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A compact expression for the cross section of light scattering by aligned atomic systems is 
derived. It is shown that in above-threshold or resonant scattering, when the channel of luminous 
energy dissipation is open, circular dichroism effects can be observed in the angular 
distribution and the degree of polarization of the scattered light. In such cases circular polarization 
of the scattered light is also induced when the incident light has no circular polarization. 
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1. INTRODUCTION 

When the magnetic sublevels of an atom are unevenly 
populated, the atom becomes polarized. The elementary pho- 
toprocesses involving polarized atoms (emission and absorp- 
tion of light, the photoeffect, etc.) have been thoroughly 
studied both theoretically and experimentally (see, e.g., Ref. 
1, the literature cited therein, and also Refs. 2 and 3). 

The general theory of light scattering by polarized atoms 
developed in a recent paper4 does not touch on a number of 
subtle effects important in various applications. Among such 
effects are, for instance, the so-called dissipation-induced ef- 
fects, which can be observed only when the channels of lu- 
minous energy dissipation are open in the light scattering 
process. The atom in this case is characterized by a T-odd 
(i.e., changing sign under time inversion) dissipation param- 
eter r ,  which determines the dissipation rate. 

The manifestation of dissipation-induced effects in the 
scattering of light by oriented atoms was discussed in Ref. 5. 
For such a case the differential scattering cross section ac- 
quires a T-odd scalar combination of vectors of the form 

where e (e') is the unit polarization vector of the incident 
(scattered) light, and j is the average angular momentum of 
the oriented atom. This leads to a dependence of the angular 
distribution and the degree of linear polarization of the scat- 
tered light on the orientation of the atom even when linearly 
polarized or unpolarized light is scattered. 

This paper studies the effect of luminous-energy dissipa- 
tion on the scattering of light by aligned atoms. The reader 
will recall that a type of polarization such as that due to 
alignment is possible if the atomic angular momentum 
j, > 112. Below we examine axisymmetric polarization 
states with a symmetry axis specified by a unit vector n. The 
state of the polarized atom in this case is an incoherent mix- 
ture of states with different values ni of the angular momen- 
tum in the direction of n, and such polarization emerges 
when the external polarization is axisymmetric.' If the polar- 
ization is also mirror symmetric (say, unpolarized or linearly 
polarized electromagnetic radiation), the magnetic sublevels 
with opposite values of the projection of angular momentum 
on n have equal populations, so that orientation and other 

types of polarization determined by the multipoles of a state 
of odd rank are absent (Ref. I) ' ) .  Here alignment proves to 
be the simplest possible type of polarization, and for jl = 1 
and 312 there can be no other type of polarization. 

The important role of dissipation of luminous energy in 
the effects of circular dichroism discussed below can be per- 
ceived from simple symmetry considerations. Let k and k' 
be the unit vectors determining the direction of propagation 
of incident and scattered light. If the atom is unpolarized and 
we detect linear polarization of the scattered light by sending 
it through a polarization filter (e' is a real-valued vector), the 
scattering cross section, as is well known (see, e.g., Ref. 6, 
§60), cannot depend on the degree of circular polarization of 
the incident light, 5,: there is no way to construct a nonzero 
scalar from the pseudoscalar 

the vector k, and two e'  vector^.^) The situation is different 
for aligned atoms. In the event of axisymmetric polarization, 
alignment, being an irreducible tensor of rank 2, is propor- 
tional to an irreducible tensor of rank 2 built from the vector 
n. Hence the terms proportional to aligning must contain two 
n vectors, and under the same conditions the cross section 
acquires a scalar combination of vectors of the form 

which becomes 

after summation over the polarizations of the scattered light 
(i.e., in establishing the angular distribution of the scattered 
light). Combinations (2) and (3) are T-odd, with the result 
that they are present in the cross section only when a dissi- 
pation channel is open, when r is nonzero; hence such com- 
binations determine dissipation-induced effects of circular 
dichroism. When dissipation channels are open, the cross 
section retains a dependence on 5; even when the incident 
light is linearly polarized or unpolarized. The corresponding 
constructions have the form 
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where the ~ t $ ~ ~ ~ , ~  are Clebsch-Cordirn coefficients. In the 

and determine the emergence of dissipation-induced circular 
polarization of the scattered light (circular dichroism in the 
final state). 

Below we derive a compact expression for the cross sec- 
tion of light scattering by aligned atoms and discuss 
dissipation-induced effects in detail. Note that although we 
speak of atoms, the results can be applied to the scattering of 
light by aligned molecules, since all the information on the 
dynamical structure of the scattering target is contained in 
the reduced matrix elements of the scattering tensor. 

