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The symnletry properties of fields reflected by uneven surfaces are determined. The application 
of these symmetry properties yields a theory of the reflection and scattering of waves by 
regularly and randomly nonuniform surfaces that does not employ the Born approximation. The 
investigations made it possible to determine the limits of applicability of the standard 
theories of wave scattering by rough surfaces based on different variants of the Born 
approximation of the distorted-wave theory. Principles are proposed for developing algorithms for 
reconstructing from the angular reflection and scattering spectra the surface relief and the 
static characteristics of the protuberances. O 1996 American Institute of Physics. 
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1. INTRODUCTION 

The surfaces of real bodies and the interfaces between 
media are, as a rule, always uneven. The reflection of waves 
from an uneven surface leads to a number of new phenomena 
which do not occur in the case of an ideally smooth inter- 
face. These include the suppression of specular reflection in 
the visible' and x-ray2 ranges, diffuse scattering of waves, 
anomalous reflection effects (Wood's anomaly: Yoneda 
anomalous reflection: backscattering5) and a host of other 
phenomena. The characteristic scale of surface protuberances 
is the product ~ , h  of the component of the wave vector of 
the incident wave in the direction normal to the interface and 
the rms height of the protuberances. Therefore, surfaces 
which are ideally smooth for optical radiation can be very 
rough for x-rays. Wave reflection phenomena at nonuniform 
surfaces are used to control the angular spectrum and polar- 
ization of reflected beams; they strongly influence the char- 
acter of the interaction of intense radiation with solid sur- 
faces, which results in structure formation on the surface or 
generation of harmonics of the radiation, and they form the 
basis of methods of surface spectroscopy based on the angu- 
lar spectrum of the reflected radiation. For this reason, the 
problem of determining the fields reflected by regularly and 
randomly nonuniform surfaces is of interest from the stand- 
point of general physics and for the development of methods 
in the theory of waves, surface spectroscopy, the theory of 
the interaction of intense laser radiation with matter, the 
theory of solids (heterostructures, multilayered film struc- 
tures), statistical optics, radio physics, and in other fields. 

The methods for calculating the angular spectra of waves 
reflected by rough surfaces can be divided into two basic 

the geometric-optics approximation for large- 
scale nonuniformities and perturbation theory for small-scale 
nonuniformities. In the perturbation theory, first an average 
is performed over the protuberances and the concept of a 
transitional layer, describing either a smooth variation of the 
polarizability from zero in vacuum up to the value in the 
volume of the material, is introduced or a film model, in 
which the region of the protuberances is replaced by a film 

with an effective value of the polarizability, is used. The 
parameters of the transitional layer are chosen so as to obtain 
the best agreement with the experimental angular specular- 
reflection spectra. Fluctuations of the permittivity, i.e., the 
difference between its real and average values, are regarded 
as a perturbation which resulting in diffuse scattering. This 
scheme describes quite well the angular diffuse-scattering 
spectra for  he 1, when diffuse scattering is weak. How- 
ever, as the parameter ~ , h  increases, the integrated intensity 
of diffuse scattering increases above the intensity of the in- 
cident wave even in first-order perturbation theory. 

In the present paper a theory of the reflection and scat- 
tering of x-rays by nonuniform surfaces which is not based 
on perturbation theory is proposed. The symmetry properties 
of the fields reflected by an arbitrary rough surface are de- 
termined. These symmetry properties made it possible to ob- 
tain exact integral equations relating the angular spectra of 
the reflected ant1 refracted waves to the angular spectra of the 
incident wave for arbitrary scalar fields. In the case of one- 
dimensional irregularities of the surface relief the theory de- 
veloped is also applicable to vector fields. This approach has 
a number of advantages over different variants of the pertur- 
bation theory. First, the law of conservation of the energy 
flux holds. This means that the total energy flux of the waves 
scattered by both sides of an interface in nonabsorbing media 
equals the energy flux of the incident wave. Second, the 
formulas obtained describe simultaneously both diffuse scat- 
tering and broadening of the specularly reflected compo- 
nents, and since in this method the specularly reflected and 
diffusely scattered components are described in different or- 
ders of perturbation theory, the characteristic restrictions in 
the distorted-wave method on the correlation length of the 
protuberances are thereby removed. Third, the formulas pro- 
posed make it possible to develop algorithms for reconstruct- 
ing the surface profile in the case of a regularly nonuniform 
surface or the distribution function of the height and gradient 
of the protuberances in the case of a randomly nonuniform 
surface. 
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2. BOUNDARY CONDITIONS 

