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I. MAGNETIC SUSCEPTIBILITY 

In computing the high-frequency magnetic susceptibility 
tensor xik of magnetic substances, one frequently uses the 
phenomenological approach: one introduces the magnetiza- 
tions Mi of the magnetic sublattices and solves the linearized 
Landau-Lifshitz equations describing their motion. In solv- 
ing electrodynamic problems, one can often neglect the spa- 
tial dispersion of xik while retaining the frequency disper- 
sion. However, in this case, one loses one branch of the 
oscillations (the Goldstone branch), whose frequency o 
equals zero when the wave vector is k=O. 

To include the Goldstone mode in the system of consti- 
tutive equations of macroscopic electrodynamics, it is neces- 
sary when computing the xik tensor to take into account its 
spatial dispersion. Let us consider the very simple case of a 
two-lattice antiferromagnet of the easy-axis (EA) or easy- 
plane (EP) type. The magnetic field H is directed along the 
axis of the antiferromagnet. In an antiferromagnet of the EP 
type, the magnetic moments have the configuration shown in 
Fig. 1. The invariance of the magnetic energy under uniform 
rotation of the system of magnetic moments around the axis 
gives rise to the Goldstone branch of the oscillation 
(o= 0). The same magnetic structure occurs in an antiferro- 
magnet of the EA type for H>HsF, where HsF is the spin- 
flip field.' Naturally, it is necessary in both cases to assume 
that there is no anisotropy in the basal plane. 

The magnetic structure in weak fields (in particular, in 
an antiferromagnet of the EP or EA type) is determined by 
the anisotropy constants, whereas the Goldstone mode is 
weakly sensitive to anisotropy and can be studied using as an 
example a purely exchange isotropic antiferromagnet in a 
constant, homogeneous magnetic field. 

The magnetic energy density corresponding to our as- 
sumptions is 

Here we have D O ,  and I a.1, 1 a '[ - Sa2, where a is the 
interatomic distance (see below for the signs of a and a ' ) .  It 
follows from this that the magnetic moments M I  and M2, for 
H<2SM=HE,  are symmetric with respect to the magnetic 
field (at angle 0, see Fig. I), with 

while the effective fields entering into the Landau-Lifshitz 
equations, 

are the variational derivatives of the energy with respect to 
the magnetic moments, 

and g is the magnetomechanical ratio. We have from Eqs. 
(1) and (3') that 

Let us linearize Eqs. (3) and (4), assuming that 

(we shall henceforth omit subscript 0 in the equilibrium, con- 
stant, homogeneous values of Mio and Ho). We set 

It is easy to write a system of linear equations connecting the 
components of the vectors 

with the magnetic field h: 

1208 JETP 83 (6). December 1996 1063-7761/96/121208-09$10.00 O 1996 American Institute of Physics 1208 



~ i ( k ) = ( ~ M  sin O ) 2 2 S o - k 2 = 2 ( g M ) 2 ( 1  

FIG. I. Geometry of the problem. 

- i w m x = g ( ~ + a + k 2 ~  cos @ m y - 2 g M  cos Oh,, 

- i w m , =  - g ( ~ +  a + k 2 M  cos O ) m x + 2 g M  cos Oh, 

- g a - k 2 M  sin O  I , ,  

- i w m , = g M  sin O a - k 2 l Y ,  

- i w l , = g M  cos O a - k 2 ,  ( 8 )  

- i w l y = g M  cos O C Y - ~ ~ - - ~ M  sin O ( 2 6 +  a + k 2 ) m ,  

+ 2 g M  sin Oh,, 

- i w l , = g M  sin O ( 2 ~ + a + k ~ ) m , - 2 ~ ~  sin O  h , ,  

where 

Taking axial anisotropy into account of course somewhat 
alters the coefficients in the system of Eqs. ( 8 ) .  The third 
equation is an exception-it does not change. This means 
that, in the absence of spatial dispersion (for k =  0 ) ,  we have 

x z x  = 0. 
The system of Eqs. ( 8 )  breaks up into two systems: one 

includes nz,, m y ,  l , ,  h x ,  h ,  , while the other includes nz,,  
I,, 1, , and h ,  . Each system generates its own branch of the 
oscillations, the dispersion laws of which can be found by 
setting h=O and by setting the corresponding determinants 
equal to zero. 

