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Two-dimensional electron billiards in the form of a simple square lattice of specularly scattering 
disks is investigated, where these disks are antidots in a magnetic field. The problem is 
developed into a study of "pinned" (not undergoing collisions) and collisional trajectories. The 
fraction of pinned trajectories is found analytically via computer simulation. The dynamics 
of the electrons on the collisional trajectories is investigated from the viewpoint of the theory of 
dynamical chaos. The fractal structure of the collisional trajectories in phase space is 
examined in the vicinity of the fixed points of the nonlinear map corresponding to stable regular 
motion, in particular to escape along a series of antidots, with this escape arising near 
isolated values of the magnetic field. The magnetic-field dependence of the components of the 
conductivity tensor is obtained with the help of computer simulation. It is shown 
analytically that geometrical resonances of the magnetoresistance are determined mainly by the 
escaping and near-lying trajectories leading to divergence of the kinetic coefficients in an 
ideal lattice. It is shown that in the limit of a weak magnetic field the main role in the transport 
is played by electrons moving at small angles with respect to the crystallographic directions. 
They give rise to the divergence of the conductivity in the absence of a magnetic field and the 
anomalous sensitivity of the kinetic coefficients to a magnetic field until the appearance of 
a negative Hall effect. O 1996 American Institute of Physics. [S 1063-7761(96)01012-81 

1. INTRODUCTION 

Advances in technology have made it possible to create 
objects with characteristic dimensions approaching the 
wavelength of the electron. These include quantum dots, an- 
tidots, periodic lattices, microcontacts, rings, and wires. The 
study of these objects, which is undergoing vigorous devel- 
opment at the present time, has been stimulated by both ap- 
plied and scientific problems. On the one hand, these objects 
can be considered as systems with artificial atoms, mol- 
ecules, and nuclei, or as crystalline and non-crystalline solid 
bodies, thereby making it possible to model quantum phe- 
nomena taking place in natural systems. On the other hand, 
nanostructurization is necessary to reduce the dimensions of 
semiconductor devices and shorten their switching times. 

Periodic antidot lattices were originally created in order 
to observe purely quantum effects, in particular the Hofs- 
tadter butterfly which describes the structure of the energy 
bands of a periodic lattice in a magnetic field, and the 
Aharonov-Bohm effect. Nevertheless, the dimensions of 
most of these structures exceed the electron wavelength, and 
therefore the first effect to show up in them is a purely clas- 
sical phenomenon-geometric resonances of the 
magnetoresistance,'-3 arising when the dimensions of the lat- 
tice are commensurate with the cyclotron diameter. The 
sharpness of these resonances is enhanced because the mean 
free path in these structures significantly exceeds the lattice 
period and the motion of the electron is ballistic. 

The first explanation of geometric resonances, proposed 
in Ref. 2, was based on the appearance of pinned orbits 
which do not collide with the antidots. It only qualitatively 
agrees with the observed magnetoresistance: the large ampli- 
tude of the modulations of the magnetoresistance cannot be 

explained with such a model. The presence of pinned trajec- 
tories in a rigid potential with partial softening leads to the 
appearance of islands of stable, localized m ~ t i o n . ~  Fleis- 
chmann et have pointed out the important role of stable 
delocalized ("escaping") trajectories and adjacent trajecto- 
ries. 

In the potential of a periodic lattice the variables describ- 
ing the motion of the electron do not separate, as a rule. As a 
result, the motion of the electrons is quite complicated. Such 
problems are examined in the theory of dynamical chaos. 

The present paper is dedicated to a systematic theoretical 
study and computer simulation of the chaotic classical dy- 
namics of electrons in a periodic antidot lattice located in a 
magnetic field. The aim of this paper is to investigate the 
nature of the geometric resonances in the magnetic-field de- 
pendence of the kinetic coefficients by comparing the results 
of their computer simulation and analytical estimates. 

We will use the model of a billiard table consisting of 
circular specular-scatterers located at the sites of a simple 
square lattice. It was on just such models that Sinai et al.' 
based their well-known work. 

In real heterostructures the free surface of a semiconduc- 
tor creates for the electrons a repulsive bending of the bands 
near the surface. In thermal equilibrium the magnitude of 
this bending of the bands at the surface of the semiconductor 
is on the order of an electron volt, while the Fermi energy is 
on the order of eV. In addition, the geometric dimen- 
sion of the antidots is usually several thousand Angstroms, 
which exceeds the thickness of the depletion layer, the De- 
bye radius in a two-dimensional gas, which coincides with 
the Bohr radius, and the electron wavelength. Therefore, to a 
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FIG. 1 .  Examples of different possible electron trajectories in a antidot 
square lattice in a magnetic field. 

first approximation the potential in which the electron moves 
may be considered as the rigid boundary of the antidots. 

In such a geometric formulation there is one character- 
istic dinlensionless parameter-the ratio of the antidot radius 
a to the lattice constant d.  We will exanline the limit 
a i d 4  1 in detail, bearing in mind that it is also applicable to 
the case d-2a'a. Only the case d - 2 a + a ,  in which the 
system consists of narrow necks connecting massive open 
spaces, will remain beyond the scope of our treatment. 

In billiard models all types of electron trajectories in the 
presence of a magnetic field can be divided into two inde- 
pendent groups. Figure 1 depicts some typical trajectories 
obtained by computer simulation. We may tentatively distin- 
guish these trajectories as follows: 7-10-pinned; 5 anti 6 - 
rosettes about one or several antidots; I-ordinary diffusion; 
with trajectories 2-4 corresponding to partially randomized 
but directed motion-the escaping trajectories. 

Section I1 investigates pinned and escaping trajectories, 
which determine the properties of the kinetic coefficients. 
We will make use of statistical arguments to find the mean 
fraction of the pinned trajectories and its fluctuations for 
a l r l 4  1 in the limit of large cyclotron radius, r,%-d. 

The collisional trajectories will be investigated by map- 
ping the space of collision angles onto itself. This mapping 
leads to a fractal structure of phase space. Depending on the 
initial conditions, the electrons participate in either quasi- 
regular or chaotic motion. Near the fixed points of the map 
of first and higher orders nonlinear resonances arise- 
regions of localized or escaping motion. 

Motion near the fixed points corresponding to type-2 es- 
cape in Fig. 1, with which the geometric resonances of the 
kinetic coefficients are mainly connected, is investigated in 
detail. Computer simulation reveals the fine structure of the 

dependence of the fraction of escaping and circumnavigating 
trajectories on the magnetic field for first-order resonances. 
Analytical estimates are made of the number of higher-order 
resonances and their phase area. The ratio of the number of 
higher-order resonances corresponding to escape and local- 
ization is found. The local and global symmetries of phase 
space are investigated. 

Section 111 examines the components of the conductivity 
tensor in a magnetic field. 

In moderate and strong magnetic fields we use the per- 
colation approach for the analytical estimates of the mean 
conductivity. This approach replaces the periodic lattice by a 
disordered lattice. The presence of escaping trajectories leads 
to a divergence of the kinetic coefficients in an ideal lattice 
which is bounded when impurity scattering is taken into ac- 
count. To find the contribution of the escaping trajectories to 
the conductivity, we use both the analytical and the simula- 
tion values of the fraction of these trajectories. 

The case of a weak magnetic field is examined in close 
detail. The main role in the transport process in this limit is 
played by electrons moving at small angles to the crystallo- 
graphic directions. They lead to a divergence of the conduc- 
tivity in the absence of a magnetic field. As a result, the 
kinetic coefficients acquire an anomalously strong depen- 
dence on the magnetic field. Another consequence of this is a 
change in sign of the Hall effect. Results of the computer 
simulation are presented for the components of the conduc- 
tivity and the magnetoresistance for different values of a l d  
and compared with results of the analytical approach. 

