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Intrashell transitions in Rydberg atom induced by distant collisions with charged particle imply 
close coupling of n2 channels which correspond to the (quasi) degenerate states of Rydberg 
atom with the same principal quantum number n. In the case when the Rydberg atom is initially 
in the ns  state very simple explicit analytical expressions are obtained for the quantum 
amplitudes of transitions into the final spherical or parabolic states. They are derived in the dipole 
approximation and are based on thz Fock O(4) symmetry group for the hydrogen atom. The 
semiclassical limit of the solution is compared with our previous classical trajectory (pseudo) 
Monte Carlo treatment of the problem. The Monte Carlo approach is shown to give very 
accurate results for the transition cross sections. Thus the binning procedure conventionally used 
in the Monte Carlo calculations is justified. O 1996 American Institute of Physics. 
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1. INTRODUCTION 

In addition to their value for various applications (such 
as the kinetics of low-temperature plasma and astrophysics), 
studies of processes involving Rydberg atoms are of consid- 
erable fundamental interest. In particular, collision of a 
Rydberg atom with a charged particle is one form of the 
fundamental three-body Coulomb problem in atomic physics 
(for a review see Ref. 1). When a charged particle ap- 
proaches the Rydberg atom, it efficiently induces transitions 
within the manifold of degenerate states (with fixed principal 
quantum number n) even at large interparticle distances. 
These processes can be also referred to as I-changing transi- 
tions ( n l o 4 n l ) .  Note however that the initial and/or final 
states could be alternatively labelled by other quantum num- 
bers (among which the parabolic basis is the most natural 
one). Resonant intrashell transitions have the largest cross 
sections2 and strongly influence all other inelastic processes 
which occur at smaller separations (such as excitation and 
charge exchange). These transitions always comprise an es- 
sential part of the collision process; as an example we refer 
to the radiative stabilization of Rydberg states in double 
charge exchange3 and to manifestations of the intrashell tran- 
sitions in ZEKE spectroscopy of large molecules which are 
actively discussed in the current literature (see, e.g., Refs. 4). 
No less important is another fundamental aspect of the prob- 
lem; the processes with Rydberg atoms are well known to be 
convenient objects for study of the relation between quantum 
and classical methods of description. 

It is generally recognized that for higher collision veloci- 
ties the dipole-allowed transitions Al=?  l dominate. As v 
decreases, the processes with larger I All become more and 
more significant. This is interpreted as a series of stepwise 
transitions in a single collision event. In order to describe 
them within quantum mechanics, some sort of coupled- 
channel method is required. When the reduced collision ve- 
locity v n  is not large, it is necessary to include in the calcu- 
lations all the atomic states with the same principal quantum 

number n as that in the initial Rydberg state. The amount of 
states inside the hydrogenic shell (-n2) is prohibitively large 
for numerical calculations when typical Rydberg atoms are 
concerned. For instance, in a recent paper by Sun and 
~ a c ~ d a m ~  the Rydberg states with n=26 or 28 were em- 
ployed. 

The classical approach in atomic physics inevitably im- 
plies calculation of individual classical trajectories for vari- 
ous initial conditions which are randomly chosen from the 
classical ensemble corresponding to the initial quantum state. 
This scheme is commonly referred to as the Classical Tra- 
jectory Monte Carlo (CTMC) method. The outcome of the 
collision is described in tenns of continuous observables (for 
example, the final electron orbital momentum I). It is related 
to the final quantum states using some binning procedure. 
Namely, the continuous scale of 1 is subdivided into intervals 
(bins); each bin is related to some integer quantum number 
1.' For intrashell transitions the CTMC calculations require 
very large amount of numerical work, which apparently ex- 
plains why CTMC calculations have not yet been carried out 
for this process. Note that the intrashell transitions are in- 
duced by the long-range dipole interaction, which increases 
the necessary numerical work in both quantum and classical 
approaches. 