We call the branch in which m x  and m y  oscillate the 
transverse (I) branch and that in which m ,  oscillates the 
longitudinal ( 1 1 )  branch. 

The dispersion law of the transverse oscillations has the 
form 

w : ( k ) = g 2 ( ~ + ~ a + k 2  cos 0)' 

+ 2 ( g M  sin ~ ) ~ S a - k ~ .  ( 9 )  

We have omitted the term containing a - a + k 4 ,  since the 
Hamiltonian of Eq. ( 1 )  includes only terms that are quadratic 
in the gradients of the moments of the sublattices, and keep- 
ing such terms means going to higher order. Naturally, we 
shall omit such terms in what follows. 

The dispersion law of the longitudinal oscillation has the 
form 

This is the Goldstone branch, in which ol l+O when k=O. 
When H= 0 (sin O= l ) ,  the transverse oscillations are also 
described by the Goldstone branch, so that, as is well known, 
the two branches become degenerate: 

Equations ( 1 0 )  and ( l l ) ,  along with Eq. ( I ) ,  show that the 
condition for the antiferromagnetic state to be stable is that 
the inequalities 

be satisfied. The existence of two degenerate Goldstone 
branches for H=O and one such branch for H # 0 has a 
simple, obvious explanation: a system of magnetic moments 
coupled into an antiferromagnetic configuration can freely 
rotate around the magnetic field for H  # 0, whereas it can 
freely rotate in three-dimensional space for H =  0 .  

Equations ( 9 )  and (10)  describe the spin-wave spectrum 
neglecting dipole-dipole forces and retardation. 

As already explained, our problem is to compute the 
magnetic susceptibility tensor x i k ( o , k ) .  This makes it pos- 
sible to solve problems involving the macroscopic electrody- 
namics of an antiferromagnet with a Goldstone branch in the 
spectrum. 

From Eq. (8 ) ,  we have 

with the structure of the xik tensor being 

Xxx i x l  0 

i=(-r l  x: ,;,) 

and 

2 g 2 ~ ( ~ + ~  cos O a + k 2 ) c o s  0 
Xzz = w : ( k ) -  w 2  

1 U I I ( ~ )  2 w g M  cos O  
X z z = z  W 2  k  = 1 - w 2 '  w t ( k ) - w 2  ' 

(15) 

We recall that 6%- 1 holds in most antiferromagnets. 
Let us consider the limiting cases. When H = O  holds 

[see Eq. (1 I)], 

For H  = H E  = 2  S M ,  the magnetic moments of the sub- 
lattices occupy a parallel position relative to H (they 
collapse)-a second-order (spin-flip) phase transition into a 
state similar to a ferromagnetic state occurs. The frequency 

1209 JETP 83 (6). December 1996 M. I. Kaganov and N. B. Pustyl'nik 1209 



TABLE I .  

wll(k) of the longitudinal oscillations vanishes identically 
(sin 8=0 at H=HE) ,  along with xZz. The frequency o,(k) 
of the transverse oscillations is determined by the usual 
equation (for an antiferromagnet), 

while 

2 g M @ ~ ( k )  2wgM 
X x x  = X y  y  = wf(k)-w2'  w:(k)-w 2 9 X Z Z = ~ .  

(18) 

If the formulation of the problem makes it possible to neglect 
spatial dispersion, and O <  H S HE holds, 

Note that, for O < H S H E ,  anisotropy in the xy plane is a 
consequence of spatial dispersion: 

For H 3 H E ,  after spatial dispersion is neglected, 

2 g 2 ~ ~  2wgM 
XXX = xy y  = X I =  

(gffI2- 0 ' ( g ~ ) 2 -  w2 ' x z z  = 0. 

