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I. INTRODUCTION 

Over the years researchers have shown unflagging inter- 
est in the search and study of quantum mechanical models 
that either allow constructing exact solutions explicitly or 
provide a fairly complete qualitative and numerical analysis 
of the solutions.'-5 The explanation lies in the development 
of the general spectral theory of the Hamiltonian operators 
and in the progress achieved in new branches of physics, 
such as nonlinear quantum optics6 and nanotechnology in- 
volving quantum-size elements. Of obvious interest to these 
avenues of research are the analysis of the problem of recon- 
structing potential patterns from a given point energy spec- 
trum (in particular, from an equidistant spectrum spoiled by 
a set of energy gaps of fixed sizes and positions) and the 
study of the bifurcations of production and collapse of such 
gaps and their relationship to the bifurcations of the potential 
pattern. 

Various approaches to analyzing the direct and inverse 
Schrodinger problems have been adopted in studying these 
problems. Among these are the approaches based on using 
supersymmetry properties7*8, on studying the simplest non- 
linear and q-deformed o s c i ~ l a t o r s " ~ ~ ~  and on in- 
vestigating the higher dynamical symmetries of the Schro- 
dinger operator.I3 We also note new approaches that go back 
to the Darboux transformation method,14 such as the factor- 
ization and the dressing chain method,17 or are 
its direct d e ~ e l o ~ m e n t . ' ~  

On the other hand, in the theory of the harmonic oscil- 
lator there is the well-known Fock approach,'9 which used 
not only creation and annihilation operators but also the con- 
cept of the photon-number operator. We believe that the 
fruitfulness of this approach has not been fully appreciated 
yet. 

It is well known2032' that in the Fock representation for 
the case of the harmonic oscillator the creation and annihila- 
tion operators are linear functions of the momentum and po- 
sition operators and the photonnumber operator is a linear 
function of the Hamiltonian operator. 

In this paper we develop an approach suggested in Refs. 
22-25 and based on introducing analogs of the photon- 
number operator that are nonlinear functions of the Hamil- 

tonian operator. We believe that this is a natural generaliza- 
tion of Fock's approach and follows the basic logic of 
describing quantum states in the Fock space for the harmonic 
oscillator, which preserves the graphic nature of the physical 
interpretation of the results. 

Note that although the main results of this work refer to 
the spatially one-dimensional case, the approach can be gen- 
eralized to incorporate spatially non-one-dimensional states 
(or systems with several degrees of freedom). In particular, 
by basing our reasoning on the relationship that exists be- 
tween the Schrodinger problem in the spatially one- 
dimensional case and the Schrodinger problem for s states in 
the three-dimensional case we can specify classes of spheri- 
cally symmetric potentials that for s states lead to an energy 
spectrum with a fixed pattern of gaps in the equidistant spec- 
trum. 

The plan of the paper is as follows. Section 2 is devoted 
to the general scheme of a nonlinear generalization of Fock's 
approach. In Sec. 3 we give the result of applying this 
method in the case of a simple nonlinear (more precisely, 
polynomial) dependence of the photon-number operator on 
the Hamiltonian operator. Finally, in Sec. 4 we discuss the 
possible realizations of more complicated functions N ( I I )  
and a generalization of the approach to the case of quadratic 
spectra. 

2. NONLINEAR ANALOGS OF THE PHOTON-NUMBER 
OPERATOR: A FORMAL SCHEME 

Let us examine a quantum dynamical system with a 
Hamiltonian operator H. We define the analogs of the 
photon-number operators, N and i, and the analogs of the 
creation and annihilation operators, L and L t ,  by the follow- 
ing relationships: 

which coincide in form with the corresponding relationships 
used to describe the harmonic oscillator in the Fock space. 20 
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- 
In view of (2.1), the self-conjugate operators N and N are 
nonnegative. The conditions (2.2) are met if N and N are 
functions of the IIamiltonian operator H :  

(the reader will recall that for the harmonic operator both 
N and N are linear functions of H ) .  Fixing such a functional 
dependence determines a class of quantum dynamical sys- 
tems. 

The first condition in (2.2) can be met if we put 

[H ,L]=L .R ,  .R=61t, (2.4) 

where .R is an arbitrary self-adjoint operator. The second 
condition in (2.2) then leads to the following restriction: 

In what follows we assume that the operator .R is a function 
of the Hamiltonian operator, or fl = Q ( H ) ;  in this case both 
conditions in (2.2) are met. For the case of the harmonic 
oscillator we have Q w = const. 