Actually the exact explicit solution of the quantum prob- 
lem (within some natural assumptions outlined in the next 
section) was obtained quite long ago.6 However the form of 
the results was complicated and cumbersome. This was the 
reason why in fact they were applied to practical calculations 
only in the simplest case n=2. In an alternative approach 
Beigman and syrkin7 used a special a d  hoc averaging pro- 
cedure to reduce the number of quantum coupled equations 
to n and considered some approximate methods of solution 
for the resulting system of equations. The numerical results 
obtained in7 are in reasonable agreement with the recent ex- 
perimental data.2 However, the averaging procedure is diffi- 
cult to justify theoretically. Additionally, this approach does 
not allow one to calculate distributions over the azimuthal 
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quantum number m or over the parabolic quantum numbers. 
The present study was stimulated by two recent devel- 

opments. 
I .  Sun and ~ a c ~ d a m ~  carried out measurements for the 

I-mixing process with Rydberg atoms having principal quan- 
tum number n =26 or 28. For high n the calculation of finite 
sums discussed above becomes quite tedious. It is equally 
important that the simplicity of the derivation is in some 
controversy with relatively complicated final formulae. It 
should be stressed also that the current experimental data 
refer to relatively small values of final quantum numbers I ,  
whereas for low collision velocities the states with large 1 are 
populated efficiently. 

2. In order to interpret and complement the experimental 
data, Kazansky and 0strovsky8 developed a theory in which 
the Rydberg electron is treated as a classical particle; all 
other physical inputs used in Ref. 6 above were retained. 
This approach could be classified as pseudo-CTMC scheme. 
It gave unexpectedly simple formulae for the final-state dis- 
tributions over the parabolic or spherical integral of motion 
(subsequently converted to distributions over the related 
quantum numbers using the binning procedure). 

The object of the present study is to find the quantum 
analogues to the simple results of the classical theory. After 
that we trace the transition from quantum theory to the clas- 
sical limit in order to analyze the applicability of the classi- 
cal approach and the role of quantum effects. This analysis 
allows us to justify the binning procedure employed in 
CTMC. 

The simplifications achieved in the earlier classical and 
in the present quantum treatments are related to the particular 
but very important case when the electron is initially in the 
s-state.') It should be stressed that realistic I-mixing experi- 
ments nowadays are carried out with low-1 Rydberg atoms in 
initial states2 which could be effectively treated as s- state^.^ 

It has to be emphasized that the possibility of obtaining 
simple analytical quantum solutions has a deep group- 
theoretical foundation. Namely, it stems from the fact that 
the symmetry of the discrete states of the hydrogen atom is 
described by the four-dimensional rotation group 0(4), as 
discovered by ~ o c k ?  

2. BASIC IDEAS 

We consider a collision between a Rydberg atom in a 
state with the principal quantum number n and an ion with 
charge Z. The relative motion of the colliding particles is 
treated by means of classical mechanics. This allows us to 
determine the time-dependence for the internuclear vector R 
directed from the Rydberg aton1 nucleus to the incident ion. 
The electron wavefunction &r,t) obeys the time-dependent 
non-stationary Schrbdinger equation2) 

with the Hamiltonian 

where r = { x , y , z }  is the electron vector relative to the Ryd- 
berg aton1 nucleus. The unperturbed motion of the electron is 
governed by the purely Coulomb Hamiltonian .Po; the effect 
of the non-Coulomb core is included below. 

Since the resonance transitions have very large cross 
sections, we can employ the long-range dipole approxima- 
tion for the interaction 

In the collision plane the internuclear vector R is char- 
acterized by the azimuthal angle @(t) (@(-w)=O). Follow- 
ing Dernkov et aL6 we introduce a rotating coordinate 
system3) with the axis z ' = z  perpendicular to the collision 
plane and the axis x '  directed along the vector R(t). Transi- 
tion to this frame is achieved by applying the operator for a 
finite rotation to the wave function (together with a simple 
phase transformation): 

Here En= - 1/(2n2) is the unperturbed Rydberg electron en- 
ergy, I is the vector operator of the electron orbital momen- 
tum, 54 is the vector of the angular momentum for the rela- 
tive motion of the colliding particle (which is perpendicular 
to the collision A plane, A ~ = ~ ~ = p ~ * c l @ l d t ) ,  and p is the 
reduced mass, 1,= 1,r. The operator %' coincides with the 
Hamiltonian of the hydrogen atom in uniform electric and 
magnetic fields 

(c is the velocity of light). The effective magnetic field is 
equivalent to the Coriolis force acting in the rotating frame; 
note that the diamagnetic term (-H2) does not appear in the 
frame transformation. The electric field E is directed along 
the x' axis and has the magnitude E =  -z /R2( t ) .  The effec- 
tive magnetic field is directed along the z'  axis with the 
magnitude (1/2c)H= - % I [ ~ R ~ ( ~ ) ] .  