(20) 

In what follows, we devote most of our attention to vari- 
ous types of oscillations for H < H E .  We note in this case 
that Eqs. (15) allow a limiting transition to H =  H E .  A com- 
parison of Eqs. (9), (15), (17), and (18) shows that there are 
two dispersion mechanisms: an antiferromagnetic mecha- 
nism, which occurs at H= 0 and plays a role for H < H E  (the 
terms associated with it contain a- [see Eq. (8)]), and a 
ferromagnetic mechanism (the terms of ferromagnetic nature 
contain a+ [see Eqs. (8), (9), and (15)l). 

When the magnetic field H # 0 is not too great 
(H<HE), the leading role in Eqs. (9) and (15) is played by 
the antiferromagnetic dispersion mechanism. Actually, since 
cos 8=H/2M6 holds according to Eq. (2), we get 

and the dispersion in the first term has no exchange ampliti- 
cation. Evidently, an expression in which only the antiferro- 
magnetic mechanism is responsible for the tlispersion can 
serve as a good approximation. Thus, if 

we get 

In the same approximation, we can write the components of 
the magnetic susceptibility tensor given by Eq. (15) as 

To use the resulting expressions, it is important to know the 
orders of magnitude of the parameters in them. The param- 
eters for several antiferromagnets are given in Table I. This 
table also gives the velocity u, for H=O and the values of 
the exchange field H E .  The magnetic field varies within 
wide limits (O<HSHE).  For numerical estimates the fol- 
lowing relationships can be used: 

If we use the following values: Bohr magneton p- lop2' 
Oe/G, Niel temperature ON- lo2 K, and lattice constant 
a-10-' cm, we get HE-lo6 Oe = l o 2  T and 
v,(H = 0 )  - lo5 crntsec. 

Frequency dispersion usually plays the chief role in the 
optics of nonmagnetic media, while spatial dispersion is only 
important close to the resonant frequencies oR. This is be- 
cause the term that contains the wave vector for which 
a k 4  1 (macroscopic electrodynamics) is usually much 
smaller than the resonant frequency wR. In magnets, as is 
well known, the resonant frequencies have a relativistic ori- 
gin, while spatial dispersion is caused by exchange (electro- 
static) interaction. Therefore, the role of spatial dispersion 
can be substantial even at frequencies far from resonance. 

Our model has wR=gH,  but v,(H= 0)k-gH holds for 
ak-  / . ~ H l @ ~ 4  1. Consequently, it is possible to consider the 
case of strong spatial dispersion while staying within the 
framework of macroscopic electrodynamics (u,k%-gH if, of 
course, H <  HE). 

We neglected dissipative processes in computing the 
components of the magnetic susceptibility tensor, and this 
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naturally limits the possibility of comparing the results with 
experiment. The main purpose of this article is to demon- 
strate the role of strong spatial dispersion in solving the 
problems of the macroscopic electrodynamics of antiferro- 
magnets. On the other hand, it may be thought that using 
perfect samples when studying the high-frequency properties 
of antiferromagnets (see, for example, Ref. 2) makes it pos- 
sible to use the resulting expression to describe the experi- 
mental results. It should be kept in mind here that the com- 
petition that usually occurs between spatial dispersion and 
damping is won by spatial dispersion in this case. Actually, 
the wavevector-dependent term can exceed the resonant fre- 
quency (see above), while the imaginary part of the fre- 
quency, Im w, is usually much less than its real part, Re o. 

2. MAGNETOSTATIC WAVES (ALLOWING FOR 
MAGNETIC-DIPOLE INTERACTION) 

By knowing the components of the magnetic susceptibil- 
ity, one can explain how the magnetic-dipole interaction af- 
fects the spin-wave spectrum. To do this, one must use the 
equations of magnetostatics,l) which are valid in the limit 
kcBw, where c is the speed of light. 

curl h=o, div(h+4.rrm)=O, mi=xik(o,k)hk. (25) 

The lower-case latin letters designate the variable fields. 
From this, we quickly get the dispersion equation relat- 

ing frequency o to the wave vector k= nk: 

1 +4'7Tnixik(w,k)nk=0 (26) 

or 

1 +4.rr{n;x,(w,k) + n;x,,(w,k) + nZx,,(o,k))= 0. 
(26') 

At H=O, according to Eqs. (16) and (22), 

k2, vo=va(H=O), 

where $ is the angle between the vector n= klk and the axis 
along which the antiparallel magnetic moments of the sub- 
lattices are placed. Because of the magnetic-dipole interac- 
tion, the spin-wave velocity has acquired a weak (SB 1 )  de- 
pendence on the direction. 

