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1. INTRODUCTION 

At present the important role of solitons in the physics of 
one-dimensional magnetic materials is well known and is 
supported by extensive experimental data, which suggest that 
the contribution of solitons to the response functions and the 
thermodynamic characteristics of magnetic systems is con- 
siderable (see the reviews in Refs. 1 and 2). 

The most direct way of detecting solitons is to observe 
their contribution to the inelastic neutron scattering cross 
section, which is known as the soliton central peak in the 
dynamic structure factor. This contribution is determined by 
the presence of a finite number density of solitons that are 
thermally excited and can move freely in the crystal. I l le 
presence in the spectrum of such a zero (translational) free- 
motion mode leads to the appearance of a resonance peak at 
zero frequency in the system's response function (the dy- 
namic structure factor S(q,o)) .  Because of thermal motion 
of the scattering centers this peak proves to be Doppler- 
broadened and has a halfwidth of order q u  T , where u T is the 
root-mean-square thermal velocity of the soliton. 

that dyons contribute considerably to the dynamics and ther- 
modynamics of Heisenberg antiferromagnets, but due to an 
error resulting from ignoring the topological term in semi- 
classical quantization the dyon spectrum was calculated in- 
correctly. Using the model of an easy-axis antiferromagnet 
with weak rhombic anisotropy placed in an external mag- 
netic field, we show that the dynamics of the internal degrees 
of freedom of solitons in one-dimensional antiferromagnets 
is essentially of quantum nature even when S is large and 
varies considerably for cases of integral and half-odd S. The 
well-known method of soliton phenomenologyL4~'5 can easily 
be generalized to the dyon case. We use it to study the ther- 
modynamics of the dyon gas in easy-axis and weakly rhom- 
bic antiferromagnets and predict the possibility of observing 
resonances on the internal soliton modes in EPR experi- 
ments. We also make numerical estimates of the resonance 
frequencies for CsMn13, which at temperatures above the 
temperature of three-dimensional ordering is a good realiza- 
tion of a quasi-one-dimensional easy-axis Heisenberg anti- 
ferromagnet with spin S= 512. 

In addition to translational modes solitons can have in- 
ternal degrees of freedom, say, magnon modes localized on 2. THE MODEL: AN EASY-AXIS ANTIFERROMAGNET IN A 

the soliton or the projection S, of the intrinsic spin. Such 
MAGNETIC FIELD 

solitons with additional quantum numbers are sometimes 
called dyons by analogy with the physics of monopoles.6 The 
presence of internal modes makes it possible to observe reso- 
nances at the corresponding frequencies. The so-called soli- 
ton magnetic resonance on the dyon levels with S,= 2 112 
that are split in an external magnetic field was observed in 
the quasi-one-dimensional antiferromagnet CsCoC13 of the 
Ising type in inelastic neutron scattering experiments and 
electron paramagnetic resonance (EPR) e ~ ~ e r i r n e n t s . ~  El- 
ementary excitations in Haldane systems are also of a soliton 
nature8 and have an additional quantum number, S,, which 
makes it possible to observe the transitions between states 
with different values of S ,  in EPR  experiment^^"^ (it must be 
noted, however, that the nature of these solitons differs sig- 
nificantly from that of ordinary solitons in the antiferromag- 
netic order and is based on the hidden-order conceptL'). 

The present study is an analysis of the internal dynamics 
of solitons in one-dimensional Heisenberg (weakly aniso- 
tropic) antiferromagnets in the "semiclassical" limit S* 1 
( S 2  512 for all practical purposes). Recently we f ~ u n d ' ~ . ' ~  

We start with the model of a one-dimensional easy-axis 
Heisenberg antiferromagnet with rhombic anisotropy located 
in an external magnetic field. The model Hamiltonian is 

H =  2 {JS~.S~+~+D~(S~)~+D~(S~)~-~,U~H.S,), 
I 

(1) 

where J > O  is the exchange integral, D L  and D 2  are the 
anisotropy constants, the Si are the spin operators describing 
magnetic ions with spin S placed at the sites of a one- 
dimensional lattice with a lattice constant a ,  H is the mag- 
netic field, pB is the Bohr magneton, and g is the Landi 
factor of the magnetic ion. 