The Helmholtz equation describing the propagation of 
radiation in a medium with permittivity ~ ( r )  for scalar fields 
has the form 

AE(r )+  ~ ~ & ( r ) ~ ( r ) = o .  ( 1 )  

Let us consider first the reflection from a layer with per- 
mittivity c 2  in a medium with permittivity & ,  . We shall 
assume that the equations of the top and bottom interfaces 
5 ( p )  and ~ ( p ) ,  respectively, are smooth functions. Then the 
boundary conditions for Eq. (I)  will be that the fields and 
their normal derivatives are continuous. We denote waves 
with positive projections of the wave vector on the z axis by 
Eo(r)  in medium 1 and E l ( r )  in medium 2  and waves with 
negative projections by Er(r )  and E 2 ( r ) ,  respectively. We 
denote by E,(r)  the wave passing through the layer. Then the 
boundary conditions on the top boundary t ( p )  and bottom 
boundary ~ ( p )  of the layer have the form 

[EO(r)+Er(r)lIz=*(p)= [El(r)+E2(r) lIz=((p)  9 

n$'[Eo(r) +Er(r)l l ,=&,)= ngVIE1(r) 

+E2(r)llz=*(p) 3 ( 2 4  

[ ~ , ( r ) + ~ z ( ~ ) l l z = , ( ~ ) = ~ , ( r ) l Z = , ( ~ )  ' 

n,V[El(r)+E2(~)llz=,(p)=~,VEl(r)lz=,(p). (2b) 

Here ny and n ,  are the normals to the interfaces at the point 
p. So, ng has the form 

where 5,=~35/dx. We expand the amplitudes of the fields 
E,(r)  in a two-dimensional Fourier integral of the following 
form: 

(4) 

where To(k l l )  = JGf, r 7 ( k l l )  = - Jm, and so 
on. After the expansions (4) are substituted into the boundary 
conditions (2) ,  the following wave functions appear in them: 

~kll(~'5)=ex~[irl(k11)5+ikllP1, 

~7kll(~,5)=ex~[-ir2(k11)5+ikllpl, (5 )  

where T, (k l l )  = and S2(k l , )  = d-;. With 
the notations (5) ,  the boundary conditions (2 )  can be written 
in the form 

3. SYMMETRY PROPERTIES OF THE WAVE FUNCTIONS 

The boundary conditions (6) contain the product of the 
wave functions (5) and the cofactors ~ , ( k l l ) - t k l l V ~ .  We 
shall investigate the symmetry properties of matrix elements 
of the form Idp i"(  P, 5)  [ r,(kll) * ~ I I V  5 1 ~ k ~ , (  P, 0 .  Integrat- 
ing by parts according to the formula 

+m +m /-+mm u w ' d x = u w )  - W  - u'wdx,  

it is easy to show that the matrix elements possess the fol- 
lowing symmetry properties: 
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In the case when the equation for the interface < ( p )  satisfies 
the condition 

using the definition of the delta function it is easy to show 
that 

and therefore in this case we can set all C,=O. Using the 
properties (7), we can obtain from the boundary conditions 
(6) integral equations relating the Fourier components of the 
scattered and incident fields, the refracted and incident fields, 
and so on. 

The equations (7) are invariant with respect to the sub- 
stitutions kll+ - v and v~ - kll . This invariance is an analog 
of the reciprocity theorem9 and makes it possible to relate the 
angular spectra of the waves reflected and refracted by an 
uneven interface. 

The physical meaning of the symmetry relations (7) is 
most sinlply explained for the case of a one-dimensional 
relief. Let &=x  tan 0, i.e., the interface makes an angle 0 
with the x axis of the (x,z) coordinate system. In this case 
the first equation in Eq. (7) assumes the form 

[ ~ , ( k l l ) = k l l  tan O]S(kll+rI(kll)tan 0- v + r I ( v ) t a n  8)  

= [ T l ( v ) - v  tan 8]S(kll+r,(kll) tan 0 -v  

+Fl(v) tan  8). (9) 

We now introduce the coordinate system (x', z') which is 
associated with the interface: 

x 1 = x c o s 8 + z  s in0 ,  z r = z c o s O - x  sin 0. 