Thus the problem is reduced to the description of the 
excited hydrogen atom in perpendicular electric and mag- 
netic fields. It can be solved explicitly both in classical and 
quantum mechanics. 

The classical problem (with time-independent fields hav- 
ing arbitrary directions) was considered by  s stein" and 
pauli12 (more precisely, these authors treated the problem 
within the old quantum mechanics, which implied analysis of 
the slow evolution of the classical trajectories; see also 
~ o r n ' ~ ) .  The electron orbit was characterized by the orbital 
momentum I, and the Runge-Lenz vector A directed from 
the atomic nucleus towards the orbit aphelion. In classical 
mechanics the Runge-Lenz vector A is proportional to the 
electron coordinate r ( t )  averaged over the fast motion of the 
electron in its unperturbed elliptic orbit: (r)=3nA/2. The 
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slow evolution of the trajectories can be described as preces- 
sion of the vectors I ,  =(L+A)/2 and 12=(L-A)/2. The axes 
of precession are directed respectively along the vectors 

The precession frequencies are equal to w, and w2. The pre- 
cessions are uniforni in time. 

The quantum version of the theory was developed by 
Demkov et a1.I4 Here we emphasize that the classical aver- 
aging over the fast electron motion corresponds in quantum 
mechanics to the approximate reduction of the problem to 
the subspace of degenerate electron states having the same 
principal quantum number n .  

The vector operators I, and I2 possess all properties of 
the angular momentum operators in quantum mechanics. 
They are independent, i.e., commute with each other and 
have fixed length: I:=I;= j ( j +  I )  with j= (n - 1)/2. The 
unperturbed hydrogenic states can be labelled by the quan- 
tum numbers i ,  and i2 which are eigenvalues for the projec- 
tions of the operator vectors 1, and I2 on some axis. This 
representation differs only in notation from the standard rep- 
resentation of the parabolic quantum numbers n , ,n2 ,rn (sub- 
ject to the constraint n ,  + n 2 +  IrnI + 1 =n),  since m = i , + i 2 ,  . . 
n , - n2 = z , - 1,. The connection between the parabolic 
(n,  ,n2 ,m) basis and the spherical (1,rn) basis is universally 
known. The preceding explanation presupposes that the vec- 
tors I ,  and I, are quantized along the same axis in space. 
Generally this constraint can be lifted, since the operators are 
independent. The necessity to quantize these operators along 
different axes in space appears just in the problem of the 
hydrogen atom in the crossed electric and magnetic fields. 
Namely, the eigenstates of the Hamiltonian (7) (reduced to 
n-subspace) correspond to quantization of the operator I, 
along the @,-axis and the operator I2 along the 02-axis. 

Returning to the collision problem, we have to stress that 
here we encounter time-dependent effective electric and 
magnetic fields. The general solution of the problem with 
time-dependent fields cannot be obtained in analytical form. 
However the effective fields specific to the collision problem 
have two important properties: 

(i) their directions are fixed in space in the rotating 
frame; 

(ii) they have the same time dependence governed by the 
factor ~ - ~ ( t ) .  

Due to the first property in the course of the collision the 
precession axes o, and o2 do not change their directions (in 
the rotating frame). The angle y between the effective elec- 
tric field and the vector o, (or 0 2 )  satisfies 

3nZ 
tan y= -. 

2bu 

Here u is the relative collision velocity and b is the impact 
parameter (%=,ubu). 

The second property is manifested in the fact that the 
precession is uniform in the effective time which coincides 
with the angle (D: 

Y, 
@(t )=  --- d l ' .  -.. , u ~ ~ ( t ' )  I' 

In quantum terms this means that the eigenstates for the pro- 
jections I , o l / o l  and 1202/02 do not change in time. There 
are no transitions between these states during the  collision^) 
but in the course of the collision the eigenfunctions acquire 
the phase factors 

where n '  and n" are the eigenvalues for the projections of I ,  
and I2 on the axes o, and ~1);! respectively, and 

O = * = A @ J m ,  cos y 

Here A @ = @ ( t 4 ~ 4 )  is the angle of rotation of the internu- 
clear axis in course of the collision; for rectilinear trajecto- 
ries A@=T. It should be stressed that in general the present 
development does not require the assumption of the straight- 
line trajectories; conservation of the orbital momentum 9 is 
sufficient. For example, replacing the Rydberg atom by a 
Rydberg ion (with some bare charge) one can incorporate in 
the theory the Coulomb trajectories of the colliding particles 
by simply substituting an appropriate angle A@(b). 

