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The radiation of harmonics during the interaction of nonrelativistic electrons with a powerful 
standing laser wave is studied. The number of photons per pump pulse is calculated in 
two limiting cases: electron energy much greater than and close to the amplitude of the 
ponderomotive potential. It is shown that this effect can be observed experimentally with modem 
laser technology. O 1996 American Institute of Physics. [S1063-7761(96)00612-91 

1. INTRODUCTION 

The interaction of an electron with a strong traveling 
electromagnetic wave was first described in Ref. 1. Multi- 
photon Compton scattering in the field of a traveling plane 
wave was studied in Ref. 2. The problem of the elastic scat- 
tering of nonrelativistic electrons in the field of a standing 
electromagnetic wave was first studied by Kapitza and 
~ i r a c . ~  The experimental observation of this effect was de- 
scribed in Ref. 4. The Kapitza-Dirac effect in the field of a 
strong standing electromagnetic wave was investigated in 
Refs. 5 and 6. The modulation and acceleration of a bean] of 
nonrelativistic electrons in the field of two counterpropagat- 
ing waves were studied in Refs. 7 and 8. In Ref. 7 it was 
shown, specifically, that the motion of an electron, averaged 
over fast oscillations, in the field of a standing wave can be 
described with the aid of a ponderomotive potential 
(Gaponov-Miller potential). 

The motion of an electron in this potential can be accom- 
panied not only by elastic scattering but also by spontaneous 
emission, whose intensity was first estimated in Refs. 9 and 
10. In Ref. 9 an expression for the emission probability was 
obtained in first-order perturbation theory, when the param- 
eter ni = V/cll (Vo is the amplitude value of the ponderomo- 
tive potential, el l  = ,9f/2me is the electron energy associated 
with the motion of an electron along the standing wave) was 
assumed to be small: m< I .  A different limiting case was 
studied in Ref. 10: The electron kinetic energy ell was only 
slightly greater than the amplitudes Vo of the effective po- 
tential, i.e., l - m e  l. In these cases the above-barrier mo- 
tion of an electron is strongly perturbed by the field of the 
standing wave and radiation can be emitted at frequencies 
w, which are multiples of the fundamental frequency w,,, 
found in Ref. 10. 

The capabilities of the laser technology existing at that 
time were, however, inadequate for experimentally checking 
the results obtained in Ref. 10, and the frequencies calculated 
Ref. 10 were limited to the far-IR range. The electromagnetic 
radiation intensities that can now be achieved for picosecond 
and subpicosecond laser pulses with intensity - l o i6  
w/cm2 and higher at the focus make it possible to observe 
emission of near-IR and optical range photons by nonrelativ- 
istic electrons. 

In the present paper, expressions for the harmonic fre- 
quencies and the corresponding intensities of the spontane- 

ous radiation are obtained with the aid of the quasiclassical 
approximation for the case m < 1 (the perturbation theory for 
the interaction of an electron with a standing wave) as well 
as for the case I - m e  1 (above-barrier motion of an elec- 
tron). Estimates for the number of optical and near-IR pho- 
tons emitted over one pulse from the region of the interaction 
of the electron beam with the standing wave are given for the 
parameters of powerful pulsed lasers with peak intensity 
- loL6 w/cm2. The possibilities of arranging the correspond- 
ing experiments are discussed. 

2. FORMULATION OF THE PROBLEM. BASIC EQUATIONS 

Let us consider the behavior of a nonrelativistic electron 
in the field of a linearly polarized electromagnetic standing 
wave. Let the field of the wave be given by the classical 
vector potential 

where Aol and k , (w, ,  t k,)  are, respectively, the amplitude 
and 4-momentum of waves which propagate in opposite di- 
rections along the z axis and form a standing wave, and 
e,=e, is the unit polarization vector directed along the x 
axis. 

We assume that the initial electron momentum p makes 
a small angle with the direction of the standing wave (the z 
axis), so that the longitudinal component of the momentum 
is much greater than the transverse component, p l 1 9 p ,  . 
Generally speaking, an electron can be transmitted at an ar- 
bitrary angle relative to the direction of the wave. As will be 
shown below, however, the intensity of the harmonic radia- 
tion is proportional to the squared longitudinal length of the 
wave-electron interaction region, and for this reason the ge- 
ometry in which the particles are directed along the wave is 
preferred. 