2. ELECTRON DYNAMICS AND STRUCTURE OF PHASE 
SPACE 

2.1. Pinned electron orbits 

Pinned orbits can lie between antidots or enclose Qne, 
two, four, or more antidots. Shadowing decreases the size of 
the existence region of such trajectories and hinders the for- 
mation of trajectories enclosing a large number of antidots. 
For example, the existence region for pinned trajectories en- 
closing one antidot is defined by the inequalities 
a < r,< d -  a .  In general, the existence conditions for pinned 
trajectories are prescribed by inequalities for the position of 
the center of the trajectory p = x + iy : if for all integers n and 
ni the condition 

is satisfied, then any orbit with such p and r ,  is pinned. 
Figure 2 plots the fraction of unpinned (collisional) tra- 

jectories f,= 1 - f, for different values of a i d  as a function 
of r,,  obtained by computer simulation. Let us estimate the 
mean fraction of pinned trajectories f,, analytically. Toward 
this end, we neglect the regularity of the arrangement of the 
antidots. The probability of the appearance of pinned trajec- 
tories of length 2 r r ,  is equal to the probability that the 
electron will not collide with antidots having total scattering 
cross section 2a:  exp(-2,rrr,/I), where I=  d2/2a is the mean 
free path. As can be seen from Fig. 2, this estimate corre- 
sponds well to the average trend of the curve f, (r ,) .  
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FIG. 2. Fraction of  collisional electron trajectories f, as a function of r, in 
antidot square lattices with different ald ratios: 0.05, 0.10, 0.15, 0.30 
(smaller f, correspond to smaller ald).  The dashed lines were calculated 
from the formula f,= 1 -exp(-2rrcl[). 

However, for sufficiently large r ,  the average behavior 
of this dependence deviates noticeably from what may be 
expected from this formula. Tile reason for this is that for 
large r ,  the probability of the appearance of pinned trajecto- 
ries in a regular lattice is significantly higher since for the 
center of the orbit symmetrically located in the cell it is 
sufficient for the particle to traverse without collisions not its 
entire circular orbit, but only a minimal sector of it, from 
which the entire orbit may be obtained by a symmetry trans- 
formation. As a result, the probability of the appearance of 
pinned trajectories with the center of the orbit, p, at various 
points in the cell is exp(-mclM1) where M =  4  at the points 
(0,O) and (112,112), M = 2 at the point (0 ,1 /2) ,  M = 1 at the 
points (O,y), ( 1 / 2 , y ) ,  ( x ,  +x), and M = 112 at all other points 
( X , Y  ). 

For r,+ 1 the greatest contribution to the total fraction 
of pinned trajectories comes from trajectories centered on the 
most symmetric points. To find the total fraction of pinned 
trajectories, we should interpret the meaning of the probabil- 
ity of the appearance of trajectories with prescribed position 
of the orbit center p. The weight of the syn~metric points is 
related to the width of the maximum in p, which is deter- 
mined by the condition that when the orbit center shifts by 
Sp new antidots fall inside the orbit or leave it. Hence 
Sp=d2/4rc .  This gives for the fraction of pinned trajectories 

In addition to its smooth behavior, f,?(r,) undergoes irregular 
oscillations associated with geometric resonances. Singulari- 
ties in f ,  , are associated with the successive opening and 
closing of "windows" for the pinned trajectories. The first 
minimum of fs corresponds to 2 r , = d .  Its depth is estimated 
as ~ ( a l d ) ~ ' ~ / 3 .  

If r, .+d,  then the number of "windows" for different 
pinned trajectories grows. For 2 r r r , s  1 the windows overlap. 
For small a  pinned trajectories arise between values of the 
cyclotron diameter that coincide with one of the values 

FIG. 3. Fragment of an electron trajectory for two successive collisions with 
antidots. 

In light of the mutual irrationality of these numbers, the 
"windows" in r ,  are distributed randomly and have random 
width (i.e., f ,  is a fractal). 

Each appearance of a new region of pinned trajectories 
is accompanied by a singularity of f , ( r , ) .  Let such trajecto- 
ries exist for some r ,  . Then they necessarily disappear if for 
a small change in r ,  inside the circle with cyclotron radius 
the number of antidots varies by one. This defines the width 
of a typical window for the existence of pinned trajectories 
of given type: 2 ~ r , A r ,  Id2- 1 .  

For r , l l+  1 the windows in r ,  do not overlap. In this 
case they correspond, as a rule, to symmetric positions of the 
orbit center. Note that the interesting question of the statis- 
tics of the function f , ( r , )  lies beyond the scope of the 
present work. 

2.2. Collisionat trajectories 

An electron, having collided once with an antidot, will 
necessarily collide with it again if it does not first meet an- 
other. Therefore all collisional trajectories can be divided 
into localized rosettes and infinite trajectories.') As an elec- 
tron moves along a rosette enclosing one antidot, the dis- 
tance of the antidot to the center of the cyclotron orbit re- 
mains constant. For these trajectories to exist we must have 
- a < p -  r,< a .  The condition of stability of rosette motion 
is p+ r,+ a < d .  Under this condition the electron will end- 
lessly orbit around one antidot. From the kinetics standpoint 
these are localized states, which, like pinned states, in the 
absence of other scattering mechanisms do not take part in 
diffusion or longitudinal conduction. If the first of these two 
inequalities is satisfied and the second one is not, then the 
electron will complete rosette motion about one antidot as 
long as it does not run into another antidot, whereupon it will 
describe a rosette about it, etc. Delocalized trajectories ap- 
pear for 2 ( r , + a ) > d .  

Motion of an electron is completely defined by two pa- 
rameters: the angular position cp  of the electron at the antidot 
( n , m )  at the instant of the collision ( -  C< cp< C )  and its 
direction I) after the collision ( - 1r12< I)< ~ 1 2 )  (Fig. 3).  
The corresponding phase space is the direct product of a 
two-dimensional discrete space of coordinates of the antidot 
centers ( n  ,m)  and the two-dimensional ring of angular coor- 
dinates ( c p , $ ) .  Motion of an electron in such a phase space 
is a mapping of this space onto itself (cp,$,n,nr) 
+ (cp l , I ) ' ,n l ,nz l ) :  
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FIG. 4. Successive positions of an electron in the phase space of the angles 
cp,t,b, having started from an arbitrary point in the region of chaotic motion: 
ald= 0.25, r,= 0.5 1. 

This equation has, as a rule, several solutions for cp', 
$ I ,  n ' , m ' on one cyclotron orbit. We must choose the one 
that corresponds to the minimum angular distance from the 
initial point (cp,$,n,m) in the direction of motion along the 
cyclotron orbit. 

The map (2) defines a complex structure in the phase 
space of these variables. For sufficiently small r,, only mo- 
tion along a rosette surrounding a single antidot is possible. 
In the cp$  plane such motion corresponds to jumps between 
successive points along the line $=const. For 
d>2r,>d-2a the lines $=const divide the region of 
angles corresponding to rosette motion from the remainder 
of the c p $  plane, where the motion is delocalized. For 
2r,>d-2a, if the electron starts out from an arbitrary point 
in the cp$  plane, then subsequent points will cover the entire 
space with the exception of small regions near isolated 
angles. This is clearly visible in the total phase portrait, 
which depicts all successive coordinates (cp,$) of an elec- 
tron that has started out from an arbitrary point (Fig. 4). 'The 
escaping trajectory 2 in Fig. 1 corresponds to unshaded re- 
gion in Fig. 4 of cp$  space (enlarged in Fig. 5). A trajectory 
that starts out in this region remains inside it for an extended 
time. 