It is easy to see that the equality of the tangential 

k,' = kll cos 8+ rI (k l l )s in  0=  v cos 8- r l (  v)sin 0=  v' 

and normal 

I ' ~ ( k l l ) = ~ , ( k l l ) c o s  O=kll sin 0=  -(-I ' I(v)cos 0 

+ v  sin O)=ITr(v)l 

components of the wave vectors of the incident and reflected 
waves relative to the interface x'  follows from Eq. (9) (see 
Fig. I). Therefore refection from an ideal interface 
5 = x  tan 0 is governed by the laws of specular reflection. 

FIG. 1. For the interpretation of Eqs. (7). Here x =  {v, - I? ,(v)). 

4. REFLECTION FROM A REGULARLY NONUNIFORM 
SURFACE 

We consider first reflection from a semi-infinite layer of 
material 2, i.e. from one interface of the materials with per- 
mittivities & and c2 .  NOW let El denote the wave in layer 2. 
Then the boundary conditions assume the form 

(10) 

Using the properties (7) and (8) it is easy to obtain from 
Eq. (10) 

+ ~ ) V O ~ ~ , , ( P , S ) ,  ( I  la) 

The equations ( I  la) and ( I  lb) are the desired integral 
equations relating the Fourier spectra of the reflected and 
refracted waves with the Fourier spectrum of the incident 
wave. It is easy to see that in the case of a smooth surface 
( ( p )  = 0 the amplitudes of the reflected and refracted waves 
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5. PROPERTIES OF THE ANGULAR REFLECTION SPECTRA are related to the amplitude of the incident wave by the 
Fresnel reflection coefficient r and refraction coefficient t :  

The gradients V t (p )  of the relief take account of the 
local slopes of the interface, and factors of the form 
e~p[i(I'(k~~)+I'~(v))t(p)] take account of the local phase 
increments on reflection. 

The equations (1 la and b) can be further simplified. In- 
tegrating by parts, as done in the derivation of the relations 
(7), it is easy to obtain from Eqs. (1 la  and b) 

x ~P~xP[~ (~ '~ (~ I I ) - I . I ( v ) )HP)+~ (~ I -  VIP]. 

( 13b) 
The equation (13a) is obtained directly from Eq. (1 la) 

by integration by parts. In deriving Eq. (13b) we employed 
the following device: 

where 

We divide the region of integration K into the region 
k(v) near the point kll= v and the region K ,  = K -  k(v). In 
the region K I the integral (14) equals zero. Using the expan- 
sion r (k l l )  = r ( v )  - v. s/T(v), where s=  kll- v, the integral 
(14) can be put into the form 

The methods of x-ray spectroscopy of surfaces and in- 
terfaces of multilayer nanostructures have undergone intense 
development in the last few years.'0s" X-Rays with a wave- 
length of the order of 1 A make it possible to determine the 
statistical characteristics of protuberances whose characteris- 
tic height is of the order of several angstroms. For this rea- 
son, when we speak about the properties of the angular re- 
flection spectra, we shall have in mind x-rays. 

In the case ( r  - r 2 ) 5 4  1 and an incident plane wave, 
EO(kll) = EoS(kll - q,),  Eq. (13a) assumes the form 

For ( q I -  v)qIt-=Sr1(qI), in turn, we obtain from the 
last expression 

Er(v) ~ I ( K I I ) + ~ ~ ( v )  
dv- =I Eo r , ( v ) - r 2 ( v )  

exp[i(v-q1)~1. (16) 

Therefore, with these approximations, the angular spec- 
trum of the reflected wave makes it possible to reconstruct 
the surface relief. 

