
The phase structure of spherical Pspin glass for large values of P 
D. B. Saakyan 

Erevan Physics Institute, 375036 Erevan, Republic of Armenia; Joint Institute for Nuclear Research, 
141980 Dubna, Moscow Region, Russia 
(Submitted 10 March 1996) 
Zh. ~ k s ~ .  Teor. Fiz. 110, 2175-2182 (December 1996) 

The limit P + m  in the spherical P-spin glass model is examined. The possibility of storing 
information in the ferromagnetic vacuum of the model is established, and the limit of the noise 
strength at which the ferromagnetic phase still exists is calculated. O 1996 American 
Institute of Physics. [S 1063-7761 (96)01912-91 

1. INTRODUCTION 

The Derrida model' is the simplest example of spin 
glass. The model can be solved exactly even in the first order 
of replica symmetry breaking.' Therefore, it is possible that 
the model exhibits a unique property, i.e., it enables writing 
information in the optimum coding for discrete cou- 
pling constants. The system's ability to store information is 
related to the ferromagnetic phase. This poses the problem of 
establishing the phase structure of the model and the condi- 
tions under which the ferromagnetic phase can exist. This 
explains the interest in the phase diagram of the spherical 
model. The problem, of course, is important by itself, since 
during recent years the spherical model has been thoroughly 
studied. First we discuss the known results for discrete spins, 
and then proceed with the case of continuous spins. 

The constants J!, , ., i p  of the model of N spins a; are . . 
selected so that the vacuum configuration of the Hamiltonian 
H(a)  is fixed: 

tion (a&;)- 1. The inequality (4) derived as the condition 
for the existence of the ferromagnetic phase of model (1) and 
(2), in the limit P -+a  it coincides with the Shannon inequal- 
ity in information theory. Only the Derrida Hamiltonian (in 
the statistical-physics approach) makes it possible to saturate 
this inequality to an equality. For any other choice of 
H(a )  we need a number of constants that is larger than 
a N  in (3) for the ferromagnetic phase with a total magneti- 
zation (ai.$;)- 1 to exist. 

Can a similar Hamiltonian be written for continuous 
spins? Suppose that we have N spins ai restricted by the 
condition 

The same condition holds for the 5;. We again take the 
Hamiltonian (1) and (2). If cf1 , , , i p  is chosen symmetric in 

the indices i, , for 1 S ia< N we obtain 

where c:, . . , i p  is the coupling matrix. It takes a unit value 
. . 

only for a single set ( i l  . . . ip) for each value of k, and is 
zero in all other cases. The spins a; and 5; assume the values 
+ 1. When we put 

all products in (2) yield + 1, so that the given point is the 
point of global minimum of H(a) .  

The above is trivial, of course. What is not trivial is that 
the configuration (3) remains (with a probability close to 
unity) a regular vacuum when noise is introduced into the 
constants ~f . . , ip. 

If each of the a N  constants J O  remains regular with a 
probability (1 + m)/2 and changes its sign with a probability 
(1 - m)/2, then (3) remains a regular vacuum4 so long as 

I+m l + m  1-m 1-m 
In- 2 +-ln-121112. 2 2 (4) 

So long as this inequality is met, at low temperature the 
system is in a ferromagnetic vacuum (3) with a magnetiza- 

This function attains its minimum when condition (3) is met. 
In the N%P% 1 limit this minimum is also a minimum of (1) 
in which P-plets with coinciding indices are forbidden. 

To find the analog of condition (4) for the case of con- 
tinuous spins we must establish the phase structure of spheri- 
cal P-glass and determine the condition for the existence of 
the ferromagnetic phase. This problem has been solved for 
P =  2 by Kosterlitz et a1.: who used the theory of random 
matrices. Here we are interested in large values of P ,  since 
only then does the magnetization tend to unity in case of 
nonzero noise and, as it occurs, the limit of optimum coding 
is reached. 

2. THE PARAMAGNETIC PHASE OF THE MODEL 

Let us examine spherical P-spin glass8-'0 with 
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where J o  is the ferromagnetic constant, and the frozen ran- 
dom constants J i l  , , , i p  describing the noise have a zero av- 

erage and a dispersion 

try is broken up to a subgroup of rank nil, we have 
qaa= 1 , gap= q  for a and P belonging to one block of rank 
m, ,  and qap=O otherwise. If we allow for (12), the expres- 
sion (9) becomes 

The ratio J o l J  is the analog of ni in (4). Calculating the 
partition function Zn by a replica method similar to that used 
in Ref. 9, we get 

Here we have employed the fact that a block of a matrix with 
(m elements has nz - 1 eigenvalues equal to l -q  and 
one eigenvalue equal to 1 - q + m 19. Taking the derivatives 
with respect to m ,  and q yields 

where 

This system can be reduced to a more convenient form: 

f 

Here B is the reciprocal temperature, x ,  is the statistical- 
physics (spin) variables, and q ,  is an order parameter. The 
last two terms on the right-hand side of Eq. (10) result from 
Gaussian integrals. In (9), ma= (x,) and qap=(xaxp) ,  and 
t ,  and Lap are the corresponding conjugate factors. 