Let us assume that D L  > D 2 > 0 .  Then z is the easy axis, 
and zy is the easy plane. It is also convenient to introduce the 
"rhombicity" parameter p =  D l  ID2- 1 ; in a purely easy- 
axis antiferromagnet we have p=O, while the "nearly easy- 
plane" case corresponds to pB I .  Despite its simplicity, the 
model gives a good description of a number of real one- 
dimensional magnetic materials. For instance, CMC 
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(CsMnCI3X2H,O) corresponds to p = 3  (Ref. 16) and 
TMMC ((CH3)4NMnC13) to p+ l (Ref. 2), while CsMn13, 
in which hexagonal anisotropy is extremely low and is of the 
same order of magnitude as interchain exchange, can be as- 
sumed for all practical purposes to be an easy-axis magnetic 
material described by the model (1) with p=O (Refs. 17 and 
18). 

We also note that the model can be applied to magnetic 
materials with a symmetry higher than rhombic, for instance, 
hexagonal symmetry, where in the ideal case the invariant 
(sy12 is symmetry-forbidden. The point is that often in real 
samples of hexagonal magnetic materials there are rhombic 
distortions related to crystal growth processes. For instance, 
in TMMC the rhombic anisotropy of this nature is larger 
than the natural crystallographic anisotropy and may reach 
15% of the uniaxial a n i s o t r ~ ~ ~ . ' ~  Moreover, noticeable 
rhombic anisotropy can be induced by weak external 
uniaxial pressure, which is often used in analyzing the dy- 
namics of solitons of the domain-wall type in weak ferro- 
magnets (see Refs. 20 and 21). 

It is known that the long-wave dynamics of an antifer- 
romagnetic in the S+ 1 limit can be described by the nonlin- 
ear a-model (see the reviews in Refs. 2,13, and 22). The 
effective Lagrangian corresponding to (I)  can be obtained by 
means of a path integral over coherent states and has the 
formI3 L = $ d x S ,  with 

Here the field I is the continuum limit of the antiferromag- 
netism vector defined as a linear combination of spins in the 
unit magnetic cell, i.e., 1, = (S2,- S2,+ ')/2S, with magneti- 
zation introduced in a similar manner, 
m,= (S2,+ S2n+ 1)/2S. In the absence of an external field the 
Lagrangian (2) is Lorentz-invariant, c=2JSalf i  acts as the 
limit of the spin-wave velocity, and we write 

Aoj= a with j= 1, 2 for the characteristic spatial 
scales determined by the anisotropy. The magnetization m 
can be expressed in terms of 1 and its derivatives: 

where y=g,uB Ih is the gyromagnetic ratio, and the last term 
stems from the way in which m and 1 are defined, which 
clearly violates translational invariance. The vectors m and 1 
satisfy the constraints m . 1= 0 and m2 + 12 = 1, and since ac- 
cording to (3) Iml4  1 ll holds in the long-wave approxima- 
tion, we can assume that in (2) 1 is a unit vector. The last 
term on the right-hand side of Eq. (2) determines what is 
known as the topological term, responsible for the difference 
in the physical properties of one-dimensional antiferromag- 
nets with integral and half-odd S (see the review in Ref. 22). 
This term is a total divergence and therefore has no effect on 
the equations of motion in the classical case. However, under 

quantization the allowance for this term changes the defini- 
tion of the canonical momentum and proves important, as we 
will shortly see. Note that in deriving (2) and (3) we assumed 
that the number of spins in the chain is even. 