For each collision with an antidot along such a trajectory 
the angles cp  and $ vary only weakly, i.e., they remain in the 
vicinity of a first-order fixed point of the map c p l =  c p =  c p o ,  
f i r  = $= $o. If the electron starts out from the immediate 
vicinity of such a fixed point, the values of (cp,$) corre- 
sponding to successive collisions will describe an ellipse 
about this point. As the starting point moves further away 
from the fixed point, the nature of the motion changes: for 
the values of the parameters r,, a ,  d we have chosen the 
initial ellipse transforms into five ellipses, each tightly sur- 
rounding a fifth-order fixed point. As the starting point 

FIG. 5. Structure of phase space near a fixed point (corresponds to the 
unshaded regions in Fig. 4). Successive positions of an electron, having 
started from some initial point, form a closed contour. The various central 
contours correspond to different starting conditions. The satellite trajectories 
arise simultaneously. The randomly scattered points, corresponding to cir- 
cumnavigating trajectories, were obtained for initial angles lying outside the 
closed contours. 

moves further away from the fixed point the motion becomes 
chaotic, so that after some number of collisions the depicted 
point escapes from the region under consideration. For these 
starting angles, memory of proximity to the fixed point is 
expressed in the result that over the course of these collisions 
motion in a prescribed direction is conserved. We call such 
trajectories circumnavigating trajectories and characterize 
them by the number of collisions preserving the direction of 
motion. 

Between any two of the nested ellipses there exists an 
infinite number of high-order fixed points, each of which is 
enclosed in turn by smaller ellipses, as can be clearly seen 
for the ellipses enclosing the fifth-order points in Fig. 5. 

Note that higher-order fixed points do not necessarily 
arise near a first-order fixed point as happens in the case of 
quadratic maps. For example, there exists a trajectory escap- 
ing along the diagonal in the [ 1,1] direction, corresponding 
to motion in the vicinity of a second-order fixed point. 

The contributions of all of these trajectories taken to- 
gether form the values of the kinetic coefficients. The pinned 
trajectories and the rosettes are localized and therefore do not 
contribute to the longitudinal conductivity, thereby decreas- 
ing the expected value. Relaxation is absent on the escaping 
trajectories, corresponding to an infinitely large decay time 
for the correlations. Consequently, they lead to a divergence 
of the kinetic coefficients. All remaining trajectories are dif- 
fusive and contribute in a regular way to the kinetic coeffi- 
cients. 

2.3. Symmetry of phase space 

The general structure of phase space reflects the symme- 
try of the lattice. In a square lattice in a magnetic field the 
symmetry element is a rotation by d 2 .  This corresponds to 
the transformation cp+ c p +  m/2, I,!+ 11/. In the total phase 
portrait this is reflected in a periodicity in cp  with period 
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d 2 .  Near the stable points, as a consequence of the linearity 
of the map the symmetry is enhanced and a new symmetry 
element appears: cp+ - cp. 

In addition to this secondary symmetry, the Poincari 
sections possess a symmetry associated with invariance rela- 
tive to the substitution t+ - t, r+ - r. As a result, we also 
have the symmetry cp--, - rp, @-+ @ in the angles rp, @. This 
is clearly visible in the structure of the stability island in Fig. 
C 
J. 

An additional symmetry, not associated with the symme- 
try of the lattice itself, arises in the vicinity of each fixed 
point of the map. As will be shown below, the satellite fixed- 
points in the vicinity of a first-order fixed point appear si- 
multaneously. The appearance of satellites of fixed points 
determines the hidden symmetry of the stability islands. 

The presence of hidden symmetry may be reflected in 
the physical properties of the system. This symmetry is dif- 
ferent from crystalline symmetry. Therefore the symmetry of 
the kinetic coefficients could probe the symmetry of the sta- 
bility islands if only it would be possible to isolate the con- 
tribution of an individual island. On the other hand, symme- 
try of higher order, e.g., fifth order, can influence only 
tensors of equally high rank and does not influence the static 
conductivity to which we will restrict ourselves in what fol- 
lows. 

The considered example of a fixed point is also distin- 
guished by its symmetry with respect to +rp  since it corre- 
sponds to a symmetric point of phase space where rpO=O. 
Escape is possible along any direction [n,rn]. Only the di- 
rections [ I  ,0] and [ 1,1] possess the symmetry r--t - r. The 
resulting fixed points and stability islands corresponding to 
this escape also possess this symmetry for these directions. 

A picture analogous to escape also arises for the local- 
ized periodic orbits. 

2.4. Analysis of the nonlinear map in the vicinity of a first- 
order fixed point 

Escaping trajectories play the leading role in oscillations 
of kinetic coefficients. Therefore let us dwell on the nonlin- 
ear map (2) near one of the fixed points, e.g. (qo,  Go), cor- 
responding to the above-mentioned trajectory 2 in Fig. 

The map (2) is a particular case of the nonlinear map of 
the two-dimensional plane x' = f(x). A smooth map can be 
investigated on the basis of the definition of the fixed points 
of the map and the expansion of f(x) near them. 

From the topological standpoint it is important that it be 
continuous. Note that formally this is not so. Breaks in the 
dependence of (rp', @') on (cp, r/l) appear as a consequence of 
the mutual shadowing of the antidots. However, it is not hard 
to see that a trajectory in real space depends smoothly on the 
initial conditions since shadowing begins when the trajectory 
touches an antidot. Let an electron successively collide with 
antidots 1, 2, and 3 and for some initial angles cpl ,@I  touch 
antidot 2. Then according to Eq. (2) the angles (cp' , @') un- 
dergo a jump, coinciding with cp2 ,@, or with cp3 ,@3. At the 
same time cpj,& vary continuously. Therefore we may as- 
sume the map to be continuous. 

The map linearized near a fixed point has the form 

Because of conservation of phase volume the real matrix of 
the map, K, is unimodular. Therefore the product of the ei- 
genvalues X I  and X 2  should be equal to unity, i.e., the cases 
of real eigenvalues of the form X I  = 1/X2 or complex eigen- 
values of the form X,,2=exp(+iy) are possible. In the first 
case the fixed point is unstable: after starting out in its vicin- 
ity the particle after a few steps arrives at a region where the 
linear map ceases to be valid. The second case is stable. In 
this case, successive values of x lie on an ellipse enclosing 
the fixed point. 

The fixed points of the transformation (2) are 
(cpo ,i+90) = [0, t arccos(d/2rc)]. The first of these is stable, 
the second is unstable. Taking the parameter (2r,-d)lr, to 
be small, we transform to the dimensionless variable x: 

where 

The matrix k has the form 

cos y -sin y 
K =  1 

sin y cos y I 
Under the condition that O<r,(2rc-d)<a2, the matrix I? 
reduces to a rotation of x through the angle y about the fixed 
point. In the opposite case the angle y turns out to be imagi- 
nary, and the map becomes unstable. 

Due to incommensurability of y and 27r, rotation in an 
arbitrary magnetic field leads to the result that after a long 
time the image points densely cover the circumference of a 
circle. For commensurable magnetic fields 

and the trajectory consists of individual points located at the 
angles y = 2m vln. 

For larger x small nonlinear terms must be added to the 
map (3): 

(Q is a dimensionless 2 X 2 X 2 matrix), which have no ef- 
fect on the motion as long as x is small. 

For sufficiently large x the motion is distorted, which 
leads initially to a deformation of the ellipses and later to 
their breaking up into multiply connected curves and finally 
to chaotic motion. Since the map itself does not contain 
small parameters, the boundary of the stability region is es- 
timated as x- I .  

In the particular case under consideration of escaping 
trajectories of type 2 in Fig. I and under the condition 
a l d 4  I ,  the map (2) depends only on the parameter y: 
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x ; = x ,  cos y-x2 sin y-- 2 s1n( $2) ( X i  Sin ' 

x;=xl  sin y+x2 cos y- - 

+x2  COS lI2. 2 

The stable fixed point (0,O) and the unstable fixed point 
[0,- 2 ~ i n ~ ( ~ / 2 ) l c o s (  y/2)] of the map correspond to cases al- 
ready mentioned. 