Now we discuss the physical assumptions used in the 
present scheme. The dipole approximation for the interaction 
is common to all theoretical papers on the The 
conditions of its applicability are discussed, for instance, in 
Ref. 6; see also Sec. 5 below. The scheme assumes exact 
degeneracy of the energy levels within the given n-manifold. 
In reality the degeneracy is somewhat lifted by various 
physical mechanisms; this effect can be taken into account in 
the quasihydrogenic approximation (see Ref. 8 and section 
5). 

The Stark levels belonging to adjacent n-manifolds 
(pseudo-)cross for R < m. However, the intershell (n- 
changing) transitions (neglected in the present scheme) gen- 
erally become effective for substantial smaller internuclear 
separations. Indeed, the related Stark states correspond to an 
electron cloud shifted along the electric field and in opposite 
direction. Therefore the wavefunction overlap is small, 
which leads to small level splitting at the pseudocrossing. 
The pseudocrossings are passed diabatically unless the colli- 
sion velocity is very small. We limit ourselves to these quali- 
tative remarks, since the detailed estimates for intershell 
transitions could be the subject of a separate study. 

3. QUANTUM TRANSITION AMPLITUDES 

Parabolic basis 

We start by considering the intrashell mixing in the sim- 
plest basis of states, namely, let the Rydberg atom initially 
be in the spherical ( l o  ,mo) state. We are looking for the final 
state distributions over the quantum numbers i ,  and i2 which 
are eigenvalues for the projections on the collision velocity 
axis of the vectors I ,  and I2 respectively. 

The propagation in time (up to the limit t 4 "  which 
gives the result of the collision) is reduced to purely geo- 
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metrical operations which are completely analogous to the 
precession picture in classical mechanics. The succession of 
operations is as follows: 

(i) choose a standard parabolic (i.e., i l  ,i2) basis with 
some arbitrary axis and expand the initial electron wave 
function in this basis; 

(ii) apply the operations of finite rotations in order to 
switch to the (n ' ,nu) basis; 

(iii) propagate in time by multiplying the (nl,n")-basis 
state vectors by the phase factors (1 1) (which corresponds to 
rotations around the o, and % precession axes); 

(iv) return to the original basis using the same (but in- 
verted) finite rotations applied in reverse order. 

The matrices of finite rotations are given by the well 
known Wigner  function^.'^ The implementation of the 
scheme given above allowed Dernkov et to express the 
transition amplitudes in the ( i ,  ,i2)-basis as the product of 
four Wigner functions (two for each vector I, and I,) and the 
phase factors, summed over two indices.') Transformation to 
the spherical (1,m) basis requires additional coupling of the 
"angular momenta" I, and I, using the standard Clebsch- 
Gordan coefficients. 

Thus, one has to perform three rotations for each vector 
I, and I,, which results in a formula containing at least four 
summation indices. The first simplification (used also by 
Abramov et a1.18) stems from the fact that the product of 
several rotations can be represented as a single rotation. The 
rules to calculate the parameters of the latter rotation are 
known. For example, they are cited in the reference book by 
Varshalovich et ~1.;' ' we follow notations and conventions 
employed therein. 

The resulting rotations are distinct for the vectors II and 
I,. Namely, in the first case the rotation is characterized by 
the set of Euler angles fl,={a,,P, ,yIE} defined by the rela- 
tions 

- 1 
-- 

fl 
sin y ?' 

where y and C! are the collision parameters introduced by 
Eqs. (9) and (12). Note the very simple and helpful expres- 
sion 

PI n 
sin -=cos y sin -. 

2 2 

For the vector 1, the set of Euler angles f12={a2 ,P2 ,yZE} 
is 

It is worth stressing that the effective electric field axis (i.e., 
essentially the collision velocity vector) is chosen as the 
Z-axis in the definition of the Euler angles adopted here. Of 
course, these rotations appear in both classical and quantum 
versions of the theory. 