Let the z axis specify the direction of the field. Then in 
the purely easy-axis case p =  0 (D,  = D 2 =  D and 
A o l =  AO2= AO) the classical dyon solution describing a two- 
parameter precession kink can be written explicitly3v4 be- 
cause the z-component of the total spin is a constant of mo- 
tion. At this point it is convenient to introduce the angular 
variables I,+ i l ,  = eiV sin 0 and lZ=  cos0. Then the dyon so- 
lution has the form 

where po=const, 5 and r are the ordinary relativistic com- 
binations 

u is the soliton velocity, o is the precession frequency in the 
soliton reference frame, oo= CIA, is the magnon activation 
frequency in the absence of a field, and a= 2 1 is the kink's 
topological charge. The value of the z-projection of system's 
total spin Sz= (SIa)J dx m, corresponding to the solution 
(4) is given by the following formula: 

where a S  is the statistical contribution related to the last 
term on the right-hand side of Eq. (3). In the classical case 
w can assume arbitrary values ranging from - oo to wO, and 
the energy minimum is reached for a static solution with 
w= - y t l .  With semiclassical quantization we can require 
that the value of S, be integral irrespective of whether S is 
integral or half-odd (since the system contains an even num- 
ber of spins). Then the kink's "intrinsic quantum number" 
m =Sz- a S  must be an integer when S is an integer and a 
half-odd number when S is half-odd. The dyon energy is 
determined by the dyon momentum and the intrinsic variable 
m and can be written as follows: 

where 

On the whole, the above reasoning for a purely uniaxial 
antiferromagnet follows Haldane's derivation: with slight 
modifications in argumentation and the way the Lagrangian 
of the a-model was derived. However, even with weak an- 
isotropy in the base plane (p # 0 )  there is no way to con- 
struct an exact dyon solution, with the result that only ap- 
proximate methods can be employed. 

For p Z 0 the simplest stable static soliton solution cor- 
responds to a sine-Gordon kink: 
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7r X 
cp=cpo=?-  cos O=r tanh-. 

2 ' A02 (9) 

Linear analysis of the excitation spectrum against the kink 
background suggests that there is a localized magnon mode 
corresponding to uniform (&-independent) oscillations of the 
angle cp about the equilibrium value cpO= m / 2 ,  with n an 
integer. In the limit p+O, the frequency of this mode, 
w,,= wo&, tends to zero and the oscillations become a ro- 
tation, as in (4). Quantum fluctuations, however, markedly 
narrow the range of applicability of the linear 
approximation.'2 Indeed, estimates of the amplitude of the 
zero-point oscillation of the angle cp yield 
( ( 9 -  cpo)2)- I/s&, SO that for real values of S the linear 
regime is reached only in the easy-plane case, p S  1. To ana- 
lyze the dynamics of the internal mode in the "nonlinear 
quantum" regime we note that in both limits, p+ 1 and 
p=O, the angle cp is independent of the spatial variable &. 
We select the following ansatz for the dyon solution: 

x-xs(t) 
cos 6 = u  tanh- 

As(%) ' 

where cp, and xs are the slow variables in the sense that 
x s 4 c  and $,4 o o ,  with the dot standing for time derivatives. 
In the case of weak rhombicity ( p e  1),  to which we limit 
our discussion, the effective Lagrangian of the problem ob- 
tained after (10) is plugged into (2) has the following form in 
the leading approximation in the small parameters p, xs lc ,  

and $,two: 

where Eo=hwoS. Thus, the initial field problem with an 
infinite number of degrees of freedom has been reduced to a 
finite-dimensional problem. Note that in the given geometry 
with low kink velocities x s 4 c  the internal and translational 
degrees of freedom are approximately separated; generally, 
however, this is not the case and the free motion of a kink 
with an excited internal mode is not necessarily motion with 
constant velocity.13 The presence of the term with the first 
time derivative is due to the topological term (the last term) 
in (2); since this term is a total derivative, it has no effect on 
the classical dynamics but becomes very important in quan- 
tization (see, e.g., Ref. 23). 

Canonical quantization of the Lagrangian (1 1) leads to a 
Schrijdinger equation HV,=&,q,, for the wave function 
V(cpcPF) describing the internal mode, with a Hamiltonian of 
the form 

and the periodic boundary conditions q(cp, + 27r) =lP(cp,). 
At p=O the spectrum of this operator is trivial: the eigen- 
functions *,,,= exp(iS,cp,) correspond to the levels 

where S, is an integer, and nz=S,- US is an integer or a 
half-odd number, depending on S. It is easy to see that (13) 
coincides with (8) for Irnl4S and describes the spectrum of 
a "rotator with spin S" in a magnetic field. In the absence of 
a field the ground state of such a rotator is twofold degener- 
ate when S is half-odd. 