The effect of the nonlinear corrections in the map (5) 
grow as 1x1 increases. At insignificant distances from the 
point (0,O) most of the original circles, corresponding to a 
linear map, are only weakly distorted, remaining closed 
curves, i.e., the motion remains stable and periodic. At large 
distances from a fixed point new (not existing in the linear 
map) fixed points of higher orders arise (see Fig. 5). The 
reason for the appearance of satellite resonances can be un- 
derstood if we take into account that according to Ref. 6 the 
influence of a nonlinear correction to the map reduces mainly 
to a dependence of the rotation angle y on 1x1. Thus, for 
certain values of 1x1 the rotation angle becomes a multiple of 
277: y=27rnzln. This corresponds to satellite fixed points of 
nth order. In other words, after n rotations through the angle 
y which is, generally speaking, incommensurate with 27r, 
the distance between the image and the original point is 
16x1 # 0.  However, by increasing 1x1, and consequently the 
effect of the nonlinearity shifting the image, it is possible to 
get it to coincide with the original point. This is well illus- 
trated in Fig. 5, where the angle y, which is close to 2 d 5 ,  
becomes exactly equal to 2 ~ 1 5  with increasing 1x1, which 
leads to the formation of satellite fixed points of fifth order. 
With further increase of 1x1 the stable motion is completely 
destroyed and becomes chaotic. 

Such behavior is a particular case of the general scenario 
of destruction of invariant nonresonant tori, formulated in the 
Kolmogorov-Arnol'd-Moser (KAM) theorem. The exist- 
ence of nonresonant closed trajectories of the map, incom- 
prehensible from the standpoint of a discrete map, is easy to 
explain if we take into account the continuous dynamics of 
the particle. The space in question is a Poincarc! section of 
phase space (intersection of a constant-energy surface with 
the antidot surface). A nonresonant torus in the two- 
dimensional case is two-dimensional, and its projection is a 
closed curve. According to the KAM theorem, a small per- 
turbation does not destroy the nonresonant tori. The pertur- 
bation parameter is proximity to the fixed point. On the other 
hand, the resonant and destroyed nonresonant tori are located 
in the gap between the undestroyed nonresonant tori. This 
means that motion initiated between two nonresonant trajec- 
tories remains there perpetually. Destruction of a nonreso- 
nant trajectory leads to the appearance of both satellite el- 
iipses and chaotic trajectories squeezed between nonresonant 
trajectories. 

The order n of the main satellites is defined as [27rl y] 
(the integer part of 27rly) or [27rl y]+ l depending on 
which of the angles y[2 7rl y] or y(1 + [27r/ y]) is closer to 
27r. The magnitude of the rotation angle y is determined by 
the control parameter H. Therefore the number of main sat- 
ellites and, consequently, the symmetry of the stability re- 
gions varies discontinuously when the magnetic field is var- 
ied smoothly. If we choose the magnetic field such that the 
angle y is close to 2mln (nth-order linear resonance), then 
the influence of the nonlinear term grows. As a consequence, 
satellites arise at small values of x. The largest of these turns 
out to be an nth-order resonance. 

Since each resonance generates satellites, the number of 
nth-order fixed points grows exponentially, and the size of 
the regions of stable motion tends toward zero. This means 
that the measure of the set of regions of n-periodic stable 
motion should depend on n nonexponentially, apparently as 
a power law. 

In summary it may be said that a region of phase space 
exists corresponding to stable escape along series of antidots 
although inside this region the nature of the motion of the 
image point in phase space is quite complex. Inside this re- 
gion there are connected and unconnected nonresonant tra- 
jectories, and also regions of chaotic motion, bounded by 
nonresonant tori. (By chaotic motion is meant the situation in 
which successive image points fill a set commensurate in the 
metric sense with the entire plane.) 

The region of stable escape, generally speaking, is not 
connected. It is not hard to see that the outer boundary of this 
region, separating stable motion from chaotic, is irregular. It 
coincides with the last of the undestroyed nonresonant tra- 
jectories. Both the interior of the region of stable motion and 
its boundary are fractals: the first is a fractal since between 
each pair of undestroyed nonresonant trajectories destroyed 
ones are found, and the second-because its destruction pro- 
ceeds through an infinite number of separatrices. Destruction 
of trajectories continues without limit, and this defines the 
self-similarity of the picture. If we color the region of escap- 
ing trajectories white, and the region of diffusive trajectories 
black, then in the terminology of fractal theory the white set 
is a Mandelbrot set and its boundary is a Julia set.7 

The area of the Mandelbrot set is bounded from above 
by 27r (supremum) and from below by the area of the un- 
destroyed nonresonant trajectory. 

The circumnavigating trajectories occupy the immediate 
outer neighborhood of the Mandelbrot set. These trajectories 
are not formally distinguished from chaotic motion. How- 
ever, a particle that has started out from this region will 
remain in the vicinity of the region of escaping trajectories 
for an extended period of time and conserve its directed mo- 
tion. Moreover, motion along an escaping trajectory and mo- 
tion along a circumnavigating trajectory near the Julia set are 
indistinguishable for an extended period of time. 

Escaping trajectories are an analog of purely ballistic 
motion. Circumnavigating trajectories, being chaotic, can 
nevertheless lead to anomalously accelerated diffusion over 
the billiard table. 
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2.5. Fraction of escaping trajectories 

The area of the region occupied by undestroyed nonreso- 
nant tori can be estimated if we require that the vector x 
located in this region not lie within the vicinity of a neigh- 
boring unstable fixed point. For y- 1 this vector describes a 
nearly circular curve. This latter requirement means that I xl 
should be less than 1. Consequently, the area of phase space 
corresponding to stable first-order escaping trajectories is 

Here f (u)  - 1 is a bounded dimensionless function of the 
parameter 

In terms of r, the existence region of escaping trajectories is 
given by the inequalities d<2r ,<d+2a2 /d .  

Strictly speaking, the indicated conditions determine the 
boundary of the stability region only approximately. Let us 
consider the boundary for the indicated interval. If we ex- 
pand in y and make the substitutions 

Eqs. (5) reduce to systems that do not contain y 

in the limit y+O and 

in the limit y + r .  From this it follows that if a region of 
stable motion exists, its dimensions and shape do not depend 
on y and its dimensions are of order 1. If we continue r, 
into the region 2 rc<  d ,  d - 2 r C 4 d ,  which corresponds to 
small complex y, then the map (5)  and the form of the curves 
do not change. As a result we can see that the boundary of 
the region of stable motion is somewhat wider than just men- 
tioned. 

Figure 6 plots the area Sl of phase space occupied by 
circumnavigating trajectories as a function of r, and the 
number of steps N along a series, over which the particle 
moves, obtained by computer simulation for ald=0.25. 
Since for small a l d  the nlap (5) does not depend on a ,  these 
curves are universal. The limit N 4 m  determines the area of 
the purely escaping trajectories as a function of the magnetic 
field. The maximum value of S,(r,) and the width of its 
defining region agree with estimate (6). 

In light of the appearance of linear resonances 
y= 2nirrln, the curve Sl  (re ,m) is a fractal. Its singularities 
are linked with the linear resonances (but do not strictly co- 
incide with them). A clearly expressed minimum is visible in 
S, (r, ,m) at re= 0.533. It corresponds to y =  27~13. The other 
minima are near rc=0.515 and rc=0.556 ( y =  7~12 and 
y= w ,  respectively). The role of the linear resonances is also 
confirmed by the dependence of the shape of the stability 
islands on r, : in the vicinity of these points their symmetry 
is of the corresponding order. 

FIG. 6. Fraction of circumnavigating trajectories of the first period (type 2 
in Fig. 1)  as a function of r , ,  calculated for different numbers of jumps 
N in the escape direction. 

We gave special attention to the region near the thresh- 
old 2 rc=d .  Simulation shows that in this region as N-+w, 
Sl(rc,N)+O as 11111 N. 

We considered escaping trajectories jumping along the 
"peaks" of the antidots. Another type of escaping trajectory 
appears when the electron falls into a region of angles q,$ 
near the initial region of angles after several collisions with 
antidots. These trajectories correspond to fixed points of a 
higher-order map. They can be analyzed in the same way as 
those considered earlier if, omitting intermediate steps, we 
replace the nth-order map by a first-order map. It can also be 
linearized, we then add nonlinear terms, etc. As a result we 
get an infinite hierarchy of resonances. 