Let us now establish how N and f i  are linked to the 
operator 0. To this end we write the obvious relationship 
N L  = LN is tlie following form: 

It can be shown that for an arbitrary operator function 
N ( H )  the following is true: 

Here the function N ( K +  H )  is understood to be a series in 
powers of the argument, and the powers are interpreted in the 
sense of binomial series. 

with the powers of the symbol K defined as follows: 

If the operators II and I, are related by Eq. (2.4), then 
Kn'=L.Rm, and Eq. (2.7) assumes the form 

from which we find that the characteristic operator a ( H )  is 
related to the analogs of the photon-number operators, N and 
N, as 

In view of (2.2), the operators N ,  fi, and H can have a 
common system of eigenfunctions. Let ( $ , E , v ( E ) )  be a so- 
lution of the eigenvalue problem 

Then, using Eqs. 2.4, (2.7), and (2. LO), we find that the func- 
tion I//' = L$ satisfies the following equations: 

Thus, the operator L  maps a solution of the Schrodinger 
problem into another solution, with the two not necessarily 
belonging to the eigenfunction space. In the latter case we 
can pose the problem of building an operator L  that maps an 
eigenelement of the Schrodinger problem into another 
eigenelement after a finite number of iterations. Here, how- 
ever, we restrict our discussion to operators acting in the 
eigenvalue space of the Schrodinger problem. In this case, if 
we have v' = v +  A ( E )  3 0, the function $' is an eigenfunc- 
tion, and L is the spectrum-shift operator defining the fol- 
lowing mapping of the eigenelements of the Schrodinger 
problem: 

Following Fock's approach, we define the initial element 
of the mapping as the solution of the problem 

In contrast to the harmonic-oscillator case, for fixed func- 
tions N ( H )  and $(H)  this problem can be solved for a cer- 
tain set of real roots of the equation v (Eo)  = 0 by defining 
the multiplet of the system's "ground" states (in the opera- 
tor N ) ,  i.e., we have "degeneracy" in the eigenstates of N .  
The L-map of each of these states can generate a related 
subsequence of eigenvalues of H. Combining these subse- 
quences makes it possible to determine the energy spectrunl 
allowed by the given functions N ( H )  and f i ( H ) .  

The next important difference from the harmonic- 
oscillator case is the fact that the requirement that the eigen- 
values of N and f i  be nonnegative when the N vs H depen- 
dence is nonmonotonic may lead to the appearance of 
subsequences of the eigenelements of the problem (2.1 1) 
consisting of a finite number of elements. If at the (n + 1)st 
step the L-map (2.13) leads to a negative value v,,,, then 
gn+, = O  and the subsequence is terminated at the nth step. 
Here, for the other subsequences, the "ground" state (in N )  
may have an energy higher than the last, or upper, level of 
the truncated sequence. This results in an energy gap in the 
spectrum. 

The mapping (2.13) defines sequences of different types. 
The most interesting from the standpoint of physics are the 
equidistant and quadratic sequences, realized at 
a ( H )  = w = const and O ( H )  = a @+ P ,  respectively (the 
latter case is studied in Sec. 4). With allowance for possible 
multivalued solutions of Eq. (2.14), for the ground state (in 
N) classes of spectra can appear that are formed by combin- 
ing several finite or infinite sequences. For instance, these 
sequences may not intersect, which leads to spectra with en- 
ergy gaps, as noted earlier. In Sec. 3 we thoroughly study 
quantum systems with such types of spectra. There we show 
that both the size and position of a gap can be controlled by 
varying the structural parameters of the system. 

1085 JETP 83 (6), December 1996 V. M. Eleonskii and V. G. Korolev 1085 



If we formally go to the classical limit (h+O), the fol- 
lowing equations for the complex-valued functions % and 
P are the analogs of Eq. (2.4): 

where P is the classical Hamiltonian function, and 
{. . . , . . .) stands for the classical Poisson bracket. Here the 
selected class of dynamical systems is determined by the 
way in which the functions J P ' = J P ' ( ~ @  and 
a(.%?) =limfi,oA(H)lh are specified, and the characteristic 
function w ( W  = limfi,oR(H)lfi is given by the following 
relationship: 

(the limit of (2.10) as h+O). 
In the quantum case the functional equation (2.10) for 

fixed N(H) and N(H) can lead to several solutions for the 
characteristic operator R(H),  of which only one remains 
when we go to the classical limit. Hence the solutions of 
Eqs. (2.4) and (2.10) can define essentially quantum dy- 
namical systems. 