For p # 0 the Schrodinger equation corresponding to the 
Hamiltonian (12) goes over to a Mathieu equation for the 
reduced function U = exp[iS(cr+ yHlwo)]V, but here the pe- 
riodic boundary conditions are replaced in the general case 
by quasiperiodic boundary conditions (in the absence of an 
external field these conditions are periodic for integral S and 
antiperiodic for half-odd S). The general structure of the 
spectrum of the Mathieu equation is determined by the val- 
ues of the parameter ps2/4 (Ref. 24). For ps2144 1 the spec- 
trum coincides, to within small corrections of order p (see 
Ref. 13), with that of the rotator (Eq. (13)). We also note that 
the condition Iml4S, which specifies the region where (13) 
and (8) coincide, also determines the range of applicability 
of (13). Indeed, above we assumed that $ ,emo and the lo- 

calized mode frequency $, corresponds in the quantum me- 
chanical description to S1, = (&,+, - &,)/ h = (wo IS) 
X(m + 1/2), with the result that S1,4 wo holds for Iml4S. 
Hence we can assume that (9) gives a correct description of 
dyon levels for any value m if p s 2 4 4 .  

For ps2 /4S  1 the behavior of the system is more com- 
plex. I-Iigh-lying levels (with energies &,+pEo/2) are ap- 
proximately described by the formula (13) (or (9)), while the 
beginning of the spectrum (i.e., levels with energies much 
smaller than the depth of the potential well, pEo/2) corre- 
sponds to a tunnel-split spectruni of the linear-oscillator type, 

p h  wos 
+t, for 8 , ~ -  

2 ' (14) 

where the splitting r, is exponentially small and can be found 
by the instanton method (see, e.g., Ref. 23). For the two 
lower levels the splitting is given by the formula 

to= 2h00 p3"~pe-2SG, (15) 

where 

The factor @ in (15) appears because the Lagrangian (1 1) 
contains terms proportional to the first time derivative; note 
that t,, @ holds for any value of n. In the absence of a tield 
this factor forbids tunneling at half-odd S,  similar to the ef- 
fect of tunneling in small particles with uncompensated 
spin.25 An external tield lifts the degeneracy and leads to an 
oscillatory dependence of the spectrum structure on H with a 
period AH = wo 1 yS. Note that Eq. (15) is valid only for 
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p< I ; in the easy-plane case p% l the nonlinear field prob- 
lem cannot be reduced to the dynamics of a system with one 
degree of freedom, and in calculating the tunneling splitting 
one is forced to build the instanton solution in a two- 
dimensional Euclidean space.26 

Thus, knowing the spectrum of internal dyon modes in 
an easy-axis antiferromagnet, we can now study the contri- 
bution of these modes to observables. 

3. THE MANIFESTATION OF INTERNAL MODES IN 
RESPONSE FUNCTIONS 

Obviously, to calculate the contribution of the internal 
degrees of freedom of dyons to a response function we must 
know how to calculate the corresponding averages. At low 
temperatures (T<Eo), the statistical mechanics of a dyon gas 
can be built by the well-known method of soliton 
phenomenology.15 The dyon distribution function normal- 
ized to the total number of solitons and antisolitons can be 
written as 

where L is the length of spin chain, P is the soliton momen- 
tum, n numbers the internal modes, E , ( P ) - - E , + C ~ P ~ / ~ E ~  
is the energy of a dyon with momentum P in the nth excited 
state, and 'C, is the change in the free energy of the magnon 
gas brought on by production of a single kink: 

I-[ere Sj(k) is the asymptotic phase shift experienced by a 
magnon of the jth branch of the continuous spectrum after 
interaction with a kink, wl,2 are the frequencies of 
continuous-spectrum magnons (for small p and weak fields, 
wl (k)= w2(k)= w0 dm:) .  Generally speaking, S,(k) 
can depend on P and n,  but at low temperatures (T-=SEo) 
dyons with P G E 0  I c  and n 5s provide the main contribu- 
tion to the thermodynamics, with the result that this weak 
dependence can be ignored. The 6, vs k dependence can be 
found approximately from the exact expressions for the wave 
functions of magnons superposed on a sine-Gordon kink (9), 
SlY2(k)= - 2 arctan kAo (see, e.g., Ref. 15). 