In this geometry, since the ratio e ( A l .  p)l(eA 1 ,  the 
term (eA in the operator ( h  = c = 1 ) 

is responsible for the interaction of the electron with the 
wave. 

The Schrodinger equation for a particle in the field of a 
standing wave has the form 
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where Vo= ( e ~ ~ , ) ~ / m ,  is the amplitude of the effective po- 
tential (Gaponov-Miller potential). 

The solution of Eq. (3) is sought as a product of func- 
tions of the transverse coordinates x  and y  and the longitu- 
dinal coordinate z  of the electron: 

where ~ = p ~ / 2 m ,  is the kinetic energy of the electron in the 
case when the field of the wave is switched off adiabatically 
and p(x , y )  is the radius vector of the electron in the xy 
plane. 

Substituting the expression (4) into Eq. (3) g' ives an 
equation for $ ( z ) ,  

where e l l =  E - E ,  and E ,  = p ; / 2 m ,  are the components of 
the electron energy associated with unperturbed motion of 
the electron parallel and transverse to the wave, and E ~ ~ - E .  

The solution of Eq. (5) obtained in the quasiclassical 
approximation has the form 

The quasiclassicity condition l dADl l /d z I4  1, where X D I I  is the 
de Broglie wavelength associated with the above-barrier mo- 
tion of the electron along the wave, is given in terms of our 
problem by the inequality 

and for initial electron energy ~ 9 w ,  where w  is the fre- 
quency of the emitted photon, it imposes an upper limit on 
how close the parameter m can approach 1. Since the ratio 
w l  / ( m e ~ l l )  ' I2  - 1 o - ~  is small, the condition for quasiclassi- 
cal electron motion is consistent with the inequality 
1 - m e  1 (for E ~ ~ -  10 keV). 

The field of the emitted wave with the vector potential 

(Ao2 and e are, respectively, the amplitude and polarization 
unit vector) is assumed to be weak and is taken into account 
by ;neans of perturbation theory. 

To first order in the field (7) the amplitude for the tran- 
sition of an electron from the initial state ( E , P )  into the final 
state ( & ' , P I )  with the emission of a photon ( w , k )  is deter- 
mined by the expression 

xexp( - i kZz )d j i ( z )dp  dz  d t ,  , (8) 

where i+hi(z) and $ , , ( z )  are, respectively, the initial and final 
wave functions (6) and V is the normalization volume of the 
particle. 

Assuming that the relative change in the longitudinal 
component of the electron momentum during the emission 
process is small, 1 APII  /pIII - w / [ (  I - m ) e l l ] <  1, after inte- 
grating in Eq. (8) over the time and the transverse coordi- 
nates we obtain 

In Eq. (9) we introduced the notation 

u=lAp,+k, lpo  sin 6,  (10) 

where 0 is the angle made by the vector Ap+ k  with the z  
axis; Apll =pi; - yl l  and Ap, = pl - p, are, respectively, the 
changes in the longitudinal and transverse components of the 
electron momentum; A=Apl l  / k l l  ; N =  21th is the number 
of standing waves which fit within the electron-wave inter- 
action region; 1 = u T is the distance traversed by an electron 
along the standing wave during the pulse time T ;  

A , = 2 7 ~ l k , ;  

is an elliptic integral of the first kind;" and, J I ( u )  is a Bessel 
function. 

In Eq. (9) it is assumed that V =  .rrp;l, where po is the 
radius of the focus at the center of the standing wave (in the 
plane z  = 0). 

Squaring the expression (9) and using the well-known 
representations for a delta function ( w  , ~9 1, po% A, where 
A  is the spontaneous-emission wavelength), we obtain for the 
probability of a transition per unit time into the partial final 
state 

where 
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- = - +  FIG. 1. 