Note that in the case of a single degree of freedom and a 
Hamiltonian function of the form %=p2/2 + U(x) there is a 
direct relationship between the solution of Eq. (2.16) in the 
action-angle variables and the classical inverse problem of 
determining the potential U(x) from the energy dependence 
of the oscillation period 27r/R(2@ (Ref. 26). In particular, 
for R(H)=w=const an equation for the class of isochro- 
nous potentials. arises 

Thus, by following the logic of describing the quantum 
harmonic oscillator in the Fock space we arrived at a peculiar 
formulation of the inverse spectral problem for the Hamil- 
tonian operator, defined by Eqs. (2.4) and (2.10), for the 
analogs of the creation and annihilation operators, and for 
the characteristic operator R(H). This makes it possible, 
knowing the functional dependence of the analogs of the 
photon-number operators, N and i ,  on the Hamiltonian op- 
erator H, to determine the admissible structure of the energy 
spectrum and in some cases to obtain the complete solution 
of the inverse spectral problem. Obviously, it is possible to 
establish how this approach is linked to other approaches 
(say, to the approach related to the assessment of the higher 
symmetries of the Schrodinger equation13 or, in the particu- 
lar case where the operators L and Lt are polynomials in the 
momentum operator, to the factorization method16). 

Up to this point our discussion concerned a nonlinear 
generalization of the Fock method that did not resort explic- 
itly to the analogs of the creation and annihilation operators, 
the spectrum-shift operators L and L t .  Let us examine the 
conclusions that follow from the assumption that these op- 
erators are polynomials (recall that in the harmonic-oscillator 
case they are first-degree polynomials in p).  Let 

and let the Hamiltonian operator have the natural form 

Then the operators N= LL and i= L t~ can be reduced to 

Here Cm(x), c ( x ) ,  Dm(x), and &(x) are functions of the 
coefficients Lm(x) in the expansions (2.17), the potential 
U(x), and their derivatives. The condition 
[N,H]=[i,H]=O leads to the following system of equa- 
tions: 

- - 
Cm(x) = const, Cm(x) = const, Dm(x) = Dm(x) = 0. 

(2.2 1) 

The solution of this system yields the explicit form of the 
Lm(x), the nonlinear differential equation for U(x), and the 
expression for additional integrals of this equation. 

Note that we arrive at the same expressions for the co- 
efficients and the same equation for the potential by solving 
Eq. (2.4), where we must put R(H) = w =  const and seek the 
spectrum-shift operators L and Lt in the form (2.17). The 
spectral recursion formula in this case has the form 
En+ = En+ w. Thus, by choosing the structure of the opera- 
tors L and Lt in the of finite-degree polynomials in the mo- 
mentum operator we found that Eq. (2.4) is solvable for the 
class of quantum dynamical systems with a equidistant spec- 
trum (with, possibly, a finite number of energy gaps). 

In conclusion of this section we note that realizing sys- 
tems with a nonequidistant type of spectra requires, on the 
one hand, introducing characteristic operators R(H)  that are 
not constants and, on the other, discarding the polynomial 
form of the spectrum-shift operators (examples of systems 
that allow for spectrum-shift operators that are not polyno- 
mials are examined in Sec. 4). 

3. SYSTEMS WITH PHOTON-NUMBER OPERATORS OF 
THIRD DEGREE IN H 

Let us examine a situation in which the analogs of the 
photon-number operators are polynomials in the Hamiltonian 
operator: 

The general relationship (2.7) assumes the form 
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and Eq. (2.10) becomes an algebraic equation in 0: 

Here the quantum dynamical system is determined solely by 
the set of structural constants { h ,  ,&). The L-mapping is 
determined by the following expressions: 

Let M = 3 .  Equation (2.4) in this case determines no 
more than three characteristic operators a ( H ) .  The require- 
ment that one of these operators be independent of H (say, 
fl , ( H ) =  w) leads to the following first recursion formula for 
the eigenvalues of H for this branch: 

The problem (2.14), which determines the initial elements 
for building the L-mapping, has a solution for the eigenvalue 
triplet {EL''   EL^)   EL^)) corresponding to the zero eigenvalue 
of N. The structure of the spectrum of H can be one of the 
following: 

A) The spectrum is a combination of infinite equidistant 
(with a step w) sequences obtained via the L-mapping of 
one, two, or three "ground" states (in N) { E ~ ) , E ~ ~ ' , E & ~ ) } .  

B) The spectrum is a combination of a lower finite equi- 
distant group of levels and an upper infinite equidistant se- 
quence of levels, separated by a gap. The size of the gap is 
generally incommensurate with the level separation w in 
both equidistant parts. 

The realization of either of these situations depends on 
the values of the structural parameters hi. It can be shown27 
that their values are linear functions of the constants I l  and 
I2 of the first integrals of the equation for the potential 
U(x): 

and the equation for the potential V(x)= U(x) - ( ~ x ) ~ / 2  is 

In what follows we set k equal to zero--in this case the 
expression for the shift operators acquires the simplest form. 
Note that the expression for I, can also be interpreted as an 
equation for the potential, containing the constants of the 
integrals, I, and 12, as structural parameters. 