The quantum amplitude for the transition from the initial 
spherical (lo ,mo) state into the final parabolic ( i ,  ,i2) state is 
represented as 

where we employ conventional notations for the Wigner 
functions Dll  i 2 (a ,p ,  y) and Clebsch-Gordan coefficients 

~ f ~ t ~ , ~ , ~  , and j= (n - 1 )12. 

The subsequent development holds only if the Rydberg 
atom is initially in the s-state (lo=mo=O), whereupon the 
nonzero Clebsch-Gordan coefficients are exceedingly 
simple: 

Summation over one index is removed in the expression 
(16), with the result 

1 
f.. =- 2 ( -  I ) j+i rDj  

l I t Z  J2j+l ; I  

i l i l ( f f l  *PI ,YIE)  

The latter transitions is carried out using the well-known 
relations 

The sum in the formula (18) corresponds to the product 
of two successive rotations which can be combined into a 
single rotation with new Euler angles. We employ the addi- 
tion theorem for the Wigner functions which can be written 
asi5 

with 

sin p, 
cot ff,,=cos PI cot 4 + c o t  p2 - 

sin 4 ' 

cos Po= cos PI cos P2 - sin PI sin P2 cos 4, (22) 

sin P2 
cot yo= cos p, cot 4+ cot p, - 

sin 4 ' 

After some algebra a remarkably simple expression is ob- 
tained for the parameter Po in terms of the dynamic angles y, 
a: 
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The function is the generalized characteri5 for the 
irreducible representations of the rotation group expressed in 
Gegenbauer polynomials 

P o  d l  
sin - =sin 2 y sin2 - 

2 2 ' (24) 

Thus we have obtained a final expression for the transi- 
tion amplitude with a single Wigner function and without 
any summation: 

Using the representation (27) we cany out summation 
over the indexes i ,  and i2 with the final remarkably compact 
analytical expression for the transition amplitude 

Spherical basis 

Generally the representation of the transition amplitude 
in terms of the final spherical I ,  rn states is given by 

This is very useful even from the purely practical point of 
view, since the number of terms in the four-fold summation 
implied by formulae (16), (26) increases with n as n4. 

The total probability summed over the final state azi- 
muthal quantum number m is 

In order to carry out this summation we employ a rarely used 
representation for the Wigner function:19 

4. CLASSICAL LIMIT 

Since the special functions entering formulae (25), (34) 
and (35) obey well known differential equations, it is easy to 
obtain semiclassical approximations for the transition arnpli- 
tudes of various levels of sophistication. Below we are inter- 
ested in the crudest version of this approximation. This al- 
lows us to trace the transition from the exact quantum 
solution to the classical approximation introduced by Kazan- 
sky and 0strovsky8 within a quite different formalism. The 
related formulae for the special functions are not cited in the 
mathematical literature, being probably regarded as too 
crude. We can easily derive them by invoking the well- 
known differential equations which can be conveniently pre- 
sented in the form 

(27) 

Here the Euler angles { ~ , p ,  3 describe an arbitrary rotation 
of the three-dimensional frame; alternatively, the same trans- 
formation can be describedI5 as a rotation through angle o 
around the axis characterized by the spherical angles 0,6. 
The representations for the rotation are interrelated:I5 

- 
o p z + y  

COS -=cos - cos - 
2 2 2 ' 

tan B = tan f! (sin - ' , 2 

rr z - y  
< p = - + -  

2 2 '  

In our problem the set of angles {w,O,@) is expressed in 
terms of important parameters (with the physical meaning 
discussed in the next section). Namely, after some cumber- 
some algebra we obtain quite simple expressions 

0 rr 
sin - = en, , B = -- 

2 5 ,  T=o, (31) 
All these equations have the form of the conventional one- 
dimensional Schrodinger equation. For the latter the crudest 
(semi) classical approximation for the probability density 
reads: 