Integrating over the transverse momentum of the scat- 
tered electron, we obtain from Eq. (1 1) the following expres- 
sion for the spectral-angular density of the intensity of the 
spontaneous radiation: 

d21 ak;w2 
-- - 

1 
S(E '+W-E)  - I(eL.pL)l1 

dw d'nk r2(2me12 1 

solved by perturbation theory, and above-barrier motion of 
an electron, when the parameter m is close to 1, so that 
1 - m e  1. In the latter case perturbation theory is inappli- 
cable, and the problem must be solved exactly without using 
an expansion of the transition amplitude in a series in the 
small parameter nt .  

In closing this section we give a graphical interpretation 
of the effect with the aid of Feynman diagrams. A diagram 
of the spontaneous emission of a low-frequency photon 
(w,k) in the field of a standing wave is displayed in Fig. la. 
The thick electron lines correspond to a state of the electron 
in the field of a strong standing wave. These states originate 
from multiple rescattering of the wave photons forming the 
standing wave by the electron. This process is represented 
graphically in Fig. lb. 

+ ( e g ~ ~ ) l z l ~ d p l ;  , (13) 3. THE CASE OF HIGH ELECTRON ENERGIES 
(PERTURBATION THEORY) 

where a= e2/fic is the fine structure constant. 
From the law of conservation of the transverse compo- Assuming rn to be small, we expand the function 

nent of the momentum of the system p i  + k, - p, =0 it is ~ ( 5 1 m )  in a series in m and retain the lowest-order terms: 
easy to express the final energy E ' of the electron in terms of 
the parameters of its initial state and the characteristics of the 

3 F(clrn)-( l + :) 6- ( 1  + rn) sin 25 
emitted photon: 

(18) 

Using a well-known property of delta functions, with the 
aid of Eq. (14) we represent a (& '+  W-E) in the form 

where 

Substituting the expression (15) into Eq. (13) and inte- 
grating over dpl; , we obtain 

where the approximate equality po=pl l=(2 rn ,~ )  'I2 was used 
in the denominator. 

The expression (17) is general, and further calculations 
depend on the value taken for the parameter rn. We shall 
study two limiting cases: small ni< 1, when the problem is 

(the terms proportional to higher powers of m are small for 
numerical reasons and therefore are dropped in Eq. (18)). 

Substituting the expansion (18) into Eq. (12), we obtain 
for the integrals I, and I, 

The integrals (19) are easily calculated with the aid of 
the well-known expansionI2 
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Substituting the expression (20) into Eq. (19) and inte- 
grating over 5, it follows from Eq. (17) that 

where n= p lp  is a unit vector in the direction of the initial 
electron momentum and the factor us is given by the formula 

(in the final expression for u s ,  small terms m/4 and p, which 
have virtually no effect on the radiation frequencies, are 
dropped). 

The expression (21) was obtained under the assumption 
that the spectral emission lines of the electron which corre- 
spond to different harmonics s do not overlap. As will be 
shown below, this type of spectrum arises if the homoge- 
neous width of the lines is sufficiently small, which pre- 
sumes that the admissible duration of the laser pulse satisfies 
a definite condition. Furthermore, the transition from Eq. 
(17) to Eq. (21) was made assuming that 12-1, . When the 
differences of these integrals are taken into account, small 
corrections -(m/412 appear in the expression for 
d211dodok. 

Integrating in Eq. (21) over all directions for the emer- 
gence of a photon it is easy to obtain an expression for the 
spectral density of the intensity of the spontaneous radiation 
from an electron in the field of a standing wave (under the 
condition m< 1) 

where nT= m( 1 + m/2). 
It is easy to see from Eq. (23) that the position of the 

lines is determined by the diffraction factor sin2 us/u:, and 
the envelope of the intensity of individual harmonics is de- 
scribed mainly by the function J ; ( s ~ / 4 ) .  

An expression for the characteristic radiation frequencies 
follows from the equality us = 0: 

(we call attention to the fact that the formula (24) is approxi- 
mate: The term k:/2mew, due to the electron recoil accom- 
panying the emission of a photon, as well as the small terms 
p,.k,lmeo-vllcGl and k / A P l - v / c  1 are 
dropped). 

As follows from Eq. (24), the emission lines are equidis- 
tant with spacing o m s ,  where 

is the fundamental resonance frequency, determined by the 
transit time of an electron between two neighboring maxima 
of the ponderomotive potential. 