Let us estimate the number of resonances of order n. 
Consider the multiple map at some point xo. Then the image 
of some small increment Axo will behave like ~ k ( x , ) ~ x ~ .  
Of generally random matrices K ( x ~ ) ,  roughly speaking half 
correspond to real eigenvalues X k  . 

Let us consider the maximum value [Axn[. It is of the 
same order of magnitude as the product of maximum eigen- 
values An, i.e., it grows exponentially as exp(hn), where the 
Kolmogorov entropy is of the order of the volume-averaged 
instability growth rate: h - ln(Na). In the particular case of a 
small magnetic field h = ln(d2/2a2) (Ref. 8). Since the map is 
continuous, the segment Axo is imaged by some curve join- 
ing the ends of the segment Ax,. 

The characteristic dimension of x,, as a function of xo, 
ax,, is defined by the last step of the map, which is the most 
sensitive to the initial conditions. Requiring that the incre- 
ment Ax, be of the order of the size of the cell, we obtain the 
characteristic dimension axo-exp(-hn). Each cell of di- 
mension axo contains, as a rule, one stable fixed point of 
order n .  Let xo be one of these points. Then for Axo< axo 
the map remains linear. Therefore the characteristic dimen- 
sion of the region of stable motion is of the order of ax,. 
Hence we may conclude that as for the higher-order satellite 
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resonances the product of the area occupied by the regions of 
stable motion by their number falls off more slowly than 
exponentially, apparently according to a power law. 

Note also that the sensitivity of the resonance to varia- 
tion of the magnetic field is mainly a result of the fact that 
the displacement of the trajectory in the first step of the map 
plays the role of a change in the initial condition for subse- 
quent steps, i.e., arc- axo. 

2.6. Higher-order localized and escaping trajectories 

We have considered the case of escaping trajectories. A 
similar picture holds for localized periodic orbits. Let us es- 
timate the ratio of the number of regions of localized and 
escaping motion of nth order. Toward this end, it is more 
convenient to consider the motion of the electron in terms of 
the coordinates of the centers of the cyclotron orbits. The 
phase plane of these centers is unbounded. The Hamiltonian 
of the system in these variables possesses the periodicity of 
the antidot lattice. 

Scattering by an antidot leads to a change in the coordi- 
nates of the center of the cyclotron orbit of the order of r ,  (if 
2 r c > d - 2 a ) .  This results in diffusion of the centers of the 
cyclotron orbits in two-dimensional space. A higher-order 
fixed point arises when as a result of diffusion the center of 
the cyclotron orbit falls onto the initial point or into an 
equivalent point (shifted by the lattice vector d,,,) of the 
space of cyclotron orbit centers. The first case corresponds to 
localized motion, and the second to escaping motion. The 
ratio of the number of localized fixed points to the number of 
escaping fixed points of order n  is equal to the probability 
that the orbit center will return to its original lattice cell after 
n  steps. 

Let us estimate the probability of return to the original 
cell, assuming that diffusion in these steps is not sensitive to 
the periodicity of the lattice. By doing so we are ignoring the 
anomalous character of diffusion in a regular lattice. Diffu- 
sion of the cyclotron orbit centers proceeds differently in 
moderate ( r c - d )  and in very weak ( r c B d )  magnetic fields. 
In a moderate magnetic field an orbit center revolves around 
one of the antidots during one collision time. After this a 
collision with another antidot takes place and the orbit center 
ju~nps a distance - r , .  In weak magnetic fields the electron 
jumps a distance - 1 much less than r ,  during a collision. 
The orbit center jumps a distance - r ,  in a circle around the 
spot where the electron is found. The accumulated small dis- 
placements of the electron lead to diffusion of the center of 
the cyclotron orbit along a circular band of width 1 6 .  This 
picture is preserved as long as 1&<rC holds. 

In the limit 1 &BrC the magnetic field can generally be 
neglected in the description of the motion of the electron. 
The electron undergoes ordinary diffusion with its mean free 
path as the jump length. After n  collisions the electron is 
displaced by the distance 16. Since the orbit center is lo- 
cated a distance r , 4 l &  from the electron, the displacement 
of the orbit center after n steps is also -16 [accurate to 
within r , l ( l  &)I. 

In order to wind up in the region of stable motion, the 
cyclotron orbit center must fall into some region AS. The 

probability of doing this after n steps is equal to the ratio of 
AS to S,? , where S, is the area swept out by the diffusion of 
the orbit center: 

2.rrrcl& for l & e r c ,  

.rr12n for l & ~ r , .  

Stable motion, corresponding to localization, is achieved if 
the end-point lies in a lattice cell, the probability of which is 
equal to d 2 / s , .  Escape takes place in the opposite case. 
Hence we obtain for the ratio of the fraction of localized to 
escaping trajectories after n steps 

. d2 
for l & e r c ,  

2 r1rC& 

d2 - for / & a r c .  
, .rr12n 

In the limiting case of moderate magnetic fields the electron, 
repeatedly colliding with an antidot over a time 
7 = d 2 / ( 2 a v F ) ,  describes a rosette around it. Here the center 
of the cyclotron orbit revolves around the antidot about a 
circle of radius -rc  , jumping a distance - r ,  after each 
collision with it. After colliding with another antidot, the 
electron begins to describe a rosette around it. Collision is 
equiprobable with any antidot inside the rosette. Thus, the 
orbit center jumps a distance - r ,  . The diffusion coefficient 
is of the order of which is typical for strong magnetic 
fields. The ratio of the fractions of localized and escaping 
trajectories is d2 / ( r :n ) .  

Thus, in the limit a i d 6  1 ,  r,>d escaping trajectories are 
the main type of nonlinear resonance defining the properties 
of the kinetic coefficients. 

3. CONDUCTIVITY IN A MAGNETIC FIELD 

3.1. Strong field 

To estimate analytically the components of the conduc- 
tivity tensor in a magnetic field, let us forget for a moment 
about the periodicity of the antidot lattice. Then we may first 
invoke the formulas of kinetic theory and then make use of 
the percolation model9 corresponding to a disordered system. 
Within the limits of applicability of the kinetic equation with 
a relaxation time, the components of the conductivity tensor 
in a degenerate Fermi system have the form 

lrr '?r I 
g x x = ~ + ( f r r / r c ) 2 '  

a,, = - 
rc 1 + ( ~ , ~ I r c ) ' .  

Here the conductivity is measured in units of me2vF/2.rrh2, 
and the transport mean free path for specular scattering on 
the antidots is l, ,  = 3 114. 

In Ref. 9 we showed that this model, typical for a three- 
dimensional system, is inapplicable to a two-dimensional 
system of randomly distributed point impurities. The point is 
that there are trajectories of the localized type (pinned and 
rosette) and, as a consequence, a threshold in r ,  for the ex- 
istence of delocalized trajectories. The system of randomly 
distributed antidots is analogous to an impurity system with 
antidot-scatterer concentration N ,  = r l P 2 .  The percolation 
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threshold r: in the problem of an aperiodic lattice of finite- 
size antidots is easily calculated as in Ref. 9: 

where Bc= 4.4 holds according to Ref. 10. As we saw ear- 
lier, in a periodic lattice a critical magnetic field also exists. 
The conductivity in a disordered antidot lattice can be found 
as in Ref. 9. If r, is far from the percolation threshold, the 
conductivity can be estimated on the assumption that the 
contribution of the electrons colliding with the antidots and 
belonging to delocalized trajectories is determined by the 
kinetic equation. However, the non-colliding electrons do not 
contribute to the diagonal components, and their contribution 
to the nondiagonal conductivity corresponds to the ideal sys- 
tem. This means that when summing the contributions it is 
necessary to take account of the fraction of pinned trajecto- 
ries fp(rc)=exp(-2mcll). As a result we obtain 

Formulas (9) are valid for rc2r :  The numerically large 
value of the parameter 2.rr has the result that there exists a 
region of strong magnetic fields, l+rC+l/2rr, in which, on 
the one hand, the kinetic equation is applicable and, on the 
other, the role of the pinned trajectories is unimportant. 