For H # 0, all three diagonal components of xik(w,k) are 
nonzero, and Eq. (26) takes the form [see Eq. (23)] 

This biquadratic equation can be solved exactly in radicals, 
but it is more instructive to show its approxinlate solution, 
using 4.rrISe 1. The spin waves have two branches- 
transverse and longitudinal [see Eqs. (9) ancl (lo)]. From Eq. 
(28), we have 

Note the difference in the angular dependences of the 
gap in the transverse mode of the oscillations and the coef- 
ficient of k2. It may seem suspicious that there is no limiting 
transition from Eq. (29) to Eq. (27). However, this is natural, 
since we used an approximate method to solve Eq. (26). For 
the limiting transition, it is necessary to initially set H=O 
and then to solve the equation, as we did above. 

For H a H E  holds, the role of the magnetic-dipole inter- 
action is the same as in ferromagnets. From Eqs. (26) and 
(28), we have 

Since H 2 H E  holds, the terms that depend on the wave vec- 
tor are small, and an expansion can be used. Then 

The renormalization of the gap of the spin-wave spec- 
trum (or of the ferromagnetic resonance frequency) from 
gH to g is apparently the most important effect, where 
B = H  + 8 TM is the induction corresponding to a magnetiza- 
tion equal to 2M. It must be kept in mind, however, that we 
have taken H*M and that the angular dependence both in 
the value of the gap and in the coefficient of k2 is a small 
correction (in ferromagnets, 4 ~ r M  can exceed H.) 

3. MAGNETIC POLARITONS 

The polariton dispersion law is determined by solving 
Maxwell's equations supplemented by the constitutive equa- 
tions; it has the form of a plane wave. In the optical range, 
the magnetic susceptibility is usually assumed to equal unity, 
while only the frequency dispersion of the permittivity is 
included in the calculation. In computing the dispersion law 
of a magnetic polariton, it is natural to consider low frequen- 
cies (by comparison with optical frequencies), which allows 
one to replace the permittivity of the magnet with its static 
value, i.e., to assume that 

where E is a constant greater than unity. A magnetic polar- 
iton (in particular, in antiferromagnets) has one more essen- 
tial difference from an ordinary (dielectric) polariton: there is 
no basis for neglecting spatial dispersion when one calcu- 
lates its dispersion law. 

It is convenient to reduce the system of Maxwell's equa- 
tions to one vector equation, 
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with the permeability tensor defined in terms of ,yik : 

The determinant of the system of Eqs. (32) determines the 
dispersion law of a magnetic polariton. Note that, when the 
p i k  tensor is anisotropic and gyrotropic, the magnetic field h 
is not necessarily transverse (to the wavevector k). The in- 
duction vector b must be transverse. From Eq. (32), 
b .  k= 0. 

Before studying the dispersion law of a magnetic polar- 
iton, let us comment on the accurate longitudinal magnetic 
polariton. In the preceding section, we considered quasistatic 
waves, whose dispersion law is approximate since it neglects 
electrodynamic retardation (the finiteness of the velocity of 
light). Electromagnetic waves differ from magnetostatic ones 
in that an electric field participates in the waves, along with 
a magnetic field and a magnetic moment. For oscillations of 
the electric field to be excited, the induction vector b must 
have a component perpendicular to k. When the magnetic 
susceptibility tensor ,yik has the structure of Eq. (14), the 
condition for the absence of magnetic charges (div b=O) 
can be exactly satisfied for a wave propagating along the z 
axis if 

p,,(o,k)= 1 + 4.rr,yzZ(o,k)=O, k,= k, kx= k,=O. 

(34) 
Hence, using Eqs. (15), (lo), and (22), we get 

Comparing Eq. (35) with the second of Eqs. (29), we see that 
the approximate (quasistatic) solution is converted to an ex- 
act solution when n,= I. 