The frequency profile of the s-th harmonic is given by 
the expression 

d l ,  4 112 
- 

d o  3, a(&) 
lo:~;(sK/4) 

which follows from Eq. (23). 
The width of the emission lines, which is determined 

from the condition lu,l- n, equals 

The expression (27) is the homogeneous width of the lines 
and relates the width to the finiteness of the effective longi- 
tudinal electron-wave interaction length. In the present ge- 
ometry, the quantity 1 depends on the laser pulse duration 
7 and the electron energy. 

The condition that the spectral emission lines not overlap 
with one another is given by the obvious inequality 
Soh< o,, and presumes a pulse duration such that there is 
enough time for an electron to traverse a large number of 
wavelengths of the standing wave during the lifetime of the 
field. For fixed electron energy &=Volm this inequality 
gives a lower limit for the minimum pulse duration: 

For the numerical values taken in the present paper for the 
main parameters of the problem (see below), the duration 
satisfying the condition (28) is 7- 10 fs (for &=37 keV and 
A ,  = 1 - cm). The same criterion (28) makes it possible 
to use the Gaponov-Miller potential in the interaction opera- 
tor in the initial equation (3). 

Under certain conditions, the dependence of the fre- 
quency ores (25) on the electron energy can result in a strong 
inhomogeneous broadening of the lines and, in consequence, 
the peaks of different harmonics of the fundamental reso- 
nance frequency can overlap. The corresponding inhomoge- 
neous width is given by the formula 

A characteristic feature of the expression (29) is that the 
inhomogeneous width, in contrast to Swh (27), increases lin- 
early with s. From the expressions (27) and (29) arises a 
condition for the degree of beam nonmonochromaticity up to 
which the width 6wh (Swnh< Swh) predominates: 

For emission at the fundamental frequency (s = I ) and pulse 
duration r=0.1 ps with E = 37 keV and A I = I lop4 cm, the 
inequality (30) holds with a weak condition on beam niono- 
chromaticity: SE/& < 0.18. 

Integrating the expression (26) over frequency gives the 
total intensity of the radiation of the sth harmonic: 
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whose value is thus related with the homogeneous width 
6 0 ~  (27). 

It is easy to obtain from Eq. (3 1) an expression, which is 
convenient for comparing with experiment, for the number 
of photons of the s-th harmonic which are emitted from the 
electron-wave interaction volume by the electron beam over 
the lifetime of the standing wave (in ordinary units): 

where ne is the electron density in the beam. 
Since the parameter m is small, the formula (32) can be 

simplified with the aid of the well-known series expansion of 
the Bessel function with respect to a small argument:'' 

As a result, we obtain from Eq. (32) 

The formula (33) expresses a natural result for perturbation 
theory: The number N, is a power-law function of the am- 
plitude of the ponderomotive potential (N, = v:"). Since m is 
small, it follows from Eq. (33) that the number of photons 
emitted per pulse drops rapidly with increasing harmonic 
number s:  

4. THE CASE OF ABOVE-BARRIER MOTION OF AN 
ELECTRON 

We return to the general formula (17). To calculate the 
integrals I, and I2 we divide the region of integration 
(- rrNI2, nN/2) into successive sections of length n-. Using 
the periodicity of the integrand in ~ ( 5 1 m )  expressed by the 
equation1' 

where 

is a complete elliptic integral of the first kind, we can repre- 
sent the absolute value in Eq. (17) in the form 

where 6 and 12 are the integrals 

Without repeating the computations performed in Sec. 3, 
using Eq. (35) we obtain from the formula (17) an expression 
for the spectral-angular density of the intensity of the spon- 
taneous radiation: 

where the approximation po=pll was used in the denomina- 
tor and 6 = 2 1 A 1 ~ ( n i ) - P r r = 2 l A l ~ ( m ) .  

The integrals 6 and 12 are calculated in the Appendix. 
Using the results obtained there (Eq. (A3)), we give the fol- 
lowing expression for the spectral density of the spontaneous 
radiation intensity: 

where KlI3(u) is a modified Bessel functionI2 and a formula 
for Ere, is presented below. 