The problem of reconstructing the surface relief from the 
angular reflection spectrum can also be solved in the general 
case. The equation (13a) can be rewritten as 

where 

For known Er(kll) and Eo(kll) the system of equations 
(17) is to be solved for &(v- k,,). The number of data in the 
angular reflection spectrum determines the number of Fou- 
rier components of the relief harmonics that can be deter- 
mined. The number N of relief harmonics that can be recon- 
structed is determined by the number of values of the angle 
of incidence. For example, if only the Fourier components 
from the relief t ( v )=  t , (v )  are used, then they can be re- 
constructed from the data on the angular scattering spectrum 
at one angle of incidence: 
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In the case of a sufficiently smooth relief the equations 
(13a and b) can be reduced to Fredholm integral equations of 
the second kind. Indeed, using in Eqs. (13a and b) the iden- 
tity 

1 I) ,  

we obtain from Eq. (13a) 

+ J dkl1F+(k11, v)Eo(kll). 

where 

- 11expCiq1- 4 ~ 1 ,  

~ ~ ( k l l ) = ~ l ( k l l ) + . ~ 2 ( v ) .  

The equation (18) can be solved iteratively:12 

Xexp[i(l1- 4 ~ 1 .  (20) 

In the last expression we introduced the notation 

A number of conclusions about the angular reflection 
spectrum for x-rays can be drawn on the basis of the struc- 
ture of the expressions (19) and (20). We introduce the scat- 
tering angle @,= cos-'(vl~). It follows from the last expres- 
sion that I r ,  (kll , v)12= 1, when the scattering angle is less 
than the critical angle for total external reflection @,< @,, 
and Irl(kll ,v)I2-4 1 for 8,. On the other hand, the re- 
flection coefficient r(kll) depends only on the angle of inci- 
dence @o=cos-'(klll~) and satisfies similar properties: 

lr(k11)12-1 for Bo<8, and lr(k11)(24 1 for 00>8,. There- 
fore, for a large angle of incidence and a small scattering 
angle, the term F+(kl l  ,v) makes the main contribution to 
F(kll ,v), and for a small angle of incidence and a large 
scattering angle the term F - (kll , v) makes the main contri- 
bution. In the region of total external reflection the amplitude 
of the scattered field is sensitive to the phase of the coeffi- 
cients r (kll , v) and r(kll); this can lead to oscillations in the 
angular spectrum of the intensity of the reflected waves. 
These features of the angular spectra could be helpful in 
developing methods for reconstructing the surface profile 
from the angular reflection spectra of x-rays. 

6. REFLECTION FROM A FLAT LAYER 

Recurrence methods are very effective for calculating 
the angular reflection spectra of multilayer structures. In 
principle, a recurrence procedure can be constructed on the 
basis of Eqs. (1 l a  and b). However, it is more convenient to 
construct the procedure on the basis of equations for the 
waves reflected and refracted by a layer of finite thickness. 

We introduce the notation 

and so on. From the boundary conditions (6) and the sym- 
metry properties of the wave functions (7) for a flat layer, it 
is easy to obtain the following integral equations relating the 
amplitudes of the reflected and refracted waves to the ampli- 
tude of the incident wave: 

Recurrence methods based on Eqs. (21) make it possible 
to calculate the angular reflection spectra of arbitrary 
multilayer structures. 

7. SCATTERING BY A ROUGH SURFACE 

Now let c ( p )  be a random function. If the surface pro- 
tuberances are statistically homogeneous, then the correla- 
tion function has the form 
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where a is the rms height of the protuberances. The integral 
equation relating the angular spectrum of the scattered wave 
to the angular spectrum of the incident wave has the form 
(1 la). Squaring the absolute values of both parts of Eqs. 
( 1  la), we obtain for the statistically homogeneous protuber- 
ances 

where 

Here 

To determine KO and K, it is necessary to know the 
six-dimensional distribution function of w(  t ( p  ') , 5(p1'), 
(,(p1), t,(pr'), tY(p  '), tY(pr')). We shall assume that the 
distribution function is Gaussian: 

where a, = (x,) and a: = ((x, - a,)2). Calculating the aver- 
ages of the products of the function 6 and its derivatives, we 
obtain for the correlation matrix D,, 

2 
0 -Ry Yl2 x y; 