Let us proceed now to the case of a periodic lattice. 
Equations (9) give a valid description of the contribution of 
the chaotic trajectories and the mean number of pinned tra- 
jectories. To allow for fluctuations in fp  it is necessary to use 
Equations (9) and the results of Section 2.1. More important 
is the existence of escaping trajectories, which leads to an 
infinite conductivity for ideal periodic billiards. Inclusion of 
a finite impurity concentration destroys the periodic trajecto- 
ries, bounding the conductivity by the mean free path 1 for 
scattering off the impurities. In this way the resonances are 
converted into maxima of a,, which are stronger, the lower 
the order of the resonance. 

Lower-order resonances are possible only for isolated 
values of r, comparable to d, which are manifested in geo- 
metric oscillations of the conductivity. Let us consider a 
first-order resonance. Moving along an escaping trajectory, 
the electron, before its next collision, traverses a path of 
length 21i17r (the factor U.rr appears due to the difference in 
the path-lengths along a semicircle and a straight line). This 
quantity plays the role of the mean free path of the escaping 
electrons. Let the contribution to a,, from a first-order reso- 
nance be denoted by a::) This quantity is determined by the 
electrons belonging to escaping and circumnavigating trajec- 
tories. 

The contribution of the escaping trajectories to the con- 
ductivity is (21, / T)S (r,). For the circumnavigating elec- 
trons the effective mean free path can be estimated as 

Then their contribution to cr:..:) is given by 

If the ratio 21i l .rrd is much greater than the characteris- 
tic dimension Sl(rc ,N) as a function of N, then S,(rc,N) 
converts to Sl(rc) and a::) is determined by the escaping 
trajectories. In the opposite case the contribution of the cir- 
cumnavigating electrons predominates and 

Consequently, the curves in Fig. 6 describe the shape of the 
peak in a,, associated with a first-order resonance for vari- 
ous values of l i  . 

The width of the peak in a::) over r, has the same order 
of magnitude 2u2/d for any 1. In the limits 2r,+d and 
2 r c 4 d  c a2/r , ,  the conductivity vanishes. In addition, a::) 
has a fine structure that is associated with the linear reso- 
nances. 

Simultaneous with this positive contribution to a,, , a 
negative contribution appears, associated with an increase in 
the fraction of pinned trajectories over the mean value in 
approximately the same fields. The amplitude of the fluctua- 
tion of the fraction of pinned trajectories 8(a1d)~ '~/3 deter- 
mines the amplitude of the relative fluctuation of the conduc- 
tivity. It can be seen that the amplitude of the fluctuations of 
a,, due to a geometric resonance associated with escape is 
l i / l (d /~)3 '2  times greater. The width of the fluctuational 
window in r, for the pinned trajectories is significantly 
greater than for the escaping trajectories: ArC=dl7,-. The su- 
perposition of these two effects can lead to additional fine 
structure of the main maximum of u,, . 

Generally speaking, fluctuations in cr,, can also be asso- 
ciated with higher-order escaping trajectories. For an 
nth-order resonance the directed motion is built up from in- 
dividual series of n collisions each, where within each series 
the motion of the electron is purely diffusive. This means 
that escape takes place by way of individual jumps of mean 
length 16, each completed during a time 7=nllvF. The 
total number of collisions is equal to l , / l .  Consequently, the 
effective diffusion coefficient for an nth-order resonance is 
l,vFln, and the average contribution from the kth order reso- 
nance is equal to ( ~ r ~ ~ ) ( r , ) ) = l ~ ~ , ( r ~ ) l n ,  where S,(r,) is the 
area in phase space of the vicinity of an individual 
nth-order resonance. As follows from an analysis of higher- 
order resonances, we have S,(rc)-exp(-2hn) and the width 
of the window in r, for the existence of an nth-order reso- 
nance is Arc-exp(-hn). Consequently, the amplitude of the 
peak in u,, due to an individual nth-order resonance falls off 
exponentially faster than its width, and the contribution of an 
individual resonance spreads out with increasing order. 
Therefore, for large n the contribution to the conductivity of 
an individual resonance falls as exp(-hn). 

The number of such resonances is equal to 
. 1 '(n) - S, The total area of phase space cp, @ belonging to 
the stability islands is bounded from above by 27r2 (supre- 
mum). 'This means that the product . l '(n)S,, falls off as 
n-" with a> I or faster. Assunling the usual power-law 
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falloff, we find that the total contribution to the product from 
an nth-order escaping trajectory falls off with n only as a 
power law: 

The width of the window in r, does not vary; therefore the 
shape of the peak narrows. This effect becomes important in 
weak magnetic fields (r,+d): In such fields, as a result of 
shadowing, resonances with small orders n simply do not 
exist. 

Under such conditions, irregular fluctuations superim- 
posed on the peak (1 1) may also show up, which are associ- 
ated with the high order of the first of the destroyed reso- 
nances or, more accurately, with the exponentially large 
number of regions of phase space cp$ corresponding to this 
resonance. If we assume that their appearance is random and 
independent, then the root-mean-square fluctuation of their 
total contribution to the conductivity will be 

J- 'i 
( ~ f f ~ ) ~ - -  exp( - hn). 

11 a 

Another reason for the appearance of fine structure in 
uxx at large r, may be irregular fluctuations off ,  (see Fig. 
2). 

The motion of resonances whose order n is greater than 
l i l l  will be purely chaotic because of scattering from ran- 
domly distributed impurities. From the computer simulation 
standpoint a limiting factor is the length of a series of trials 
(number of collisions with antidots in each series). Therefore 
it is necessary to regard the simulation-generated depen- 
dences either as "fat" curves having a finite "thickness" 
associated with the fractality of the object, or as the result of 
some coarsening of the true dependences u(r,). It may be 
anticipated turning on or turning off different types of escap- 
ing trajectories and localized trajectories as r, varies deter- 
mines the observed singularities in the dependence of the 
kinetic coefficients on the magnetic field. 

Thus, taking impurity scattering into account imposes 
geometric resonances on the smooth curve u(r,), and for 
a i d 4  1 the escaping trajectories play a defining role. As the 
impurity scattering is decreased, finer and finer resonances 
gradually flare up. 

3.2. Weak field 

In this section we investigate the conductivity of an an- 
tidot lattice in the limit of a weak magnetic field. In a weak 
magnetic field the escaping trajectories are unstable. This is 
because for H = O  the described billiard table is purely scat- 
tering and has no stable fixed points.5 

An important property of a square lattice of antidots is 
the divergence of the diagonal conductivity. It arises because 
the electrons flying in singular directions hardly collide with 
any antidots. Essentially, this problem is equivalent to the 
problem of the conductivity of a thin film with a diffuse 
surface."912 The latter, in the limit of a film thin in compari- 
son with the bulk mean free path 1, is proportional to 
h In(lilh), where h is the thickness of the film. As li+m, the 

conductivity diverges. The role of the singular electrons for 
H = O  is analogous to the role of the escaping electrons in a 
strong magnetic field; however, due to their instability the 
trajectories lead to a weaker logarithmic divergence. 

To obtain the tinal value of the conductivity of an antidot 
lattice, it is important to take account of an additional scat- 
tering mechanism, e.g., that due to impurities. We will as- 
sume the impurity scattering length l i  to be significantly 
greater than the characteristic mean free path in the lattice 
1=d2/(2a).  In addition, we will assume that the distance 
between the antidots d -2a  is greater than or of the same 
order as the antidot radius a .  

In an antidot lattice the role of a film is played by sin- 
gular corridors. The characteristic width of a corridor is 
equal to h = d - 2a.  and the characteristic angle of motion of 
an electron 8-hlli. If this angle is much greater than a l d ,  
then the electrons moving at a typical angle relative to the 
corridor "illuminate" an entire antidot and after colliding 
with it are scattered at large angles. Therefore the contribu- 
tion to the conductivity of the electrons moving in the corri- 
dors is equal to h ln(lilh), i.e., the same as the conductivity 
of a thin film. This quantity must be multiplied by the prob- 
ability that the electron is in the corridor, hld. This argument 
is valid for a ld-  1. 