In view of (3.1) and (3.9,  the recursion relation 
E-E1 is defined by the following relationships: 

For I ,  > O  the ground state in N with the energy Eo(I,  ,I2) is 
a singlet and the spectrum is strictly equidistant. This case, 
realized on asymmetric potentials, was actually thoroughly 
studied by McKean and ~ r u b o w i t z ~ ~  and ~ev i t an~%nd in the 
classical limit amounts to a situation in which all isochro- 
nous potentials (differing from the harmonic-oscillator po- 
tential) are asymmetric.26 

For 1, <0  the ground state in N is a triplet with energies 
{ E ~ ) , E ~ ) , E ~ ) ) .  Here the wave function for each of these 
states is determined by the solution of the equation 
L t,ho = 0 and is given by the expression 

where 

Note that generally the recursion relation is multivalent: 
at E:= - w/2 2 dm, in addition to the equidistant 
branch (3.9), other branches of the first return function ap- 
pear: 

The origin of such multivalence is related to the existence in 
these conditions of an additional pair of characteristic opera- 
tors f l ' ( ~ )  (see Sec. 4). However, if the operators L, and 
L~ obey Eq. (2.4) with a= w = const, the multivalence dis- 
appears. 

We found that in the {I1 <0, 12) plane there exists a 
denumerable set of bounded domains for which the spectrum 
of H is an equidistant continuation of the triplet of ground 
states in N. An equidistant spectrum with a gap is realized on 
the curves that are the boundaries of these domains. The 
curves are determined by the condition that the eigenvalue of 
N vanish at the nth step of the L-mapping of the lowest of 
the "groundtt states. More precisely, the nth step in the 
L-mapping for the initial point E?)= E ~ ) ( I ,  ,I2) leads to 
v(En)=O on the family of curves 

The corresponding ground-state energy is 

The action of a mapping leading to an equidistant spectrum 
with a gap because of a nonmonotone v vs E dependence is 
depicted in Fig. 1. 

Note that here, in contrast to the harmonic-oscillator 
case, the eigenvalues of N are not integers (more precisely, 
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FIG. 1. An example of an L-mapping for a cubic dependence of v on E that 
leads to a gap between the second and third energy levels. 

within the chosen notation are not integral multiples of 
2w). Nevertheless, the expression for v, retains its simple 
structure: on the mth curve of the (3.13) type the expression 
for the "photon number" corresponding to the nth energy 
level has the form 

or, with allowance for (3.14), 

(in this notation v n =  2wn corresponds to the harmonic os- 
cillator). Note that the first factor ensures that v vanishes in 
the ground state, while the vanishing of the second factor 
leads to a termination of the lower sequence at the mth step 
of the map and the formation of a gap in the equidistant 
spectrum. 

Numerical calculations fully support the above qualita- 
tive results. Let us now turn to systems with regular symmet- 
ric potentials (U(x) = U (  - x)). Potentials realizing a triplet 
spectrum (and corresponding to the interior points of the 
above-mentioned bounded domains in the parameter plane 
{I, , I 2 } )  are characterized, in the limits X+ + w, by oscilla- 
tions with linearly growing frequency and amplitude 
(Fig. 2): 

The interior of each domain contains only one point at which 
the oscillation amplitude vanishes ( y= O), and the structural 
parameters corresponding to this point are 

At these points the energy values for the three ground states 
(in the operator N) are linked by the following relationships: 

FIG. 2. A potential with a oscillatory asymptotic behavior corresponding to 
a triplet equidistant spectrum. 

with n = 0,1,2,  . . . . As a result, at each such point the spec- 
trum can be described as consisting of two equidistant parts: 
the lower part, with a step w ,  consisting of n levels, and the 
adjacent upper infinite sequence, which is equidistant with a 
step w / 3 .  The latter is quite natural if one takes into account 
the fact that such a spectrum for highly excited states yields 
the semiclassical approximation for the potential with the 
asymptotic behavior (3.17) at y= 0. 

As we move closer to the domain boundary, the oscilla- 
tion amplitude increases without limit, and the levels of two 
of the three equidistant sequences converge pairwise. At the 
boundary proper these levels merge pairwise and disappear 

FIG. 3. Transformation of a triplet spectrum due to variation of the struc- 
tural parameters that corresponds to the passage through the third "domain 
of oscillating potentials" between its boundaries, the two anharmonic oscil- 
lator curves with 11 = 3 and t z=  5 levels in the lower equidistant group, 
respectively. The double vertical lines niark the paran~eter values at which 
the oscillations disappear and the spectrum in the upper part heconies 
strictly equidistant with a step 013.  The central dotted line corresponds to 
the harmonic-oscillator cnsc. 
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branch points correspond to the following values of the pa- 
rameters: 

The branching from the nth curve of a new (n + 1)st curve is 
characterized by the following change in the spectrum and 
potential: 

1. A pair of two new levels appear in the spectrum (Fig. 
6a). For n  = 0 these levels appear at the point E = Eo- w; for 
rt>O they appear in the middle of the gap, which at the 
bifurcation point of the nth curve has a value 2w, near 
E=(w/3)(n-112). The lower of the levels augments the 
lower equidistant group (or, when n = O ,  is simply this 
group), while the upper level augments the upper equidistant 
group. Now on the ( n +  1)st curve the energy gap corre- 
soonds to the distance between the newlv formed levels. 