For H=O, the wave can propagate in the y z  plane while 
remaining exact: 

The existence of (exact) longitudinal magnetic polaritons, as 
remarked in Ref. 3, can help to distinguish losses of a mag- 
netic and an electrical nature (see also below). 

We now turn to the properties of ordinary magnetic po- 
laritons, i.e., to Eqs. (32) and (33). We begin with the case 
H= 0. The permeability given by Eq. (33) has no gyrotropic 
terms, while the anisotropy is shown by the fact that 
p,,= I, while 

Let wave vector k be at an angle @ to the x axis. Depending 
on polarization, two polaritons can propagate in a magnetic 
material. For hi # 0, and h,= hy = 0, the equation for a polar- 
iton has the customary form: 

If h,= 0 and h , , h, # 0 hold, the equation is somewhat more 
completed: 

When a polariton propagates along the x axis (@= 0) ,  de- 
generacy occurs: both polaritons have identical dispersion 
laws. Since Eq. (38) is a particular case of Eq. (39), we first 
analyze Eq. (39). We introduce the velocity u,=c/&, the 
velocity of light in a medium that has the same permittivity 
as does our magnetic substance but possesses no magnetic 
properties. It can be seen from Eqs. (37) and (39) that, at 
some polarization, there exist two polaritons: the dispersion 
laws of each are linear: 

while the velocities are the roots of the following biquadratic 
equation: 

Solving this equation, we get 

Since velocity u, is close to the speed of light, according to 
EY. (241, 

and, consequently, 

For @= d 2  (k,=k, k,=k,=O), the velocity of one branch 
is independent 'of the magnetic properties ( U  I = v2), while 
the velocity of the other coincides with voJ=S, the 
velocity of the exact longitudinal polariton given by Eq. (36). 

It is interesting that two Goldstone modes that interact 
remain Goldstone modes, with the velocity of the fast Gold- 
stone mode increasing and that of the slow Goldstone mode 
decreasing. This result is in agreement with the principle of 
collision of terms (when k= 0, the terms and the frequencies 
coincide). It should be noted that Eq. (42), obtained using 
Maxwell's equations, contains no restrictions on the wave 
velocity (the velocity v ,  can exceed the velocity of light in 
vacuum). This is apparently associated with the nonrelativis- 
tic derivation of the magnetic susceptibility tensor containing 
spatial dispersion (spatial tlispersion means that the excita- 
tion can move). A relativistic derivation, one might think, 
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would not so much change the value of p i k ( o , k )  as cause 
the permittivity s to be renormalized. However, we know of 
no such derivation. 

The increase of the photon velocity due to spatial disper- 
sion of the permeability recalls Leontovich's 1961 paper,4 in 
which he explains how the Kramers-Kronig relations are 
modified because of spatial dispersion of the permittivity. 
The existence of a limiting velocity of signal propagation 
imposes lin~itations on the real and imaginary parts of per- 
mittivity with spatial dispersion. It is shown in the cited pa- 
per that a limitation must exist, but the models are not evalu- 
ated in the sense of how correctly they describe the 
properties of the medium. Therefore, Ref. 4 is apparently 
inadequate to eliminate the misunderstanding that can in 
principle appear. 

The magnon velocity v ,  also contains no literal restric- 
tions. What is the basis for our confidence that v,Gc ? The 
estimates of Eqs. (24) provide such a basis, which can be 
made even more obvious. If u,= c  holds, then 

should exceed the Coulomb energy by a factor of 137. Tak- 
ing into account the character of the exchange interaction, we 
see that the magnon velocity cannot be comparable with the 
velocity of light! 

Let us proceed to the case H # 0 ,  H<H,, for which the 
xik tensor is given by Eqs. (22) and (23). It is inconvenie~it to 
consider a polariton propagating in an arbitrary direction. We 
shall derive the dispersion law for polaritons propagating 
along the coordinate axes. 

I .O# H<H,,k,=k,k,=k,=O.Inthiscase,thepolari- 
tons are of two types (two polarizations2)). The polariton 
dispersion law of the first type (h,= h, = 0 ,  h, Z 0 )  coincides 
with the dispersion law of a polariton for H= 0  and @= 0.  It 

is only necessary to replace uo with u ,  = vo  [see 
Eqs. (40)-(42)l. 