If hll iQald,  then only the peaks of the antidots are il- 
luminated, which leads only to small-angle scattering off an 
antidot at angles of the order of m. It would seem that 
small-angle scattering leads to a slow relaxation of the mo- 
mentum. However, this is not the case. The scattering angle 
significantly exceeds 8. Therc%fore, after a single scattering 
event the electron's mean f, 2e path is sharply reduced. The 
number of collisions the eleclron must undergo before it falls 
into the region of a:igles tl>uld can be estimated if we 
continue the chain of equalities Ok+ - dm, 
d* = d  dm. Here rn and n are the Miller indices for the 
corridor. Then, in the limit of large k we obtain an estimate 
for the number of collisions: 

In light of the very weak--doubly logarithmic-dependence 
of k on Oo, we may take k- 1. The effective mean free path 
is built up from the mean free paths on all the steps. How- 
ever, for small 8 only the contribution of the initial mean 
free paths diverges when taking the angle average. In con- 
trast to the problem of a film, for aid< 1 only electrons with 
angles less than or of the order of a ld*  move in the corridor. 
Noting this restriction, we obtain for the contribution of the 
corridor to the conductivity 

It is necessary to sum the contributions from different corri- 
dors. For a ld -  1 the number of corridors is of the order of I .  
For small a l d  the number of corridors is large and is stipu- 
lated by the condition d l  J m > 2 a .  By definition of the 
Miller indices, the numbers m and n must be mutually prin~e. 
The sum must be taken over the half-plane n1>0. For large 
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nl and n it can be replaced by an integral after multiplying 
the sum by the probability that the numbers in and n  are 
mutually prime. This probability is given by the product of 
the probabilities that the numbers m  and n are not simulta- 
neously divisible I - l ip? by the prime numbers p i ,  

In the limit of large rn and n the probability P ( m , n )  can be 
expressed in terms of the Riemann [-function: 

Replacing the sum over channels by an integral and allowing 
for the projection of the field onto the channel axis and for 
the current along the channel in the x direction, we obtain 

Formula (14) shows that the order of magnitude of the con- 
ductivity is given mainly by the gas-kinetic formula d2/2a,  
which is valid for randomly distributed antidots, but in con- 
trast to it contains a logarithmic divergence. Note that the 
logarithmic divergence of the diffusion coefficient was 
pointed out earlier by Geisel et al.13 

Formula (14) defines the mean conductivity of the sys- 
tem. Considered as a function of a i d ,  a,, undergoes jumps 
associated with the appearance of new corridors as aid  is 
decreased. The magnitude of the jumps is given by the ex- 
pression (13). 

The root-mean-square fluctuation of the conductivity is 
given by the product of the magnitude of a jump and the 
fluctuation of the number of corridors ANch.  If we take the 
latter to be statistically random, then ANch- &--d12a. 

Let us turn now to the case of a finite but small magnetic 
field. Since the conductivity is determined by small-angle 
electrons for H = 0 ,  a quite weak magnetic field, drawing the 
electrons out of the corridor, substantially changes the con- 
ductivity. The characteristic field M can be estimated from 
the condition that the turning angle of the electron l i l r c  dur- 
ing a collision time ri  exceeds the characteristic angle of 
motion of the electrons, l / l i .  In the two limiting cases we 
obtain the following estimates for the conductivity: 

1; 
u,,(H) = crX,(o) ( r z )  1 - for - < r e ,  I 

1 6  1; 
aX.JH) - - 1 ln - 

d 
for l<rc<-  

rr  I ' 

Let us turn our attention to the anomalously large value of 
the magnetic conductivity. For small fields it is determined 
by the parameter l ; ircl ,  which exceeds even the parameter 
l , lr , .  which determines the magnetoresistance of a sample 
without antidots. 

For r,-I in the characteristic time an electron moves 
along a corridor the magnetic field manages to draw an elec- 
tron out of the small-angle region, the small-angle contribu- 
tion is no longer distinguishable, and formula (15) goes over 

to the usual gas-kinetic expression. However, for 
( 7 ~ / 4 ) r , . Z l  the possibility arises of pinned trajectories (Sec- 
tion 2.1.) since the probability of their appearance becomes 
non-exponentially small. As a result, geometric resonances 
appear in the dependence of a,, on r,. A second (and more 
important) reason for their appearance is that the escaping 
trajectories, the simplest of them, as well as the pinned tra- 
jectories exist within the same windows in r , .  

Fleischmann et al.I4 showed numerically that in a weak 
magnetic field the Hall resistance changes sign. The special 
role of the channeling electrons can be seen in this behavior. 
The previous arguments allow us to obtain an estimate for 
the magnitude of the Hall conductivity in a weak magnetic 
field. We take a l d -  I .  Let us consider the case l i - + w .  The 
electrons starting at angles 0% B0= r to the corridor 
axis (chosen, say, as the x axis) do not notice the magnetic 
field. In the opposite case, the magnetic field deflects the 
electrons starting from one series of antidots without allow- 
ing them to collide with another series. As a result of the first 
collision, the starting angle is significantly increased and the 
electrons go over to another group. Let the electric field point 
in the x direction. Then the number of electrons n~oving in 
the positive x direction exceeds the number moving in the 
opposite direction. After a collision the electrons are dis- 
placed in the y direction on the average by the distance h in 
the direction opposite the usual direction of drift in crossed 
fields. The magnitude of the contribution of the small-angle 
electrons to the Hall conductivity is 

For large r ,  this contribution exceeds the conductivity asso- 
ciated with the remaining electrons h21r,. Let us now turn 
our attention to the non-analytical dependence of Sax, on the 
magnetic field. 

3.3. Magnetoresistance 

Let us consider the question of the magnetoresistance of 
the lattice. It is well known that in the degenerate case in an 
electron-impurity system magnetoresistance is absent since 
its appearance requires the presence of groups of electrons 
with different mobility, and the kinetic coefficients of a de- 
generate electron gas are determined by the electrons at the 
Fenni surface. 

In a two-dimensional system the electrons separate into 
independent groups. As a consequence, even in a disordered 
system the magnetoresistance is nonzero. Substituting for- 
mulas (9) into the expression for the magnetoresistance 

"ij 
Pij' 2 2 

uX.Y + *.ry 

we obtain 

In a periodic lattice, to the groups of pinned and collid- 
ing electrons, we nust  add escaping and channeling. They 
also give rise to magnetoresistance. 
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FIG. 7. Magnetic-field dependence of the components D,, (solid lines) and 
Dyy (dotted lines) of the diffusion coefficient, obtained with the help of 
computer simulation in antidot lattices with ald=0.3 (thick line) and 
ald=0.15 (thin line). Inset shows the result of a calculation up to large r, 
for a lattice with ald=0.15; the dotted curve is a fit to these data based on 
relations (15) following the formula D,= ln(0.3rC) + 1.2. 

3.4. Computer modeling of kinetic coefficients 

We performed a computer simulation of the kinetic co- 
efficients for different values of the ratio a ld :  0.05,0.1,0.15, 
0.25,0.3,0.4. We simulated the motion of a classical particle 
launched with random initial conditions in a lattice of specu- 
larly reflecting disks. The components of the conductivity 
tensor per particle with unit charge were calculated accord- 
ing to the formula 

Here ui(t)  and r i ( t )  are the components of the velocity and 
position vectors, respectively, at the time t .  The value of 7 

was chosen by means of a random number generator with a 
Poisson law and mean value of 7 equal to 5 (in units of 
dlv,), which simulated the finite scattering time of the ran- 
domly distributed impurities. 50 000 initial conditions, as- 
signed with the help of the random number generator, were 
averaged over. 

The simulation results are presented in Figs. 7-9. In a 
square lattice the diagonal components of the conductivity 
tensor a,, and a,, should coincitle. The small difference 
between them, seen in Fig. 7, gives an estimate of the accu- 
racy of the simulation. In all of the curves of a,, and a,, 
(Fig. 7) the peak at 2 rc=d  is well expressed. Besides this, 
peaks at r,= 0.8d are visible, and the minima in the conduc- 
tivity between these two peaks are well expressed. 