FIG. 4. Oscillating potential, energy spectrum, and wave functions near the ~ h ~ ~ ,  the number of levels in the lower equidistant group 
boundary of one of the domains of existence of such potentials. Two of the 
three equidistant level subsequences have almost merged; the corresponding increases by One as we from curve curve and coin- 
wave functions are localized at the minima, which extend to infinity, nar- cides with its ordinal number n. As we move along the 
rowing and deepening as the domain boundary is approached. 

(a detailed analysis of this and other bifurcations of the po- 
tential pattern and the spectrum in the system is given in Ref. 
24). As a result there appears an equidistant spectrum with a 
gap (Fig. 3), while the type of potential pattern drastically 
changes: the potential corresponding to the points of the 
curve (3.13) is the potential of an anharmonic oscillator with 
a finite number of local minima.22925 The alteration in the 
wave functions accompanying this bifurcation is shown in 
Figs. 4 and 5. 

The half-closed sections of the curves (3.13) on which 
such potentials are realized successively branch out. The 

curve, the size of the gap increases from zero (at the point at 
which the given curves branches away from the previous 
curve) to infinity. 

2. Two narrow deep wells symmetric with respect to one 
another are formed in the potential pattern, and asymptoti- 
cally (near the branch point) these wells are described by the 
expression 

with their separation X o  from the potential's symmetry axis 
tending to infinity (logarithmically) as we move along the 
curve to its origin (Fig. 6b). 

FIG. 5. The wave functions for two potentials of different types corresponding to close values of the structural parameter: (a) for an anharmonic oscillator (the 
spectrum contains a gap between the ground and first excited states) on the curve that is the boundary of the domain of existence of oscillating potentials; (b) 
for an oscillating potential near a boundary point corresponding to case a. The wave functions of the statcs surviving in the transition to the anharmonic 
potential transform, shedding the necessary number of nodes. 
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FIG. 6. Transformation of the spectrum (a) and a potential of the anharmonic type (b) along the curve n= 1. In Fig. a, in addition, the dashed lines depict the 
variation of the spectrum levels along the curve n = 2. In Fig. b the increase in the label number on the potential corresponds to a departure along the curve 
from the bifurcation point (its branching from the harmonic-oscillator line n = 0).  

Note that the expression (3.21) is the exact solution of 
the equation 

which differs from (3.7) in that the nonautonomous factor 
( w x r  is replaced by ( w ~ , ) '  and a constant, 
( - I ,  - ~ ( W X ~ ) ~ I ~ ) ,  is added. 

Interestingly, the approximate potential (3.21) contains 
the only localized quantum state and is reflectionless for any 
Xo (the spectrum consists of two levels: Eo= 
- 1 12 ( wx0) 2/ 2 and E = 0). This makes it possible to inter- 
pret the two new levels in the spectrum as related to the 

states localized in two new local wells (allowing for their 
position on the "walls" of the generating anharmonic oscil- 
lator at a height of approximate ( o ~ ~ ) ~ / 2 ) .  The localization 
of the wave functions corresponding to the two new states is 
depicted in Fig. 7b. 

Now let us study the relationship between the asymptotic 
behavior at zero and infinity of the symmetric anharmonic 
oscillators that are solutions of Eq. (3.8), as functions of the 
system's structural parameters { I l  ,I2). The series expan- 
sions of the corresponding solutions have the form 

FIG. 7. (a) Variation of the pattern of the potential V ( x )  along the curve I ;=  I in the neighborhood of its point of branching from the harmonic-oscillator line 
! I =  0: for all profiles a transition between the weakly varying values V ( 0 )  and V ( m )  is characteristic. (b) Potential, energy spectrum, and the wive functions 
corresponding to a point on the curve r r  = 2  near its point of branching from the curve rr= I .  The two new closely lying levels that emerge in the middle of 
the gap correspond to wave functions localized in wells that extend to infinity at the branch point. Thc wave functions of all above-gap states are transformed 
during bifurcation in such a way that the number of nodes for each increases by two. 
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FIG. 8. Five types of  potentials and the correspond spectra realized for spectrum-shift operators I, that are cubic in momentum. 