Comparing the expression (38) with Eqs. (23) and (26) 
shows that the case of above-barrier motion of an electron 
reproduces the main features of the radiation spectrum which 
we studied in Sec. 3 (the case of small m). For example, the 
resonance condition 6/2= ST, where s= I,  2,. . . , arising 
from the diffraction factor sin2(Ndi/2)lsin2(82) in Eq. (38) 
determines the expression for the characteristic radiation fre- 
quencies 

A consequence of Eq. (39) is that the lines are equidis- 
tant with spacing Gre,, where 

is the fundamental resonant frequency, which now depends 
not only on the electron energy but also on the value of the 
parameter rn = V o  / s  (compare with Eq. (25)). 
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The envelope of the peaks in the emission spectrum is 
given by the function K;/~(u) in the formula (38). In the case 
when for numerical reasons the argument of the modified 
Bessel function is greater than 1 

$7 2Tr 
v =- 
S 3 , / 2 ~ ( ~ )  S> 

(for the parameters of the problem that can be realized ex- 
perimentally this condition holds even for s = I) ,  the asymp- 
totic expansion of the function KIl3 can be used.I2 Then, as 
follows from Eq. (38), the maximum of the spectral density 
for the peak with number s is  determined mainly by the 
relation 

The expression (41) indicates that, as in the case of small 
m, the intensity of the harmonic drops rapidly with increas- 
ing harmonic number s. Now, however, this dependence is 
exponential and not a power law. 

The homogeneous width of the emission lines is deter- 
mined by the diffraction factor in Eq. (38), and for fixed E 

and m is given by the expression 

Just as in the case when perturbation theory is appli- 
cable, the lines are resolved when the inequality (28) holds. 

We shall show that the dependence of the frequency 
Ere, (40) on the parameters E and m can result in strong 
inhomogeneous line broadening. Now, when 1 - m e  1 holds, 
there exist two independent sources of this broadening. One 
source is due, as in the case of small m, to the initial energy 
spread of the electrons in the beam. The corresponding inho- 
mogeneous width equals, as follows from Eq. (39), 

where Kr(ni)=dK(m)ldm anti SE is the width of the dis- 
tribution of the initial energy of the electrons. It is easy to see 
that in the limit of small m the formula (43) goes over to Eq. 
(29). The additional tenn 2mKr(m)IK(m) in the square 
brackets in Eq. (43) arises as a result of the dependence of 
the frequency Ere, on the parameter m. To simplify the ex- 
pression (43), we employ the well-known approximate (in 
the limit m+ 1) formula for the con~plete elliptic integral12 

Its derivative is Kf (m)  = 1/2(1 -m).  For the value 
m=0.95 employed in the estimates, we have 
2m K r  (m)l K(nz)-7 and therefore this factor makes the 
main contribution to the inhomogeneous width: 

Note that the width act,,, increases as m-, I .  

The condition under which the homogeneous width of 
the lines plays the dominant role (8Enh< SGh) is expressed 
by the inequality 

which under otherwise the same conditions imposes a more 
stringent restriction on the degree of beam nonmonochroma- 
ticity. 

The second source of inhomogeneous line broadening is 
the actual inhomogeneity of the field of the standing wave in 
the transverse directions. To obtain the estimates below, we 
describe the function Vo(p) by a simple Gaussian distribu- 
tion 

(for laser pulse duration 7s 1 ps the longitudinal extent of 
the standing wave is much smaller than the confocal param- 
eter, and in Eq. (45) the dependence of the radius po of the 
focus on the longitudinal coordinate z is dropped). 

The line width due to the spatial dependence of the pon- 
deromotive potential Vo on the coordinate p is determined by 
the fornlula 

mKr(m) 2 p  
S6Ah"sGreS 2 Pcr 

which follows from Eqs. (39) and (45) with fixed E. If the 
factor K;,~, which gives the envelope of the spectral density, 
were not present in the formula (38), then p-po12 and 
p,-po would have to be used for p and po in order to 
estimate the line width. The inhomogeneous width arising 
with this choice of the parameters in Eq. (46) would be so 
large that it would exceed the spacing Ere, between separate 
lines. 