2. THE CROSS SECTION OF LIGHT SCATTERING BY 
ALIGNED ATOMS 

It is convenient to specify the state of a polarized atom 
with a total angular momentum jl # 0 by the irreducible 
components of its density matrix, which are known as the 
state multipoles (statistical tensors).' In the present case of 
axisymmetric polarization only the zeroth component (in a 
system of coordinates whose z axis is directed along n) p; of 
the state multipoles of rank K=O, 1, . . . , 2 j l  is nonzero. 
Here we have p ; f=(2 j l  + 1)-'I2, p; determines orientation, 
p; determines alignment, etc. In the absence of polarization 
p;>,=o. 

The general expression of the cross section of light scat- 
tering by a polarized atom, obtained in Ref. 4, has the form 
(we use the atomic system of units) 

(5) 

Here w (w') is the frequency of the incident (scattered) 
light, a is the fine-structure constant, j2 is the angular mo- 
mentum of the atom in the final state, and 

~k=(v2j2lltkllvljl), k=O, 1, 2, 

are the reduced matrix elements of the irreducible parts of 
the scattering tensor, which emerge when the dependence on 
the magnetic quantum numbers in the irreducible compo- 
nents of the scattering tensor, t k q ,  is separated by the 
Wigner-Eckart theorem (the vlS2 stand for the set of atomic 
quantum numbers in the initial and final states with the ex- 
ception of the angular mom~ntum and its projection). Equa- 
tion (5)  also incorporates the spherical function Ykq(n) and 
the irreducible tensor of rank K constructed from the polar- 
ization vectors. An irreducible tensor of rank K constructed 
from irreducible tensors AkIq1  and Bk2(12 of rank k l  and k2, 
respectively, is defined in the following manner: 

case of a vector we have a l ,=a , ,  where the a, are its 
spherical components, 

The irreducible components of the scattering tensor have the 
form 

where d q  is the spherical component of the atomic dipole 
moment, 

is the resolvent of the atomic Hamiltonian, and El is the 
initial-state energy of the atom. 

Let us assume that the atom is polarized in such a way 
that only the alignment p; is nonzero. We write the cross 
section (5) in a compact form convenient for analysis, 
namely, containing the ordinary scalar and vector products of 
the polarization vectors e and e', the vectors k and k f  speci- 
fying the direction of propagation of the incident and scat- 
tered light, and the vector n defining the position of the 
alignment axis. We write the cross section of the light scat- 
tering by an aligned atom as a sum of two terms: 

Here 

is the cross section of light scattering by an unpolarized atom 
(see Refs. 4 and 6, $60) consisting of scalar, skew-symmetric 
and symmetric parts. The presence of each of these parts, 
determined by the irreducible components of the scattering 
tensor Tk , k= 0, 1, 2, is possible only if the triangle condi- 
tion A(j l , j , ,k)  is met. 

The second terms on the right-hand side of Eq. (lo), 
proportional to p;, determines an addition to the cross sec- 
tion caused by the atom's alignment. The spherical function 
YZQ(n) can be represented by an irreducible tensor of rank 2 
(Eq. (6)) constructed from the vector n (Ref. 8): 

As a result, the sum over Q in (5) at K =  2 can be expressed 
in terms of a scalar product (denoted by round brackets) of 
two irreducible tensors of rank 2 built from the correspond- 
ing vectors: 
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At k = k f = l ,  and k=O and k 1 = 2  ( k = 2  and kr=O) the 
scalars (12) can be expressed in terms of ordinary products 
of the constituent vectors by employing the formulas from 
Ref. 8. The formulas for the more complicated cases with 
k = k f = 2 ,  and k= 1 and k 1 = 2  ( k = 2  and k f = l )  are given 
in the Appendix. After separating all vector combinations, 
we arrive at the following expression for the second term on 
the right-hand side of Eq. (10): 

where the degree of circular polarization of the incident 
light, e2, equal to + 1 for right-hand (left-hand) circular po- 
larization and to zero for linear polarization, is defined in (I), 
and 

,$;=ikf[e'e'*]. 

The coefficients a,, b, c, , d+  , and Rkkt  are expressed in 
terms of 6j-symbols and the reduced matrix elements of the 
scattering tensor, Tk : 

Note that the last two terms on the right-hand side of Eq. 
(13) contain T-odd scalar combinations of vectors of the 
form (2) and (4). The scattering cross section is T-even, with 
the result that the coefficients d ,  must be T-odd. The 
I ~ ( T ~ T ~ , )  in d ,  (see Eqs. (14)) is T-odd. This quantity is 
nonzero if the scattering tensor (8) is non-Hermitian. The 
skew-Hermitian part of the scattering tensor is T-odd and 
does not vanish in above-threshold scattering (the photon 
energy exceeds the ionization threshold) because of the non- 

hermiticity in this case of the resolvent G E , + w  (Eq. (9)), 
while in resonant scattering the same is true due to the finite 
width I' of the resonant level. In the latter case the resonant 
level is sure to have a multipole structure (for a resonance 
involving a singlet, I ~ ( T ~ T ; , )  = o),  with 

where A is of the order of the fine splitting of the resonant 
sublevels, so that the effects in question are determined in 
resonant scattering by the small parameter r/A. 