The pairs Vo,V2 (or {V, ,P)) uniquely determine the4 po- 
tential and hence can be used as the parameters of the poten- 
tial instead of the pair ( I1  ,I2). What is interesting is that the 
potential parameters at zero, Vo and V2, and the potential 
parameter at infinity, V, and P, are related to I, and I, in the 
same way: 

The transition from ( I  ,I2) to (Vo , V2) in the expression for 
the curves (3.13) simplifies the latter considerably and leads 
to factorization: 

The transition to the "parameters at infinity" (V, , P )  also 
factorizes the expression (3.13). 

Numerical analysis has shown that in the (Vo ,V2) plane 
an anharmonic oscillator with a single-gap spectrum corre- 
sponds to a family of alternating half-lines and half- 
parabolas that successively branch off from each other: for 
n odd the expression in the first square brackets in (3.26) 
vanishes, and for n even it is the expression in the second 
square brackets that vanishes. However, in the (V, ,P)  plane 
(the plane of the parameters at infinity) the solution of inter- 
est is realized only on half-lines for all values of n ,  with the 
half-lines having no common points. This means that an in- 
finitesimal change in the parameters V o  and V 2  brought on 
by the transition from one curve to the next is accon~panied 
by a jump in the asymptotic behavior of the potential at 
infinity. We write the relationship between the parameters 
V o  and V ,  in the following form: 

The fact that V, can have three different values for a single 
value of Vo makes possible the jump in the value of V, at 
the point of transition from one curve to another. More pre- 
cisely, at the bifurcation point of the generating nth curve 
v;= - 2w(n - 1)/3, while at the same point on the new 
(n + 1)st curve v:= - 2 w(n + 2)/3, which corresponds to a 
jump by 2w. From the potential-pattern viewpoint, this is 
related to a discontinuous drop by 2 w in the potential height 
at the different edges of each emerging well (3.21) (Fig. 7b). 

Thus, it is possible to distinguish two types of potentials 
and two types of corresponding spectra in the class of sym- 
metric potentials: 

1. Potentials of the anharmonic-oscillator type that be- 
have like (wx)'/2 at infinity. These potentials correspond to 
equidistant spectra with a gap whose position and size 
clearly depend on the magnitude of the system's structural 
parameters (Fig. 8a). 

2. Potentials that oscillate at infinity about the parabola 
( ~ x / 3 ) ~ / 2 .  The corresponding spectra are combinations of 
three equidistant sequences with arbitrarily shifted ground 
states (for which v =  0). A particular case is that of potentials 
with a zero amplitude of oscillations about the above- 
mentioned parabola or, in other words, anharmonic oscilla- 
tors with a frequency equal to w/3 and a corresponding equi- 
distant spectrum (which begins, however, at n gaps of size 
w) (Fig. 8b). 

By numerical means we also discovered and studied 
three additional types of asy nlnletric potentials and corre- 
sponding spectra: 

1. Potentials with a mixed type of asymptotic behavior 
(Fig. Xc): an asymptotic behavior of the type ( w ~ ) ~ / 2  at one 
infinity and an oscillating asynlptotic behavior at the other. 

1091 JETP 83 (6), December 1996 V. M. Eleonskii and V. G. Korolev 1091 



The spectrum realizes two infinite subsequences, related to 
an L-map of two of the three ground states. Just as before, a 
particular case is that of potentials with a zero oscillation 
amplitude. A semiclassical approach to the spectrum of 
highly excited states in such potentials predicts a behavior of 
the type En-  wn/2. This result is corroborated by numerical 
calculations: potentials of this type correspond to a situation 
in which the upper ground state is exactly in the middle 
between two levels belonging to the sequence constructed 
using the lower ground state; the spectrum can be thought of 
as consisting of a lower equidistant part with a step equal to 
w and an upper equidistant part with a step equal to w/2. 

2. Asymmetric potentials of the anharmonic-potential 
type (Fig. 8d). Here only one L-sequence is realized in the 
spectrum, which results in a strictly equidistant spectrum. 

3. Asymmetric oscillating potentials (Fig. 8e). The spec- 
trum type is the same as in the corresponding symmetric 
case. 

Thus, we have described all possible types of one- 
dimensional regular potentials and spectra in physical mod- 
els that allow for the existence of the simplest nonlinear ana- 
logs (cubic in H) of photon-number and spectrum-shift 
operators. 