In reality the factor K;/~ in Eq. (38) plays the determin- 
ing role in the estimate of SGAh from the formula (46). This 
is because the argument of the modified Bessel function con- 
tains the parameter m, whose dependence on p is reproduced 
by the formula (45). When the distance p increases as the 
radiating electron moves away from the axis of the focus, 
m decreases and, in consequence, the radiation intensity de- 
creases exponentially (see Eq. (41)). It is easy to estimate 
from Eq. (41) the radius of the region of the standing-wave 
field near the axis that makes the main contribution to the 
intensity of the radiation of the sth harmonic: 

- 
Setting p-pol2 and p,-pot we obtain from Eq. (46) 

the following expression for the inhomogeneous width: 

which, in contrast to Eq. (44), does not depend on the har- 
monic number. 

The estimates presented below show that for the values 
taken for the main parameters of the problem the inhomoge- 
neous width SG,!,,, plays the dominant role and exceeds the 
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homogeneous width by approximately an order of magni- 
tude, reaching values =(1/2)Gr,,. Therefore, in contrast to 
the case when perturbation theory is applicable (ni< I ) ,  un- 
der the conditions of above-barrier motion of the electrons 
the nonuniformity of the focus of the standing wave in the 
transverse directions strongly influences the character of the 
spectrum. 

It is easy to obtain from Eq. (38) an expression for the 
number of photons of the sth harmonic which are emitted by 
the electron beam over the lifetime of the standing wave: 

As follows from Eqs. (33) and (49), a comparative esti- 
mate of the number of photons emitted by electrons in the 
regime of above-barrier motion or under the conditions when 
perturbation theory is applicable is given by the ratio 

Substituting into Eq. (50) the parameters adopted for the 
main quantities (see below) shows that for radiation at the 
fundamental harmonic (s  = 1) the number is approxi- 
mately an order of magnitude larger than the number N ,  . 

5. NUMERICAL RESULTS AND CONCLUSIONS 

In this section we shall present the results of numerical 
calculations, performed according to the formulas obtained 
above, for the harmonic frequencies and the corresponding 
intensities of the spontaneous radiation. We shall employ 
below the following parameters for the laser radiation: 
Al=800 nm (wl = 1.55 eV), T= 100 fs (data for a titanium- 
sapphire laser) and focal radius po= 1. cm. For pulse 
energy W =  0.5 J the peak intensity at the center of the focus 
is I= 1.6. loL6 w/cm2 and the amplitude of the ponderomo- 
tive potential is Vo= 3.7 keV. 

For the case of small rn we take for the parameters of the 
electron beam rn=0.1 (electron energy & = 3 7  keV), beam 
diameter de=O.l cm, ne= 1 . 1012 ~ m - ~ ,  and a&/& =O.l. 

The fundamental frequency calculated according to the 
formula (25) reaches the limit of the optical range and equals 
w,,,= 1.2 eV. The number of photons emitted per pulse by 
the electron beam at the fundamental frequency ( s =  1) 
equals Ns= ,=60. For the adopted values of the parameters 
the number of photons in the second harmonic ( s  =2)  with 
frequency w=2.4 eV is much smaller and equals 
N,=2=0.1. 

We give a parametric relation for the number of photons 
emitted at the fundamental frequency (see Eq. (33)): 

For the case of above-barrier motion of electrons we 
take at the center of the focal spot nz=0.95 (the electron 

energy 6 = 3.9 keV). The radius of the near-axis region of the 
standing-wave field is, according to Eq. (47), Fo=0.4po. Ac- 
cording to Eq. (49), the fundamental frequency of the radia- 
tion (s= l )  is G=0.21 eV. For ~E/E=O.  1 the inhomoge- 
neous line width due to beam nonmonochromaticity reaches 
the value S6,,,,-0.07 eV. The inhomogeneous width adn,, 
(48) is S6Ah=0.1 eV and plays the dominant role. 

The regime of electron motion under study is character- 
ized by lower frequencies but much higher intensities of the 
spontaneous radiation in the lowest-order harmonics. For ex- 
ample, the number of photons emitted over a pulse at the 
fundamental frequency by electrons from the near-axis re- 
gion of the focus is &= , = 7  - lo2. The number of photons in 
the second harmonic with frequency w=0.42 eV is also - 
quite large and equals Ns=2= 1 . lo2. An estimate according 
to the formula (49) gives for the third harmonic Csz3- 1. 