E,,, = 2 sin y sin - cos2 y sin2 - + cos2 -, 1 
1 0 

tan (= - 
cos 2. 
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where u(x) is the classical velocity at the point x for the 
electron moving in the potential V ( x ) .  It corresponds to av- 
eraging over all quantum oscillations and neglecting tunnel- 
ing. Applying this approach we obtain after some simple 
transformations, normalization and reparametrization6) 

where 

The quantum transition probabilities are defined as 

Their crude (semi-) classical counterparts are 

where 

the classical orbital angular momentum is L=1+ 112, and 
~ = L l n .  The formulae (40)-(42) and (47)-(49) are valid pro- 
vided the expressions under square roots are positive; other- 
wise the right hand sides have to be put equal to zero. Be- 
cause of this property the parameters e,,, , ptI, and a,,, have 

FIG. 1 .  Total cross section of intrashell transitions o; related to its low- 
velocity limit a,. Collision of Na(26d) atom wih an ion is considered in 
the quasihydrogenic approximations (see text). The reduced velocity un is 
the ratio between the collision velocity u and the typical Rydberg electron 
velocity lln. 

clear physical meaning, being related to the largest values of 
the variables e, p and a attained within the classical approxi- 
mation. 

Consider now formula (45) and its approximation (48) as 
an example. These expressions give the impact-parameter- 
dependent transition probability for the integer quantum 
number I. In slightly different terms it can be understood as 
the final state distribution over the (integer) I. The latter in- 
terpretation can be extended to a purely classical description 
where the variables 1 and rn vary continuously. Comparison 
shows that the right hand sides of the formulae (47)-(49) 
coincide with the distribution obtained within our previous 
classical analysis.$ 

Although some direct connection between the classical 
and quantum distribution functions is established in this way, 
it is inappropriate for realistic quantitative applications. This 
is seen already from the fact that the approximations (47)- 
(49) can exceed unity, thus violating the unitarity constraint. 
The appropriate relation between the classical and quantum 
results is given by the binning procedureS used in the stan- 
dard CTMC and in Ref. 8. According to it one has to iden- 
tify, for instance, 

which certainly restores unitarity. The plain prescription L = 1 
+ 112 can be understood as a result of the simplest estimate 
for this integral. Similar binning formulae could be written 
down for quantum numbers other than 1. 

5. TRANSITION CROSS SECTIONS 

Integration over impact parameters gives divergent cross 
sections for the dipole-allowed transitions (la11 = 1). How- 
ever this is true only in the case of exact degeneracy of levels 
within the given n manifold. In fact, this degeneracy is bro- 
ken for realistic Rydberg atoms. For the hydrogen atom (or 
one-electron hydrogenlike ions) the degeneracy is lifted by 
the tine structure level splitting and Lamb shift (see the paper 
by Chibisov2' who considered the case rz=2) .  In the multi- 
electron atoms the effective potential seen by the excited 
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FIG. 2. Reduced cross sections (or fractional populations) f i  for the final states of Na(261) atom in the quasihydrogenic approximation for various reduced 
collision velocities un. The quantum results are shown by open circles, the classical (pseudo-) CTMC results are presented by crosses (for un=O.l (a) and 
un=0.6 (b)) and small closed circles (utz=0.2 (a)). The symbols are joined by smooth lines for convenience. The inset shows details of the relation between 
quantum and classical results for large 1. 

electron differs from the Coulomb potential. Typically the 
non-Coulomb core produces energy level splittings which 
are much larger than those due to the relativistic effects. 

Bearing in mind application to the intrashell transitions 
in Na(nd) explored in the experiment2 (n=26 and 28), we 
use the quasihydrogenic approximation to mimic the effect 
of the non-Coulomb core in the Rydberg atom as described 
in Ref. 8. Briefly, the strong intrashell level mixing is opera- 
tive when the linear Stark shift of the outermost levels in the 
manifold ( - 3 n 2 ~ l ( 2 ~ 2 ) )  exceeds the level splitting pro- 
duced by the core (-an3, where 6 is the quantum defect). 
From this we obtain the expression for the critical internu- 
clear separation R,, = Jm. In the subsequent model 
calculation we take the value Sd=0.0135 which is the quan- 
tun1 defect for Na(nd) states. It is assumed that the intrashell 
mixing is operative only for the part of the nuclear trajectory 
lying inside the Rm,-sphere. This leads to the following ex- 
pression for the effective rotation angle of the internuclear 
axis: 

A @ = 2  arcsin(blR,,)(b<R,,), A@=O(b>R,,). 