2 
Ry 0 x Yl2 y - R y y l  Y: 

where R,= dR(p)ldx, RXy = d2R(p)ldxdY, y:= - RXx(O), 
y;= - R ,,(O), and yt2= - R.ry(0). The averages of interest 
to us can be easily calculated with the aid of the character- 
istic function 

which for the distribution (24) has the form13 

Using the formula (26) and the correlation matrix (25), it 
is easy to obtain 

+ u 2 1 r + 1 2 ~ g s )  exp - (r :+rf2 1 [ "  

where a,  P = x ,  y .  
Integrating by parts, as discussed in Sec. 3, we can put 

Eq. (23) in the form 

x e ~ ~ [ u ~ 1 r - 1 ~ ~ ( ~ ) - i ( k ~ ~ - v ) - ~ ] .  (27) 

Equation (27) makes it possible to calculate the angular 
spectrum of the scattering intensity if the correlation function 
of the protuberances is known. 

8. PROPERTIES OF THE ANGULAR SCATTERING SPECTRA 

In the case ~~1I ' (~e 1, when only the first two terms 
need be retained in the expansion of the exponential in Eq. 
(27), we obtain 

I ~ r ( v ) l ~ - I ~ o ( v ) l ~ I ~ ~ ) I ~  
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where 

We note that the expression for the reflection coefficient 
F(v) is identical to the expression obtained previously in 
Ref. 14 and later generalized in Ref. 15. One can see from 
Eq. (28) that this expression is only the zeroth approximation 
in the series expansion in the small parameter u21rI2. We 
shall now determine the difference of the angular scattering 
spectrum calculated according to the exact formula (27) and 
by the distorted-wave method. 

The equation (27) can be put in the form 

The equation (30) is a Fredholm equation of the second 
kind whose solution can be obtained by iteration: 

where 

- v)Pl{lr,(kIl ,v)12 e x ~ [ ~ ~ l l ' + ( k l l ) I ~ ~ ( ~ ) l  

-lF(k11)I2 e ~ ~ [ ~ ~ l ~ - ( k l l ) l ~ ~ ( p ) l 1 .  (33) 

In Eq. (33) we introduce the variable 

F(kll , v ) = r l ( k l l  , v ) e x ~ [ - 2 ~ ~ ~ ~ ( k ~ ~ ) 1 ' ~ ( ~ ) 1  

We note that F( v) = 6 ( v, v). Introducing the scattering 
angle 6,=cos-'(VIK) and the angle of incidence 
O o = ~ o s - l ( k l l l ~ )  by analogy to Sec. 5, we can easily show 
that T,(kll), F,(kll ,v), and F(kll) have the following proper- 
ties: 

1 + 1 1 2 - 1 - 1 1 1 2  I l ( k l l  ,v)I2- 1 for 0,< e,, 

l ~ ( k ~ ~ ) ( ~ - l  for 80<8, and l ~ ( k ~ ~ ) / ~ 4 1  

for Bo> 0, 

It follows from Eq. (33) that for go< 8, we have 
G(v,v)-0. Therefore the expression (29) determines the 
specular reflection coefficient to a good degree of accuracy. 
For go> 8, , as follows from Eq. (31), the reflection coeffi- 
cient can differ substantially from the formula (29). 

The factor f - (kll)l f - ( v) determines the angular depen- 
dence of the function G(kll ,v) on the scattering angle. It has 
the form 

If medium 1 is a vacuum, we have 

and so this cofactor as a function of the wave vector v pos- 
sesses a maximum at 0,- 0,. For Oo< 8, this maximum 
becomes sharper, since the term in the braces in Eq. (3) 
vanishes for 0,< 0, and is different from zero for 0,> 0,. 
Therefore, the angular width of the maximum of the Yoneda 
anomalous scattering4 depends on the angle of incidence. For 

0, the maximum is narrow and for go> 8, the maxi- 
mum of the Yoneda anomalous scattering broadens and is 
mainly determined by the function (35). 