The dispersion equation of the second type (h, # 0, h,, 
# 0, h,= 0 )  is a solution of 

(43) 

Hence 

Writing this equation in the form 

emphasizes that a polariton is a result of the mixing of a spin 
wave with a photon (the magnon dispersion law takes 
magnetic-dipole interactions into account: the gap in the 
spin-wave spectrum is renormalized). Frequently, 4.rrlS+ 1 
holds, and one can speak of resonance between two waves of 
the spectrum. Since Eq. (44) can be solved exactly, there is 
no need for qualitative analysis. From Eq. (44'), we have 

It can be seen from the result that both branches (both 
polaritons) exist for all wave vectors. In the limit k 4 O  we 
have o4O for one wave (a photonlike polariton) and 

The interaction of a photon with a magnon results in renor- 
malization and dispersion of the velocity. For the other 
branch, as k+O, 

An evaluation of the role of spatial dispersion (see the 
end of Section I) shows that it is possible to consider the 
limit of large frequencies o and large wave vectors k simul- 
taneously: w+gH, u,k+gH. In this limit, 

2 4TT v ,  W 
Iim ,u,! ,do,k)=l+- 2,  u = -  

o - - t m , k - ~  6 v : - v  k ' 
(48) 

This means that the polariton dispersion law at large frequen- 
cies and wave vectors asyn~ptotically approaches the disper- 
sion law of a polariton with polarization of the first type (see 
Fig. 2). 

If there were no spatial dispersion, the wave vector k  
would go to infinity at a frequency of w = , q ~ J =  
(antiferromagnetic resonance). When spatial dispersion is in- 
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FIG. 2. Schematic diagram of the dispersion law of the (kllx) polariton: 
dashed curves-first polarization, h,  f 0 ,  h,= Iz,=0; solid curve-second 
polarization, h, ,h, f 0 ,  h,=O, k , = g H l C  C=C/&, k a = g H I v a ,  
W O = P O R H ,  OR= & g ~ .  

cluded, the frequency O J ~ - ~ H  J-8 shows up as an 
appreciable decrease of the group velocity of the polariton: 

(this is indicated in Fig. 2). Note that the limit k + m ,  
W H ~ ,  in accordance with Eq. (43), is absent. 

11. 0  # H < H E ,  k y =  k ,  kx=  k z =  0. The polaritons also 
possess different dispersion laws in this case, depending on 
the polarization. For h z  # 0 ,  h x =  h,=O the polariton has a 
dispersion law identical to that of a polariton with the same 
polarization with kx= k ,  k y  = k,= O  (see above and Fig. 2). In 
general, since the permeability tensor has only two gyrotro- 
pic components ( p y x =  p:), a polariton with the polariza- 
tion under consideration is isotropic in the xy plane. 

A polariton with polarization h,=O,  h x , h y  # 0 for k ,  
f 0 ,  k , , ky=O differs from a polariton with k ,  # 0, 
k y  = k ,  = 0 .  In fact, its dispersion law is 

After the appropriate substitution, 

In the limit w+O and k ~ o ,  we again have Eq. (46). More- 
over, 

However, as k-+m and ~ A C Z  

Iim pFfd w , k )  = I .  
w +m,k l m  

It can be shown that as k + m  there is only one linear branch: 
w =  v , . k .  To analyze the polariton dispersion law in more 
detail, we write the solution of Eq. (46): 

Whence we have, as k ~ m ,  

In going to the limit in Eq. (49'), the equation becomes 
shorter, and one solution is lost. It is interesting to note that 
Eqs. (51) and (52) demonstrate asymptotic freedom; i.e., in 
the limit k + m  and w ~ w ,  the photon and magnon are in- 
dependent! Equations (45) and (51) are virtually indistin- 
guishable in a schematic image of the dispersion law (see 
Fig. 2). It follows from Eq. (49) that the former resonant 
frequency, i.e., the frequency for which the group velocity is 
anomalously small, is the same in both cases. 