The total number density ~ , = L , - ' z , S ~ P  w(P,n) of 
solitons determines the correlation length c,= 1/2n, and can 
easily be calculated for different cases as a function of 
Tlfiwo and p. This aspect was thoroughly studied in Refs. 12 
and 13, so that here we give only a brief description of the 
main results. In the classical case p ~ 2 S - 4  at high tempera- 
tures (T+hwo) we arrive at the ordinary result coinciding 
with the expression for the kink number density in the sine- 
Gordon model: l5 

In the low-temperature region ( T 5  h wo) the nlagnon de- 
grees of freedom are "frozen," the correction to the kink's 
self-energy x, is exponentially small, and for tz, we have 

which is similar to the result obtained by Krumhansl and 
schrieffer.I4 Note that in an antiferromagnet, in contrast to a 
ferromagnet, the ratio of the characteristic soliton energy to 
the magnon energy is not very large, Eolfiwo=S (in ferro- 
magnets E 0 I h w o = = ~ ) ,  with the result that the low- 
temperature region T<hwo is important. 

In the "quantum" case p ~ 2 + 4  at high temperatures 
(TS-hwo) we get 

which coincides with the exact resultz7 for a purely uniaxial 
model obtained by the transfer-operator technique. In the in- 
termediate temperature range 11S<TIfiwo9 1 the soliton 
number density is 

Finally, at low temperatures (T< fi oo IS) we again arrive at 
(19). Note that the anomalous temperature dependence of the 
pre-exponential factors in (19) and (21) is due entirely to the 
quantum effects of freezing of a fraction of the modes, with 
the result that the dependence cannot be reproduced by clas- 
sical transfer-operator methods. 

Let us see how dyons contrtibute to the dynamic struc- 
ture factor s a P ( ~ , O ) ,  which is the Fourier component of the 
spin correlation function (S"(X,~)S~(X',O)). In the case of 
an antiferromagnet the main contribution to the dynamic 
structure factor is provided by the correlations of the antifer- 
romagnetism vector 1 and is concentrated near the magnetic 
Bragg wave vector Q =  QB= wla (the contribution of m is 
concentrated near Q = 0 and is D I J  times weaker in inten- 
sity). The longitudinal component SZZ (in relation to the 
easy-axis) of the dynamic structure factor is practically in- 
sensitive to internal soliton dynamics, with the result that we 
can limit ourselves to the transverse components. It is gen- 
eral knowledge that solitons give rise to what is known as the 
central peak, i.e., a contribution to the dynamic structure 
factor in the range of fl values close to zero caused by the 
Doppler-broadened response on the Goldstone translational 
mode. Classical calculations yield2 

where 

Here the halfwidth of such a central peak, To, is approxi- 
mately equal to ~ U T ,  where u T =  c is the root-mean- 
square soliton velocity, and F ,  (q)  = .rr coshK'(~qAd2) is 
the traverse form factor, which describes the geometric struc- 
ture of the soliton. The second transverse component, 
SX.'(Q,0), in the linear approximation contains a delta- 
function peak at the localized magnon mode frequency 
(1 = oo 6. 
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A semiquantum analysis done in the spirit of this ap- 
proach approach shows that in the classical case p ~ 2 % 4  
there is still an important quantum effect: the tunneling be- 
tween two energy-equivalent kink states. Accordingly, the 
dynamic structure factor SXX contains a resonance peak at the 
frequency R ,=2ro lh ,  where to is given by Eq. (15) for 
p e l  and by 

for p P  1 (see Ref. 26). However, it is extremely difficult to 
decide whether such a resonance peak can be observed, since 
the problem requires a detailed microscopic analysis of the 
various mechanisms of coherence destruction, including the 
mechanism of the interaction with nuclear spins." 