It is evident from the estimates presented that two types 
of experiments can be performed. In one type the electron 
energy is much higher than the amplitude of the ponderomo- 
tive potential (m-0.1). Under these conditions the depen- 
dence of the potential Vo on the transverse coordinate p is 
very weak, and practically all electrons in the volume of the 
focus participate in photon emission. The emission spectrum 
is actually represented by a single line corresponding to the 
fundamental frequency or,, . Under the condition (30) the 
line profile is given by the homogeneous width (27) and 
depends on the duration of the pulse. 

In experiments of the other type the electron energy is 
close to the amplitude of the ponderomotive potential at the 
center of the focus ( 1 - m < 1 ). Under these conditions the 
dependence of the potential Vo on the transverse coordinate 
p is substantial and results in substantial inhomogeneous 
broadening of the emission lines. Several lines correspond- 
ing to the lowest-order harmonics have an appreciable inten- 
sity in the emission spectrum. The frequencies of these har- 
monics are comparatively low and lie in the near-IR range. 

It should be noted that the radiation by an electron in the 
field of a standing wave can occur not only as a result of the 
interaction - A2. p, which we studied, but also as a result of 
the term - A l .  A2 in the perturbation operator. The relative 
role of these terms is determined by the parameter 

where the electron energy must exceed the amplitude of the 
ponderomotive potential. The maximum value of the param- 
eter 7 corresponds to the case E 2 VO . In this case it satisfies 
7- 1/d and does not depend on the intensity of the pump 
wave. In the case when perturbation theory is applicable, 
E 9 VO , the parameter satisfies 7< 1. 

Furthermore, the spectrum and angular distribution of 
the spontaneous radiation due to the interaction - Al . A2 dif- 
fer substantially from the low-frequency radiation studied in 
the present paper. Specifically, the spectrum of this radiation 
consists of lines whose frequencies are equal to or are mul- 
tiples of the frequency o ,  of the standing wave, and in con- 
trast to the radiation studied above it is emitted along the axis 
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of the standing wave. Nonetheless, an investigation of the 
radiation due to the interaction - A ,  .A2  is of interest and is 
the subject of a separate analysis. 

In closing, we thank Dr. P. Agostini for a discussion of 
the possibility of carrying out an experiment. 

6. APPENDIX 

We shall calculate the integral 6 (32). The integral is 
calculated completely analogously and, as will be seen from 
the subsequent calculations, equals 6 for 1 A 1 % 1. Let us di- 
vide the region of integration ( 0 , ~ )  into two sections 
(0 ,d2)  and ( ~ 1 2 ,  T) . Making the substitution of variables 
t= n+ 5' in the second integral (integration over the section 
( d 2 , ~ ) )  and using the equality (3) and the antisymmetry of 
the function ~ ( t l m ) ,  we obtain 

(the term containing /I in the phase of the integrand is rela- 
tively small (- l/IAI) and does not affect the value of the 
integral). According to the resonance condition, 6 = 2 s ~ ,  
where s = 1,2,. . . , so that the exp(is)= 1. 

The function ~ ( t l n i )  grows monotonically with 5, so 
that for IAIB 1 small values of 5 play the main role in the 
integral (Al) (for values of 5 which are not small the inte- 
grand oscillates rapidly). Expanding ~ ( ( l r n )  in powers of 5 
around the point t= 0 and retaining the lowest powers of 5 
and the parameter m we find 

~ ( t 1 n l ) - t + ( r n / 6 ) t ~  (for t < 1 ) .  (A2) 

Since the section of integration where to- 1/1A[-=S 1 

makes the main contribution to the value of the integral (Al), 
replacing the upper limit of integration by and substituting 
the expression (A2) into Eq. (Al) we obtain 

This expression is a well-known integral representation 
of the modified Bessel function K 1 1 3 ( ~ ) .  l 2  Using this expres- 
sion, we obtain 

In conclusion, we note that the accuracy of the expres- 
sion (A3) is quite high, since the higher-order terms in the 
expansion of the function F(.$(m) in powers of 5 (terms 
- t5)  contribute only small corrections (of the order of 
I A1 -U3) to the result (A3). 
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