For a wide class of correlation functions, for example, of 
the form R(p) = e ~ ~ [ - ( ~ l l ) ~ ~ ] ,  the following asymptotic for- 
mula is found to be helpful: 

e A R ( ~ ) -  1 +(eA- l ) R m .  (36) 

In Figs. 2a, b, and c the solid curve is a plot of the 
function 

and the dashed curve represents the function 

f2(p) = e-% ( I - e-")exp[- \I1+A2(p1l)~"] 

where A = 1 and h =0.5 (a), 0.75 (b), and 1 (c). Figure 2d 
displays the difference A f (p )  = f ,  (p) -fz(p) of the func- 
tions f ( p )  and f2 (p )  for h = I and A = 0. I (I), 1 (2) and 10 
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(3) .  As one can see from Fig. 2d, the maximum deviation of The correlation function of the protuberances can be re- 
the function f 2 ( p )  from the function f , ( ~ )  is less than 3%. constructed from the angular scattering spectra. Expanding 
Using the formula (36) ,  it is easy to estimate the angular in a series the exponential of the correlation function in Eq. 
width of the nonspecular scattering spectrum. Thus, for a (27). we obtain 

1.0" 

0.8 - 

0.6 - 

0.4 - 

- - 
Gaussian distribution function R ( p )  = e ~ ~ [ - ( ~ l l ) ~ ]  the func- 
tions G ,  (k l l  , v) have the form IEr(v)12- I ~ o ( v ) / ~ 1 f l v ) 1 ~  

0.2 

where 

I I 7 0.2 I I I 

Therefore, for u 2 1 T 1 2 ~  1 the angular width of the non- 
specular scattering spectrum is determined by the longitudi- 
nal correlation length of the protuberances. For u21r12> 1, 
when the phase increment on the transitional layer of the 
interphase becomes equal to 27r, the angular width of the 
nonspecular scattering spectrum starts to depend on the char- 
acteristic slope angle crll of the protuberances. 

0 i 2 3 0 1 2 3 
pll PI1 

Af 
FIG. 2. For the interpretation of Eq. (36). 

4. f2 

Xexp[-i(kll- v ) p ] .  (39)  

Replacing the integral over kll  in Eq. (39)  by a sum with 
a step equal to the step of the experimental data in the angu- 
lar scattering spectrum, we obtain a system of algebraic 
equations for R n ( k l l - v ) .  The accuracy with which 
R,,(kl l -  u)  is determined and the number of harmonics of the 
relief depend on the size of the array of experimental data. 

As noted above, the formula (36) ,  which greatly simpli- 
fies the problem of reconstructing the correlation function, 
especially if ( r 2 1 1 ' t / 2 <  1, can be used for a wide class of 
correlation functions. In this case, we obtain from Eq. (27), 
using Eq. (36) ,  
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For an incident plane wave I Eo(kll) 1 = I0~(kl l  - qI) and 
[I'- 12< 1r+ l 2  the formula (39) simplifies substantially and 
assumes the form 

We can see that in this case the correlation function of 
the protuberances is determined from the measured angular 
dependences of the scattering intensity by means of a two- 
dimensional Fourier transform. 

9. CONCLUSIONS 

The incident, reflected, and transmitted wave fields can 
be represented as expansions in terms of the wave functions 
(5). These wave functions satisfy the symmetry properties 
(7), which are the analog of the reciprocity theorem for the 
propagation of electromagnetic radiation in an inhomoge- 
neous medium? The indicated symmetry properties make it 
possible to obtain integral equations relating the angular 
spectra of the reflected and refracted waves with the angular 
spectrum of the incident wave. A substantial difference of 
the obtained equations from other perturbation theory equa- 
tions the (distorted-wave method) is that here the law of 
conservation of the energy flux holds. In the case when the 
interface is sufficiently smooth, these integral equations can 
be reduced to Fredholm integral equations of the second 

kind, which can be solved by the method of iterations. The 
rate of convergence of the iteration series depends on the 
form of the two-dimensional Fourier spectrum of the inter- 
face and increases with the angles of incidence and scatter- 
ing. 

The investigations performed made it possible to deter- 
mine the limits of applicability of the standard expressions, 
which are widely used for determining the statistical charac- 
teristics of protuberances, for the reflection coefficients of 
rough surfaces. Algorithms were developed for reconstruct- 
ing the surface profile from the angular reflection spectra and 
the correlation functions of the protuberances from the angu- 
lar scattering spectra. In contrast to the distorted-wave 
theory, the expressions which we have obtained do not con- 
tain any limits on the correlation length and the amplitude of 
the protuberances. 
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