In the quantum case p ~ 2 4 4  the system is almost axi- 
symmetric and satisfies SXX= SYY = S1, where S' can be writ- 
ten as 

where E,= h o o ( s 2  + m2) '"+gpB~m are the dyon levels 
and&,= Zme-Em'T is the corresponding partition function; 
the quantum number m assumes the values 0 , t  1 ,f 2, . . . 
for integral S or f 112, 2312,. . . for half-odd S. This ex- 
pression describes a set of Gaussian peaks at the resonance 
frequencies a= ? a r n ,  am= (Em+ - E,)lh, with a disper- 
sion quT each. The envelope of this system of peaks consti- 
tutes the central peak with an approximately Gaussian shape 
and a dispersion Tn=wT,  where w ~ = w ~ m  has the 
meaning of the root-mean-square thermal frequency of pre- 
cession. 

For I m 1 < s the resonant frequencies flGl = wo( 1 m 1 
+ 112)lS-C yH, which provides the condition for resolving 
separate peaks, 

and the condition for observing the splitting of resonance 
lines caused by an external field, 

According to Ref. 18, in the one-dimensional antiferro- 
magnet CsMnI,, S =  512, J =  I98 GHz, and D ,ED'-- 1.07 
GHz, so that estimates yield lno=28 GHz. Such frequencies 
are more likely to be accessible in EPR experiments than in 
neutron scattering experiments (note, however, that transi- 
tions with Q =0 can be observed only because of the pres- 
ence of the correlator (mimi), with the result that the inten- 
sity of such transitions is low; the EPR linewidth is 
determined not by the spread in the dynamical parameters, as 
it is in the dynamic structure factor, but by relaxation mecha- 
nisms, not considered in this paper). Neutron scattering ex- 
periments have a low resolution and can be used, at the best, 
to detect the envelope central peak with a halfwidth 
ITiL= w,. independent of the wave vector (in contrast to the 
ordinary central peak with I'il=quT). 

4. CONCLUDING REMARKS 

Thus, using the example of the simplest model of a 
nearly easy-axis antiferromagnetic with a rhombic anisot- 
ropy, we have studied, in the limit of an asymptotic large 
spin S, the dynamics of the internal degrees of freedom of 
topological solitons (kinks) in one-dimensional antiferro- 
magnets. Note that the rhombic nature of the anisotropy is 
not important and was chosen solely to simplify analysis. 
Indeed, in the case of higher-order symmetries (tetragonal, 
hexagonal, etc.) we would have a potential with a large num- 
ber of minima in (12) instead of a two-well potential, tunnel- 
ing calculations that are more complicated, and different se- 
lection rules in S. 

The specific features of the antiferromagnet equations of 
motion lead to a situation in which the kinks are the light 
particles, their effective mass being only S times larger than 
the effective magnon mass (in contrast to ferromagnets, 
where this ratio is proportional to dma., with H e  and 
H ,  the exchange and anisotropy fields). We found that be- 
cause of this the internal kink dynamics is of an essentially 
quantum nature even in the classical case of fairly large spin 
(S2512). Quantum coherence effects lead to a structure of 
the internal modes spectrum that strongly depends on 
whether S is integral or half-odd. ' f ie  presence of an external 
magnetic field may give rise to complicated effects. In the 
simplest case of a purely easy-axis antiferromagnet such a 
field only splits the spectrum, thus lifting the degeneracy in 
the z-projection of the total spin. Generally, however, the 
field mixes the internal dynamics and the translational mode 
of soliton motion. 

In addition to drastically changing the thermodynamics 
of the soliton gas, the presence of internal degrees of free- 
dom in solitons leads to the possibility of observing a reso- 
nance involving transition between internal levels, say by 
EPR or by neutron spectroscopy techniques. We have made 
numerical estimates of the resonant frequencies for the anti- 
ferromagnet CsMn13, which proved to be a good realization 
of a quasi-one-dimensional easy-axis spin-512 Heisenberg 
antiferromagnet. 
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