111. O < H G H E ,  k x =  k y =  0, k ,  # 0 .  In polaritons of both 
polarizations, h ,  ,hy  # 0, h,=O. The polariton dispersion law 
is a solution of Maxwell's equations, 

The sign in front of the square root gives the polarization. 
When p, # pyy , the waves (the polaritons) are elliptically 
polarized (the signs correspond to the rotation direction). The 
p,, pyy , and p' components are functions of wave vector 
k and frequency w .  Because of this, two polaritons corre- 
spond to the fixed plus polarization, and one corresponds to 
the minus polarization. 

We should point out that case 111 under consideration is 
more complex to analyze than the preceding case (because of 
the square root in the definition of the permeability &). 

Let us consider the plus polarization.3) To start out, we 
explain how the polaritons behave as k+O and as k + m .  In 
the limit k - 0 ,  as always, we get Eq. (46) for one of the 
polaritons (similar to a photon). Besides this, a nonzero fre- 
quency exists for which ,LL;~=O.  From Eq. (53) and the per- 
meability values, we have 

As in the preceding cases, we have p!: f=~ for 
w = ( 1 + 4 ~ r l S ) g H .  As k + m ,  o+m, the limit p& coin- 
cides with the limit pLff under the same conditions. Conse- 
quently, the asymptotic behavior of the dispersion law does 
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not differ from the case considered earlier (see Fig. 2). The 
resonant frequency (i.e., the frequency at which the group 
velocity of one of the polariton branches is anon~alously 
small) equals g H  [see Eq. (54')l. 

Let us now consider the minus polarization. After sub- 
stituting the values of the components, we write the effective 
permeability as 

We multiply the numerator and the denominator by 

As a result, we get 

Substituting plL,Ff into Eq. (53), we see that the dispersion 
equation has one solution (for k2), of the photon type. For 
k+O, as always, we have w = Z ~ ,  I?= cl&, whereas, for 
k+m, the frequency is w=vck. Equation (56) makes it pos- 
sible to compute the dispersion of the velocity of "light" in 
the limit k 4 O  and k+w: 

We recall that u,<.uc. Since po- 1 holds in most cases, the 
dispersion of the velocity is small. A distinctive feature of 
this case (as for the plus polarization) is that the dispersion of 
the velocity of light is linear in frequency as a consequence 
of the gyrotropy of the pik tensor. 

4. SPATIALLY INHOMOGENEOUS PROBLEMS: EXCITATION 
OF THE POLARITONS 

To solve spatially inhomogeneous problems, the consti- 
tutive equations, Eqs. (13), should be rewritten in the r rep- 
resentation, keeping in mind that the square of the wave 
vector, k2, corresponds to the operator A =  -d2/dxf. A 
characteristic of Eqs. (13) and (23) is that the numerator of 
the x and xZz components contains the expression 
u:(H)$+ - V:A, signifying that the corresponding consti- 
tutive equation contains not the magnetic field component 
(on the right-hand side), but the derivatives of the magnetic 
field. For example, to determine the z component of the mag- 
netic moment, m,, it is necessary to solve 

The presence of spatial derivatives of the components of the 
m vector [in equations of the type of Eq. ( 5 8 ) ]  makes it 

necessary to formulate supplementary boundary conditions 
(besides the electrodynamic conditions, which are conse- 
quences of Maxwell's equations). The formulation of the 
supplementary boundary conditions is a special problem that 
requires one to consider the behavior of the magnetic mo- 
ment densities at the boundary (we will not deal with this 
question here, but will restrict ourselves to the simplest phe- 
nomenological assumptions--see below). 

The simplest spatially inhomogeneous problem is the ex- 
citation of an electromagnetic wave in the half-space x>O 
occupied by a magnetic substance. Here we choose case I 
(O#H<H,, k,=k,=O,h, f. O,h, # 0; i.e.,themagnetic 
field H is parallel to the surface, hz=O). The surface imped- 
ance 

is convenient for characterizing the electromagnetic proper- 
ties of the half-space. Let the frequency be such that two 
waves (w>pogH, see Fig. 2) can propagate in the magnetic 
substance. Then 

Whence 

The parameter Q, which is the ratio of the amplitudes of the 
two waves, must be determined from the supplementary 
boundary conditions. We shall consider two cases (without 
discussing their physical meaning): 

If the frequency is so large that it is possible to use Eq. (48), 
we get 

Then, since u,4u,, 

Consequently, 

This shows that, in the range under consideration, the 
impedance4) (and consequently, the reflection coefficient 
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from the half-space) is virtually insensitive to the existence 
of the magnon branch (w= v , k ,  v ,  --v,). In this case, it is 
probably simplest to use light scattering to experimentally 
detect the magnon branch. 

