the spin- 
dynamic equation with a precession frequency shifted with 
respect to the Larmor frequency, in accordance with Eq. 
(103). The coherent precession, apparently, also occurs in the 
case of domain boundaries of arbitrary shapes if domain di- 
mensions are larger than the domain wall thickness A b  [Eq. 
(1 I$]. Solutions describing spin vortices and domain walls 
between domains with magnetization parallel and antiparal- 
lel to the external magnetic field should also apply to multi- 
domain antiferromagnetic crystals. 

7. CONCLUSIONS 

Several solutions of the nonlinear spin dynamical equa- 
tions describing inhomogeneous coherently precessing distri- 
butions of magnetization in CsNiCI3 have been found. A 
complete theory of such structures should include investiga- 
tions of their stability and relaxation to equilibrium distribu- 
tions. 

The stability of the discussed solutions against small per- 
turbations is estimated similarly to the stability of the mag- 
netization and order parameter in a uniformly precessing do- 
main in 3 ~ e - ~  (Ref. 4), by minimizing the functional 

The range of parameters in which inhomogeneous coher- 
ently precessing structures in antiferromagnets are feasible is 
also limited by a specific instability mechanism,17 namely 
the decay of the magnetization precession with a frequency 
w l  and k= 0 to two longitudinal or transverse spin waves: 

This so-called Suhl instability does not affect observation of 
coherent precession in 3 ~ e - ~ ,  but tnay be essential in the 
antiferromagnets discussed in this paper. The problem of the 
Suhl instability deserves further theoretical and experimental 
investigation. 

As was noted above, observation of coherently precess- 
ing magnetization distributions is possible in experiments 

1225 JETP 83 (6). December 1996 V. P. Mineev 1225 



with continuous antiferromagnetic resonance. By pulsed 
methods, such structures with coherent precession might be 
detected only if they could be created in a time shorter than 
that of longitudinal relaxation. In liquid helium-3 this condi- 
tion is easily satistied. The possibility of tipping the magne- 
tization away from the vector of applied magnetic field to a 
large angle by impulsively exciting precession and of creat- 
ing inhomogeneous precessing distributions in CsNiC13 has 
thus far not been studied experimentally. 
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