Concluding this section, we note that there is a certain 
correspondence between the Schrodinger problem in the one- 
dimensional case and the Schrodinger problem for s states in 
the spatially three-dimensional case. This correspondence 
makes it possible, in particular, to specify classes of spheri- 
cally symmetric potentials that lead for s states to an energy 
spectrum with a given pattern of gaps in the equidistant spec- 
trum. Here, because eigenfunctions even in x ,  
Gn( - X )  = $ , ( x ) ,  have been excluded, the spectrum-shift op- 
erator in the Schrodinger problem in B3 is the square of the 
spectrum-shift operator in the Schrodinger problem in .%I 

acting in the subspace of odd eigenelements. 

4. QUANTUM SYSTEMS WITH A MORE COMPLICATED 
STRUCTURE 

Let us now go back to analyzing the general structure of 
the spectrum for N ( H )  and N ( H )  that are third-degree poly- 
nomials. After isolating the root that does depend on H, 
Eq. (3.3) leads to the following equation: 

The real roots of this equation determine the remaining pair 
of possible characteristic operators O , ( H )  and, correspon- 
deingly, a pair of equations for the operators L + = L  and 
L -  =L+: 

[ H , L , ] = L , R , ( H ) .  (4.2) 

A typical situation here is when the two branches of the 
recursion relation E ,  ( n  + 1 ) = Et  ( n )  + 0. { E ,  (n))  form an 
ellipse in the ( E l , + ,  ,E l , )  plane. This ellipse is the support of 
the point spectrum of the quantum dynamic system defined 
by (2.4). Depending on the values of the structure parameters 
( w , h i ) ,  this ellipse may either intersect the bisectrix of the 
plane or not. When it does intersect the bisectrix, the 

L-map has fixed points. This suggests the formal possibility 
that the spectrum of the Hamiltonian operator H  can have a 
condensation point. The question of what quantum dynami- 
cal systems realize this possibility has yet to be resolved. 

Let us simplify the situation by assuming h,=O. Then 
Eq. (3.3) defines the characteristic operator 

which is a linear function of the Hamiltonian operator, and 
the equation for the operators H  and L assumes the form 

The first return function corresponding to this equation de- 
scribes a cycle of order 2 (i.e., two possible energy values). 
The operator equation (4.4) can be solved if we assume the 
operators L ,  L+, and H to be matrices of the following type: 

Plugging these expressions into Eq. (4.4) yields the follow- 
ing relationship: 

Assuming that 

we find that the operator A ( x , p )  and the potentials U l ( x )  
and U 2 ( x )  obey the following equation: 

This equation allows solutions that are polynomials in the 
nlomentum operator. The conditions for its solvability in this 
class of solutions lead to a relationship between U , ( x )  and 
U 2 ( x ) .  For instance, for A = A o ( x )  + 11, ( x ) p  the potentials 
are related as follows: 

or, in integral form, 

Thus, in the one-dimensional case, the solvability of 
Eqs. (2.4) for the essentially quantum characteristic opera- 
tors defined by Eq. (3.3) can be related to a matrix represen- 
tation of the operators L and H .  Such a generalization, how- 
ever, is capable of resolving the problem only in the case of 
recursion relations leading to cycles of finite order (and, ac- 
cordingly, to spectra of H  with a finite number of elements). 

Earlier Dubov et suggested that the solution of the 
operator equation 
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incorporates the class of quantum models for which the sec- 
ond finite difference of the eigenvalues of H  is constant, 

En+2- 2En+,  +En=c ,  (4.1 2) 

just as the equation [ H , L ]  = wL specifies the class of models 
for which the first finite difference of the eigenvalues is con- 
stant ( E n + ,  - El,= w ) .  But while in the latter case L  is the 
shift operator in the solutions of the Schrdinger equation 
(not necessarily eigensolutions), in the former case the result 
of the action of the operator L  obeying Eq. (4.1 1) on a func- 
tion that is a solution of the Schrodinger problem may be 
more complicated. 

To analyze the possible situations, we write Eq. (4.1 1) 
in the form of the following system: 

Here R is an arbitrary operator (not necessarily self-adjoint), 
and we assume that there is an inverse of L. Let ( $ , E )  be a 
solution of the Schrodinger problem with the operator H ,  or 
H#= E$. Then the function #' =L$ is the solution of the 
Schrodinger equation with the operator H' = H  - 0 corre- 
sponding to the energy value E' = E  - c: 

Thus, in the general case the operator L  maps the solutions 
of the Schrodinger equation with the Hamiltonian operator 
I1 into solutions of the Schrodinger equation with another 
Hamiltonian operator (not necessarily self-adjoint). If 
R = R', then L maps the solutions of the Schrodinger equa- 
tion with the operator H  into solutions of the Schrodinger 
equation with the operator H' = H  + R and the energy value 
E' = E.  Here LL $ and L t ~ $  satisfy the initial Schrodinger 
equation with the operator H  and the initial value of param- 
eter E.  