(52) 
For low b the dipole approximation for the interaction be- 
comes invalid. We define this boundary roughly as 
bmi,,=4n2; the cross sections are fairly insensitive to it.' 

The cross section calculation requires a single numerical 
integration over the impact parameter b. The results are pre- 
sented below with the parameters chosen as described. Fig- 
ure 1 shows the total cross section a, for the intrashell tran- 
sitions. For low un this cross section approaches the limiting 
value U ~ = T ( R ~ , , , - ~ ~ , ~ , ) / ~ .  This implies that almost all tra- 
jectories penetrating the Rm,-sphere lead to 1-mixing. For 
our particular choice of the quantum defect 6 we obtain 
a0=2872.rrn4, which takes the huge value q= 1 1.55X 
cm2 for n=26 employed in experiment.' For higher u n  the 
ratio cr,/uo decreases. 

Although the formulae (47)-(49) give a crude approxi- 
mation for the dependence of the transition probabilities on 
the impact parameter, the difference between the quantum 

and classical results for the quantities integrated over b 
proves to be very small. For a, this is seen from Fig. I .  This 
is also the case for the cross sections u ~ ~ , ~ ) + ( ~ , , , )  describing 
transitions into individual quantum states (v,vl). It is conve- 
nient to use the reduced cross sections defined as 

TABLE I. Reduced cross sections fA i  for the process Na(26d) 
+Naf-rNa(261= +2Al)+Nai at various values of the relative collision 
velocity un. In each block the upper figure is the present quantum theory 
within the quasihydrogenic approximation for Na; the next figure is the 
same but in our (pseudo-) CTMC scheme;' the lowest figure is the experi- 
mental data by Sun and ~ a c ~ d a m . *  
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FIG. 3. Reduced cross sections f,, for the same process as in Fig. 2 in the 
low-I domain for different reduced collision velocities vn. The symbols 
correspond to various values of the final orbital momentum I: crosses-I= 1; 
boxes-1 =2; triangles u p l = 3 ;  triangles down-I=% diamonds-l=5. 

For the final 1-states these quantities coincide with the frac- 
tional populations introduced by Sun and ~ a c ~ d a m . ~  

The reduced cross sections fl are shown in Fig. 2 for 
some values of the reduced velocity vn. For low un the final 
state distributions form a very broad pattern. Very roughly it 
can be described as a uniform (in terms of 1) population of 
all available quantum states ( I S n  - 1). Note that this distri- 
bution is far from the statistical one (the latter presupposes 
linear growth of fl with I). For large un the dipole-allowed 
transitions (I All = 1)  dominate. Nevertheless, even for vn 
close to 1 the transitions with larger I A11 remain appreciable. 
The quantum and classical results almost coincide on the 
scale of Fig. 2. The small differences are more noticeable for 
large 1. Interestingly, the quantum results show shallow os- 
cillations relative to the smoother classical curve (Fig. 2, 
inset). 

Table I shows comparison of the present results with the 
experimental data for n=26 by Sun and ~ a c ~ d a m . ~  The 
agreement is quite good. The very small difference between 
quantum and classical results has to be stressed again. This 
allows us to omit here comparison with the experimental 

FIG. 4. 
circles- 

Same as in the Fig. 3, but for some representative large-1 states: 
-1 =7; triangles-1 = 10; boxes-1 = 15; diamonds-1 =20. 

data for n=28  since for the classical theory the discussion 
was already presented elsewhere.' 

Typical distributions over the azimuthal quantum num- 
bers are shown in Figs. 3 and 4. For small 1 the distributions 
are strongly peaked at m=O. As 1 increases, the 
m-distributions become more broad; oscillatory patterns can 
be noticed. For large 1 the m-distributions are close to uni- 
form with a small maximum at the higher m side. 

To summarize, in the present paper we have found a 
compact expression for the quantum transition amplitude and 
studied its semiclassical limit. This is equivalent to the ex- 
plicit solution of the close-coupling problem for n2 states in 
the fixed-n manifold. The underlying reason for this result 
lies in efficient use of the Fock O(4) symmetry group for the 
hydrogen atom. The classical limit of the quantum solution is 
studied in detail. Very good agreement is found between the 
quantum and classical results for the transition cross sections 
which justifies the binning procedure used in CTMC calcu- 
lations. Good agreement with the recent experimental data is 
achieved. 
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