Thus, the coefficients d, and the corresponding terms in 
(13) emerge only when a channel for dissipation of luminous 
energy is open in the process of light scattering: the photo- 
ionization channel in above-threshold scattering, and radia- 
tive, collisional, or other channels in resonant scattering. 
Here the physical parameter determining the rate of dissipa- 
tion of luminous energy (the photoionization probability, and 
the width of the resonant level) acts as a T-odd parameter. 
The matrix element of the skew-Hermitian part of the scat- 
tering tensor is proportional to this parameter. 

The effect of dissipation of luminous energy on the scat- 
tering of light by oriented atoms was studied in Ref. 5. Be- 
low we discuss a number of dissipation-induced effects 
emerging in the scattering of light by aligned atoms. Similar 
effects can be observed in the coherent scattering of electro- 
magnetic radiation by aligned systems? 

Note that in the event of axisymmetric mirror polariza- 
tion (with jl > 312) the state multipole pbontributing to the 
scattering cross section (5) can also be nonzero. Here the 
cross section acquires a number of additional terms propor- 
tional to the T-even parameter ITzI2, so that the coefficients 
d+ (see Eqs. (13) and (14)) of the T-odd combinations of 
vectors of types (2)-(4) do not change. Hence the discussed 
effects of circular dichroism are caused solely by atom align- 
ment. 

3. CIRCULAR DlCHROlSM IN THE ANGULAR DISTRIBUTION 
OF THE SCATTERED LIGHT 

By circular dichroism we mean the change in the angular 
distribution of the scattered light that takes place when right- 
hand (left-hand) circular polarization of the incident light is 
replaced by left-hand (right-hand). Obviously, this effect is 
absent when the light is scattered by an unpolarized atomic 
target: there is no way in which a scalar combination can be 
built from the pseudoscalar e2 (Eq. (1)) and the vectors k and 
k'. The manifestation of circular dichroism is no less obvi- 
ous when the light is scattered by an oriented atom: the ori- 
entation p'f is a pseudoscalar, and circular dichroism in the 
angular distributionS is retained in the total cross section as 
weL4 

When the light is scattered by aligned atoms, the effect 
of circular dichroism is determined by the last term on the 
right-hand side of Eq. (13). To establish the angular distri- 
bution of the scattered light when the light polarization is not 
detected, we must sum the differential cross section (10) over 
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two independent polarizations. This can easily be done in 
(11) and (13) by employing the well-known identity (see 
Ref. 6 ,  $45) 

We arrive at following expression for the angular distribu- 
tion: 

da" 
-- 

I 1 

d a  I -WW13"4( 3 ( 2 j l +  1)  [lTo12+ TlTl12  

(16) 

where the coefficients A ,  B, C ,  D, and F can be expressed in 
terms of the parameters (14) introduced earlier as follows: 

The last term on the right-hand side of Eq. (16), containing a 
T-odd combination of vectors of type (3), changes sign if 
right-hand circular polarization of the incident light is re- 
placed by left-hand. Thus, the effect of circular dichroism in 
the angular distribution of the scattered light is dissipation- 
induced. Our analysis at the end of the previous section 
shows that this effect can be observed in both above- 
threshold and resonant scattering. In the latter case the effect 
is small (the coefficient d +  contains the small parameter 
~ I A ) . ~ )  

The physical origin of circular dichroism emerging in 
the event of an open dissipation channel can be most readily 
understood on the basis of the following reasoning. If only a 
circularly polarized photon is detected in the scattering act, 
circular dichroisn~ can be observed in the absence of dissi- 

pation (for instance, for unpolarized atoms this effect is 
caused by the term containing a combination of vectors of 
the type t2(S(kkr)). However, in this case circular dichro- 
ism vanishes from the angular distribution, which is deter- 
mined by the sum of the scattering intensities over two op- 
positely directed circular polarizations of the scattered light. 
At the same time, when a luminous-energy dissipation chan- 
nel is open and, because of this, processes in an atom be- 
come markedly irreversible, the intensity of successive emis- 
sion of two photons by the atom changes somewhat. As a 
result the total scattering intensity (i.e., summed over two 
oppositely directed circular polarizations) proves to be dif- 
ferent for right-hand and left-hand circular polarizations of 
the incident radiation, so that circular dichroism is retained 
in the angular distribution. 