Now let us go back to the case where R= R ( H )  and 
determine the characteristic operator R ( H )  in (2.4) for 
which this equation is compatible with (4.11). In this case 
L  maps the solution $ of the equation H$=E$ into the 
function $'=L$ that is the solution of the equation 
tf $' = E' @'. The system of equations (4.13) implies 

and it can easily be verified that the condition (4.12) is met. 
Excluding E ' ,  we arrive at the function equation 
Q(E + R ( E ) )  - R ( E )  = c ,  with a corresponding similar op- 
erator equation for R(M): 

(this equation can be obtained directly from (4.13) without 
resorting to the basis of eigenfunctions of H ) .  Writing the 
analog of the system (4.13) for the operator L t ,  we arrive at 
the second functional relationship for R ( H ) :  

Thus, Eq. (2.4) together with conditions (4.16) and 
(4.17) for the function f 1 ( H )  leads to models associated with 
the constancy of the seconcl finite difference. 

The particular solution Eqs. (4.16) and (4.17) given in 
Ref. 31 has the form 

f l (H)=c/2? m, E>c/2.  (4.18) 

In this case the split system (4.13) is 

The second equation is a formal analog of the equation 
[ H , L ]  = wL studied earlier: the mapping of the values of E  
generated by it has the form 

and realizes the requirement that the second finite difference 
(4.12) be constant if the map involves the eigenelements of 
the Schrodinger problem. 

On the other hand, being more general than Eq. (4.20), 
Eq. (4.19) can describe systems with spectral sequences that 
do not meet the condition of constancy of the second finite 
difference. As can easily be shown, in addition to the mono- 
tonic sequences @= @? m, E  > cI2, Eq. (4.19) admits 
of a sequence @= - fi, E< c/2,  which describes a 
cycle of two possible energy values. This points to the pos- 
sibility (characteristic of supersymmetry approaches) of us- 
ing this approach to describe systems whose spectrum con- 
tains an infinite or finite number of elements. 

In Ref. 3 1 it was shown that Eq. (4.19) is solvable in the 
one-dimensional case for operators L  of the form 
L ( p , x )  = L  1 1 2 ( ~ )  &+ L ( x ) ~ .  This leads to a quantum sys- 
tem with a Hamiltonian 

a quadratic spectrum of the Schrodinger problem, 

E,= a ( n  + 1 ) 2 ,  fln(x) = cosl(clf)(sin 0, (4.23) 

and a shift operator 

L( . )=  T fi sin (&+i&cos 5 p. 

I-Iere a3  ~ 1 2 ,  (3 a x ,  y = - idldx, and C:'(Z) are ultra- 
spherical (or Gegenbauer) polynomials. 

The analogs of the photon-number operators, - 
N(?)=L(,)L:,, and N(+)=L:,)L(+,, are not polynomials 
in H  and are given by the following expressions: 

whereUo=l(l - 1). 
One can easily verify that these operators satisfy both 

the general relationship [ N , L ]  = L ( N  - N )  and its particular 
case for the reduced equations N ( H )  = N(R+ H ) .  

The eigenvalue of the operator N (  +, vanishes at a unique 
point E =  u12, which corresponds to the ground state of the 
given system. The L-mapping constructed with the help of 
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the operator (4.24) on this state, generates an infinite qua- 
dratic sequence of E,, that exhausts the energy spectrum of 
the system. Since we have 1> I ,  all points of this sequence 
lie in the region E> a=c/2 ,  which corresponds to sequences 
that keep the second finite difference constant. 

Thus, the approach based on introducing and analyzing 
analogs of the photon-number operators can also be used for 
spectral sequences that differ from equidistant sequences. 

5. CONCLUSION 

In this paper we examined one way to generalize the 
description of the quantum harmonic oscillator in the Fock 
space to the case of a nonlinear dependence of the photon- 
number operator N  on the Hamiltonian operator H .  We illus- 
trated the generalization by a detailed study of systems that 
allow for the existence of an analog of the photon-number 
operator, N ( H ) ,  in the form of a third-degree polynomial. 
We did a complete classification of the types of energy spec- 
tra that arise in such models and studied the corresponding 
regular one-dimensional potential. We found that the 
adopted generalization makes it possible to describe systems, 
interesting from the standpoint of physics, with an energy 
gap superposed on an equidistant spectrum. By varying the 
values of the system's structural parameters one can control 
the position and size of the gap. 

We also gave examples of realizing photon-number op- 
erators with a more complicated, nonpolynomial, depen- 
dence of N on H .  

Finally, we investigated certain aspects of using this 
method to describe the simplest spectra that satisfy the con- 
dition that the second finite difference of the eigenvalues of 
H  be constant. 
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