The impedance is more informative in another frequency 
range. Let us consider frequencies close to the "resonant" 
frequency w=gHo&. When we have w <  pogHo (with 
the polarization under consideration), only one wave propa- 
gates, so that, for w<gHo&, this is a photon-type wave, 
whereas, for gHoPo> w>gHo&, it is magnon type. 

To  exactly calculate the fields and the impedance, it is of 
course necessary to allow for the existence of an exponen- 
tially damped field in the body. 

Let w = p o g H o  be the resonance frequency (in the ab- 
sence of spatial dispersion; i.e., for v,=O). Then 

and the impedance is 

The upper row in the last equation corresponds to a fixed 
angular momentum at the boundary (m,l ,=o=O),  and the 
lower row corresponds to a free angular momentum 
(dm, l d ~ l , = ~ =  0) .  We recall that, for v, = 0, the impedance 
Z =  a goes to infinity even at resonance (w= G g H ) ,  
whereas, for a permittivity of & ( w R ) = w ,  the impedance 
goes to zero. 

A study of the impedance (the shape of the resonance 
curve) can give much information concerning the electrody- 
namics of a polariton in a magnetic substance. 

Knowing the permeability tensor makes it possible to 
solve various electrodynamic problems involving the study 
of surface magnetic polaritons at the magnet-vacuum 
boundary and/or in a plate (similar to what is done for a 
ferromagnet in Ref. 5). 

Finally, the existence of a gapless (Goldstone) mode in a 
wide range of magnetic fields should be manifested in the 
static thermodynamics of antiferronlagnets of the type under 
consideration. For example, there should be a magnon part of 
the heat capacity CM of an antiferromagnet, proportional to 
T~ (T is the temperature), with a coefficient that depends on 
the magnetic field [see Eq. (lo)]. The effective Debye tem- 
perature Of, decreases (along with the velocity v,) as the 

magnetic field increases [see the dispersion law of the mag- 
netic vibrations given by Eq. (lo)]; this results in an anoma- 
lous increase of the magnetic heat capacity C M .  

5. CONCLUDING REMARKS 

The entire treatment has been carried out neglecting dis- 
sipative processes. Naturally, if we introduce dissipative 
terms into the Landau-Lifshitz equations, Eqs. (3), it is not 
especially hard to compute the (now non-Hermitian) compo- 
nents of the permeability tensor, and these can be used to 
compute the damping of those elementary excitations that we 
have considered. We have not done this for two reasons: 
first, we wanted to keep the exposition clear, and, second, we 
tried to show that it was of interest to study the dispersion 
laws under "clean" conditions, when dissipative processes 
could be neglected. 
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"of course, it is quasimagnetostatics that is involved here, since the com- 
ponents of the x,, tensor contain a dependence on frequency w. 

2 ) ~ ~ o  polaritons can exist for a given polarization (because of spatial dis- 
persion of the permeability). We emphasize that we regard as polaritons 
only undamped waves in a magnetic substance (naturally, in the absence of 
dissipative processes). See the remark in section IV on the number of 
solutions of Maxwell's equations. 

')strictly speaking, we shall use plus polarization to mean the polarization 
that occurs in the limit o, k+O. The functions p,,, p,,, and p', in 
which both the numerator and the denominator change sign, are under a 
square root sign. For true plus polarization, it would be necessary to re- 
quire that the expression under the square root be positive. In this case, 
different expressions would have to be used in different parts of the wk 
plane. However, we shall use one expression. 

4)~quations (64) show that the contribution of the magnon branch to the 
electromagnetic field is very small when u , & u ,  . This result is not sur- 
prising and is associated with the wavelength difference at a fixed fre- 
quency. 
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