Note that circular dichroism is not observed in the total 
cross section of light scattering by aligned atoms, which is a 
simple consequence of parity con~ervation.~ Integration of 
the cross section (16) over all scattering directions can easily 
be carried out by employing the following well-known iden- 
tities: 

and we arrive at the following expression for the total scat- 
tering cross section: 

4. DISSIPATION-INDUCED POLARIZATION FEATURES OF 
THE SCATTERED RADIATION 

Let us discuss some specific features of the polarization 
of light scattered by aligned atoms that emerge when 
luminous-energy dissipation channels are open. 

If the scattered light is sent through a polarization filter 
that transmits only linearly polarized radiation, i.e., only the 
linear polarization of the scattered light is detected, circular 
dichroism is determined by the last term on the right-hand 
side of Eq. (13) (el is a real-valued vector, and t;=0). 
Hence the circular dichroism effect, which can be observed 
in the powers of linear polarization (or the corresponding 
Stokes of the light scattered by the aligned at- 
oms, is also dissipation-induced. 

Let us now assume that the incident light is linearly po- 
larized. Then the difference between the scattering cross sec- 
tions with detection of right- and left-hand circular polariza- 
tions is due solely to the penultimate term on the right-hand 
side of Eq. (13) (circular dichroism in the final photon state), 
which determines the degree of circular polarization of the 
scattered light: 
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Here da ' l d l l '  is given by the expression (16) with e the 
real-valued linear-polarization vector and t 2 = 0 .  Thus, when 
the polarization of the incident light is linear, the degree of 
circular polarization of the light scattered by the aligned at- 
oms is dissipation-induced and hence is nonzero only in 
above-threshold or resonant scattering. It is also obvious that 
in all cases where the degree of circular polarization of the 
incident radiation is zero, the degree of circular polarization 
of the scattered light is nonzero only when a dissipation 
channel is open. The corresponding expression for g; can 
easily be obtained, say, for the case of scattering of unpolar- 
ized light, by averaging the numerator and denominator of 
(17) over two independent polarizations of the incident pho- 
ton via an identity similar to (15). Here the T-odd combina- 
tion of the vectors in the numerator of (17) is replaced by a 
T-odd combination of the form 

Here only the irreducible tensors of rank 2, ~ : = { a @  b},, , 
and the like are nonzero. As a result, only one tern1 contain- 
ing the scalar S2, remains in the sum on the right-hand side 
of Eq. (A2). By employing Eqs. (A3), we can easily express 
this scalar in terms of scalar products of the vectors: 

APPENDIX When we examine S12 (Eq. (A2)), instead of construct- 
ing the symmetric tensor Bik we construct a skew-symmetric 

Let us see how the scalar constructions tensor from the vectors c and d: 

S k k l =  ({a@b}2 ,{{c@d}k@{e@f}kf}2) (A1) 1 

(see Eqs. (12) and (6)) can be expressed for k =  k '  = 2 ,  and 
I 

Bik=-(cidk- ckdi). 
k =  1 and k' = 2 in terms of scalar products of the constituent 2 

vectors. 
Here only the irreducible tensor of rank 1, B:= {c@d) ,, , is 

The components of a Cartesian tensor Ask can be used to 
nonzero, and only one term containing the scalar S ,2 remains 

construct three irreducible tensors 
in the sun1 on the right-hand side of Eq. (A3). The expression 
that we obtain for this scalar is 

1 
where AqIq2 are the spherical components of the tensor con- S -- 

12- 4 6  
{(ac)(bf)(de)+(ac)(be)(df) 

structed for each index in a way similar to the spherical 
components (7) of a vector. Using the well-known expres- 

- (ad)(bf)(ce)- (ad)(be)(cf) 
sion for the sum over the projections of the angular momenta 
of the product of three 3j-symbols (see, e.g., Ref. lo), we +(af>(bc)(de)+(ae)(bc)(df) 
can express a scalar built from three Cartesian tensors in 
terms of the corresponding irreducible tensors: 

-(af>(bd)(ce)-(ae)(bd)(cf)). 

AikBijCjk= x ( -  1)ql+q2+43~ ~ 1 4 z ~ - q l q 3 ~ - 4 3 - 4 2  
91  ~ 4 2  .Y3 ')state multipoles up to the fourth rank inclusive may manifest themselves 

in the differential cross section, and up to the second in the total cross 

= - [ ( 2 K r +  1)(2KU+ 1)]'12 ~ e c t i o n . ~  
"lf nondipole effects are taken into account, the cross section acquires con- 

K,K' ,K" 
structions of the form .$,(ke1)([kk']e'), which results in dissipation- 

K K'  K" induced polarization anomalies in the scattering.7 
(A2)  he circular dichroism effect manifests itself much more vividly in a quad- 

rupole resonance, where a T-odd parameter appears in the cross section as 
a result of interference of the resonant quadrupole and nonresonant dipole 

Examining '22 Eq' we use each pair of parts of the scattering tensor (similar to dissipation-induced effects in the 
to build a zero-trace symmetric tensor: scattering of iight by oriented atoms5). 
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