The normalization condition yields q,,= I .  Integrating 
with respect to x ,  and t,, we arrive at the following expres- 
sion: 

We start with the B 4 m  limit for P finite. By introduc- 
ing the substitution 

we can reduce the system (16) in the leading approximation 
to 

P B ~ J ~  1 

4 2 E 2 ( 1 + ~ ) '  I-= 
Taking the derivative of this expression with respect to 
A a p ,  we get 

qap=mamp-{-~- ' )ap.  (12) 

Finding x from (18), we get 

At high temperatures the model is in the paramagnetic phase, 
where m,=O and qa,p=O. From (1 1) we easily obtain in a 
manner similar to Ref. 9 

The expression for the free energy in this limit has the form 

Now let us examine the limit P+w. The system (16) The first term is related to the integration measure and is 
repeated in the spin-glass and ferromagnetic phases. becomes 

3. THE SPIN-GLASS PHASE 

Let us examine the case of single breaking of replica 
symmetry in the spin-glass phase. When the replica symme- 
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and the solution of the system (21) can be written as In det{- Amp}= In(Al -A,)'"- ')[h,,+(n- l)A 

2 I 

In P  P B J '  

For the free energy we have the following expression: 

For the free energy we have the following expression: 

B J J Z T ~ P  1 PBJ I 
G =  

2 
-- In- + - ( I  + l n  2 ~ ) .  (24) 

2 JZ 2 

The temperature of transition from the spin-glass phase to 
the paramagnetic phase can be obtained by comparing (24) 
and (13): 

Calculating the derivatives with respect to A. and A I yields 

This expression was obtained without allowing for Jo .  The 
presence of a nonzero Jo leads to the appearance of 
paramagnet-spin-glass and ferromagnet-spin-glass transi- 
tion lines. This case is examined below. 

From Eqs. (31), (32), (35), and (36) we can derive the fol- 
lowing pair of equations: 

4. THE FERROMAGNETIC PHASE 

In the limit P 4 w  we expect total magnetization in the 
ferromagnetic phase, i.e., 

m a  gap-I, (26) 

with the result that there can be no breaking of replica sym- 
metry in this case. Then in the n+O limit we find that 

Now we let P go to w .  We introduce the substitution 

1 - q =  E ,  m2= 1 - E X ,  € 4 0 .  (39) 

Then the system of equations (37) and (38) becomes 

Equation (12) implies that 

We are interested in the region B -  In P. We obtain 

What remains to be done is to calculate the hap ,  q a p ,  and 
In det{- lap). Let 

m,=m,  q,+p=q, Aam=Xa, A a + p = X ~  (28) 

For the A matrix we have the following representation: 

A=AoI+Al (A- I )= (Ao-A1) I+AIA,  (29) 

where I is the identity operator, and A is a matrix all of 
whose elements are equal to 1. For the matrix that is the 
inverse of A we have 

and 

This yields the following expression for the free energy: 

Now, comparing (44) and (24), we obtain two regions for the 
ferromagnetic phase: Equation (12) implies that 

Calculation of the determinant of - A m p  yields and 
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The solution (45) is sufficient for writing information (to the 
vacuum of the ferromagnetic phase). The multicritical point 
has the following coordinates: 

At this point it would be interesting to study the possibility 
of a Nishimori line. Apparently, direct use of the ideas and 
methods of Ref. 1 1  is impossible. But the idea of a resonance 
between a Gibbs distribution and a nonequilibrium distribu- 
tion of the coupling constants is too appealing to reject it 
from the start. 

The bounds (45) are the main result of this study. A 
similar expression has been obtained in the case of 
Q-colored spins with Potts interaction in the Derrida model, 
only with In Q instead of In P. However, the analogy is not 
complete, since in the Potts model for any Q at low tempera- 
tures we have total magnetization, while in our case we are 
forced to take P to infinity. 

What amount of information is contained in the vacuum 
state of N spins fixed to within 1/P? This quantity must be 
equal (to within 1/P because of the geometric factor) to 
N ln (UP). Since this coincides (see (45)) with the amount of 
information contained in the coupling constants, we again 
arrive at the optimal coding example. Thus, the situation 
differs from Ref. 7, where only partial magnetization is con- 
sidered and there is no optimum coding. It would be ex- 
tremely interesting to solve the "rarefied" variant of the 

model, where in the case of the Derrida model with continu- 
ous coupling constants there can be no optimum coding. 

It would also be interesting to study the dynamics of the 
system in the ferromagnetic phase. At large values of P the 
dynarnical temperature of the paramagnet-spin-glass transi- 
tion remains finite (in our case it tends to zero). Finally, a 
Hamiltonian of the form (1) can be written for character 
recognition. Here, possibly, the concept of distance in the 
character space is more physical than the Hamming gener- 
alization for multicolored spins (while in the attraction re- 
gion this concept is less physical). 
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