The main peak, obviously, is associated with the pres- 
ence of trajectories near the escaping trajectories in the 
(0, l)  and (1,O) directions. The second peak, presumably, is 
formed by the escaping trajectories of diagonal type. 

The smoothing of the curves in the region of large r ,  
corresponds to the disappearance of escaping trajectories in 
such magnetic fields. In this case, for small values of a i d  
smoothing begins at large r, (see Fig. 7), which is obviously 
connected with the lesser role of shadowing. 

FIG. 8. Dependence of the longitudinal component of the resistance of an 
antidot lattice on r, , calculated for two lattices with ald=0.30 (thick line) 
and 0.15 (thin line). 

As was noted above, the conductivity diverges logarith- 
mically at large r, [relation (15)]. According to relation (15) 
the smoothing of the dependence of a,, on r, should be 
described by a logarithmic dependence. This is demonstrated 
by Fig. 7, where the points depict the dependence 
ln(0.3rC) + 1.2 which has two fitting parameters. 

In the region of intermediate magnetic fields 
[r,= ( I  - 5)d]  for a l d  = 0.15 irregular oscillations (Fig. 7, 
inset) are clearly visible, reflecting the fractality of the de- 
pendence of the kinetic coefficients on the magnetic field. 

A similar picture of commensurate oscillations is also 
visible in the dependence of p,, on r, (Fig. 8). However, 
here the main peak at 2r ,=d turns out to be very sharply 
pronounced. 

Results of calculation of the nondiagonal components of 
the conductivity tensor are shown in Fig. 9. The two main 
peaks of the curve a,,(r,) correspond to the peaks of the 
diagonal conductivity. However, they are shifted somewhat 
toward weaker magnetic fields. The reason for this shift 
within the context of the problem of periodically distributed 

FIG. 9. Components of the Hall conductivity of an antidot lattice 
(ald=0.3): solid line is a,,, ; dotted line is -a,, . For r ,  l t l>4 an anoma- 
lous negative Hall effect is observed. 
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scatterers is not clear to us. In addition, a strong maximum is 
observed at r, ld= 1, corresponding to the minimum in the 
curve of axx( r , )  (Fig. 7). 

An important feature of the nondiagonal conductivity is 
the change in sign at r, ld- 4, which is clearly visible in Fig. 
9. This supports the above arguments concerning the anoma- 
lous negative Hall effect. 

It should be noted that our results for ox, differ strongly 
from the simulation results of Fleischmam et a1.I4 In Fig. 9 
we see clear maxima in place of the steps, as they obtained. 

Conversion to the quantities p, and pxy usually mea- 
sured preserves the main features of the curves a;,(r,) and 
0-xy(rc). 

The above results coincide qualitatively with similar re- 
sults obtained for lattices with other values of ald.  The com- 
parison of the dependences pxx(r,)  for two different values 
of ald,  shown in Fig. 8, demonstrates that for smaller ald a 
larger number of peaks is observed. This is due to the dimin- 
ished role of shadowing effects. 

The characteristic correlation scale of the dependence of 
the conductivity on r,  is equal in order of magnitude to the 
width of the region of stable trajectories a2/2r, .  

4. DISCUSSION 

Let us discuss the degree of generality of these results. 
The entire analysis was carried out for a rigid antidot 

potential, where the antidot was modeled by a specularly 
scattering disk of finite radius. As was stated in the Introduc- 
tion, the billiard model corresponds to antidot structures that 
now exist. At the same time, it is clear that it is also possible 
to create conditions for "soft" lattices. The question arises: 
which of our conclusions are model-dependent and which 
are general for any periodic lattice? 

It is not hard to see that the breakdown of the trajectories 
into localized, chaotic, and escaping does not depend on the 
assumption of a rigid potential. Indeed, near the minima of a 
potential localized states always exist-less obvious is their 
appearance in a steep potential, where zero potential energy 
corresponds to undifferentiated equilibrium. However, in a 
magnetic field the appearance of localized trajectories is ob- 
vious. 

Pinned trajectories, by definition, exist in a rigid poten- 
tial. If we soften it, e.g., by considering a potential of the 
forni ~~[cos (mx ld )cos (my ld ) ]~~ ,  where A is sufficiently 
large: then the pinned trajectories cease to be circular, but 
remain localized. The existence region of the localized tra- 
jectories turns out to be similar in shape and extent to the 
existence region of the pinned trajectories. 

In order to demonstrate the possibility of escaping tra- 
jectories in a periodic lattice with a smooth potential, con- 
sider the intersection of trajectories of the opposite bound- 
aries of a cell. Such an intersection obviously exists for some 
trajectories. It defines the mapping of the two-dimensional 
space of the initial position on the boundary and the angle of 
motion onto the space of final values of these parameters. It 
is clear that the idea of stable fixed points and stability re- 
gions of escaping motion is applicable to this map the same 
as to the map (2).  Therefore the existence both of localized 
and escaping trajectories is a general property of motion in a 

periodic potential. The conclusions about the higher-order 
fixed points also remain general, with the exception of the 
magnitude of the Kolmogorov entropy, which requires spe- 
cial calculation in such a problem. 

The existence of escaping trajectories leads to anoma- 
lous diffusion in regular antidot lattices. Purely escaping tra- 
jectories, like ballistic trajectories, determine the displace- 
ment of the electron, which grows linearly with time. In this 
case, the formally introduced diffusion coefficient should 
also diverge linearly with time. 

Since purely escaping trajectories are segregated in 
phase space from chaotic trajectories, it is of interest to elu- 
cidate the nature of the diffusion of the chaotic electrons. 
Our simulation, performed for ald = 0.25, r ,  Id  = 0.5 1, 
shows that for these parameter values the diffusion coeffi- 
cient also diverges with time, as i.e., weaker than for 
purely escaping trajectories. This divergence arises because 
the probability of capturing a trajectory into an almost local- 
ized state with an adiabatic trap or into an analogous circum- 
navigating state is high, where these adiabatic traps are re- 
gions of the initial conditions for which the electron remains 
within a bounded region of space for an extended period of 
time. It is mainly the latter state that is responsible for the 
divergence of the diffusion coefficient. 

Wagenhuber et al.I5 performed a simulation of diffusion 
in the smooth periodic potential U o [ 2  + cos(2mdd) 
+cos (2~~ /d ) ] .  They obtained step-like behavior of D ( t )  

t P  with the exponent p varying from zero to unity as the 
parameter (dlr , )  \I- is decreased. According to this, it 
seems to us that such behavior is possible only in a transi- 
tional region for not too large t ,  whereas in the limit of large 
t the diffusion coefficient should behave linearly. 

There are other questions that are in need of answers. 
How valid is the assumption of specular scattering by the 
antidots? In articular, how nonspecular are the boundaries of 
the depletion layer? How stable are the results if we allow 
for a small degree of disorder in the arrangement of the an- 
tidots and nonspecular scattering on them? 

The boundary of the depletion layer is formed by a re- 
pulsive potential created by charged surface states. If the 
latter are associated with surface adsorption of atoms, the 
arising potential is random, i.e., the boundary of the deple- 
tion layer fluctuates. In addition, for technical reasons the 
geometrical boundary of the antidots is rough. The depletion 
layer smooths out these fluctuations, making them weaker 
than the relative fluctuations of the nascent antidot of charge 
and the roughness of the geometrical boundary. The results 
for escaping trajectories are stable to small deviations in the 
periodicity of the arrangement of the antidots and with re- 
spect to nonspecular scattering on them as long as the spread 
in the initial conditions due to these factors does not knock 
the electron out of the existence region of the escaping tra- 
jectories: Adld, ~ a l a < ( a l d ) ~ .  Our estimates show that for 
d- 1 p m  and ald=O.25 these conditions are fulfilled. 
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