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The effect of helicoidal magnetic ordering on superconductivity in HoNi2B2C and the character 
of superconducting pairing in the helicoidal phase have been studied. The analysis leads 
to the conclusion that the strong suppression of superconductivity in the helicoidal phase region 
results from a significant modification of electron wave functions owing to crossings of 
the Fermi surface corresponding to the paramagnetic phase by Bragg planes resulting from the 
helicoidal ordering. The decoupling effect of nonmagnetic impurities in the region in 
which superconductivity and antiferromagnetism coexist remains unsaturated, increases as the 
impurity concentration. O 1996 American Institute of Physics. [S 1063-7761 (96)025 1 1-51 

1. INTRODUCTION 

After the discovery in 1994 of superconducting borocar- 
bides ReNi2B2C, where Re is a rare-earth element, in which 
antiferromagnetic ordering takes place in the superconduct- 
ing state, researchers' attention has been again attracted to 
the problem of coexistence of superconductivity and magne- 
tism. 

This problem aroused general interest for the first time in 
the late 1970s owing to the discovery of ReRh4B4 and 
ReMo6S8 compounds, in which both magnetic ordering and 
superconductivity were detected. A thorough examination of 
these compounds allowed the researchers to detect and de- 
scribe many effects of interaction between the superconduct- 
ing and magnetic order parameters. The main results of this 
research were reported in Ref. 1. 

The most interesting effect attracting the researchers' at- 
tention is the reentrant (or almost reentrant) behavior of su- 
perconductivity in HoNi2B2C, which belongs to the class of 
borocarbides. 

Earlier, reentrant superconductivity was detected in 
ErRh4B, and HoMo6S8. In those compounds it was due to 
ferromagnetic ordering at temperatures below T,, , which is 
lower than the superconducting transition temperature T,. 
The effect of superconducting ordering on the magnetic sub- 
system leads to cryptomagnetism,2 i.e., in a temperature 
range of about 0.05 K around T,,, , superconductivity coexists 
with long-wave antiferromagnetic order whose wavelength is 
controlled by the superconducting gap in the electronic qua- 
siparticle spectrum. At lower temperatures superconductivity 
is destroyed, and the sample transforms to a normal ferro- 
magnetic state via a first-order phase transition (see, for ex- 
ample, Ref. 1). 

If the superconducting transition temperature T, was be- 
low that of antiferromagnetic ordering, which is the case in 
ReMo6S8 (Re = Tb, Dy) and ReRh4B4 (Re = Nb, Sm, Tm), 
superconductivity was not destroyed. 

In HoNi2B2C, reentrant'-' or almost reentrant6" super- 
conductivity was detected over a narrow range of incommen- 
surate helicoidal magnetic ordering. This ordering emerged 
at TI,,= 5.7-6.0 K, which is below T,.= 8.1 K. At TN=5.2 K, 

a first-order phase transition to a phase with a commensurate 
antiferromagnetic order o ~ c u r r e d . ~  

The suppression of superconductivity, manifested by a 
decrease in the critical field Hc2, occurred at temperatures 
below T,,, . In some specimens the final result was a transi- 
tion to the normal phase at a temperature Tc2 
(TN< Tc2< T,,,)~-', in others the superconductivity survived, 
although it degraded considerably, in the temperature range 
down to TN. The transition to the commensurate phase co- 
incided with the restoration of the superconducting order pa- 
rameter, and then it increased to a value higher than at T, 
(Fig. 1). There was no jump in H,, at TN because the heli- 
coidal and commensurate phases coexisted over a certain 
temperature range.8 

Neutron diffraction data indicate that the wave vector of 
helicoidal magnetic order is constant over its entire range of 
existence, and is insensitive to the destruction of 
superconductivity.3.8-'0 Hence the observed magnetic order- 
ing bears no relation to cryptomagnetism. 

In a previous publication," it was suggested that the 
strong effect of magnetic ordering on superconductivity in 
HoNi2B2C results from newly emergent magnetic Bragg 
planes crossing the Fermi surface of electrons in the para- 
magnetic phase, while differences in the degree of supercon- 
ductivity suppression are due to differences in nonmagnetic 
impurity concentrations. One goal of the present paper is to 
examine this issue in detail. 

Since helicoidal magnetic ordering modifies wave func- 
tions of conducting electrons and lifts the spin degeneracy of 
their spectrum, a question arises about anomalous means cor- 
responding to superconducting pairs in the helicoidal phase. 
Various views on this issue have been reported in the litera- 
ture. The primary aim of the present paper is to dispose of 
these inconsistencies and unambiguously determine the na- 
ture of superconducting pairing in the helicoidal phase. 

In addition, we consider the effect of nonmagnetic im- 
purities on superconductivity near T,. It is known12 that 
nonmagnetic impurities suppress superconductivity in the 
presence of antiferromagnetic order. According to Ref. 13, 
near the point of the antiferromagnetic second-order transi- 
tion, when the magnetic order parameter is small, the effect 
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FIG. 1 .  Critical magnetic fields in HoNi,B,C as a function of temperature.7 

of nonmagnetic impurities becomes independent of their 
concentration, i.e. this effect is saturated. 

We demonstrate below that saturation does not take 
place, and that the degree of superconductivity suppression 
by nonmagmetic impurities grows with impurity concentra- 
tion both near and far from T,,, . 

Section 2 describes modified wave functions and spectra 
of electrons in the helicoidal phase. Section 3 considers the 
issue of anomalous means in the helicoidal phase of a pure 
superconductor. In Sec. 4 we discuss the effect of nonmag- 
netic impurities on superconductivity. Section 5 summarizes 
the main results. 

2. EFFECT OF HELICOIDAL MAGNETIC ORDER ON 
ELECTRONIC SPECTRUM 

At T> T,,, the compound HoNizBzC is in a paramagnetic 
phase with a tetragonal body-centered Bravais lattice (Fig. 
2). The rare-earth ions form layers perpendicular to the 
fourth-order c axis. 

a~ 

OHO t @ ~ i  OB O C  

FIG. 2. Elementary cell of HoNi,B2C. 
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At T < T ,  the elementary cell of HoNi2B2C is doubled 
since the magnetic moments of Ho in the layers are ferro- 
magnetically ordered in the [I001 direction, and magnetiza- 
tions of neighboring layers are aligned in opposite directions. 
The Bravais lattice becomes primitive tetragonal. We denote 
the elementary vectors of the reciprocal lattice of this phase 
as a*, b*, and c*. Antiferromagnetic order in the commen- 
surate phase is then characterized by the vector c*. 

In the helicoidal phase of HoNi2B2C, the holmium mag- 
netic moments are still aligned in the ab plane, but their 
direction is variable in the directions of both the a and c 
axes. The corresponding magnetic order wave vector Q is899 

The distinction between the magnetic order vectors in the 
commensurate and incommensurate phases results in a radi- 
cal difference between the effects of magnetic order on su- 
perconductivity in these phases. 

The average holmium spin at a point with coordinates 
Rk in the helicoidal phase is 

where S is the average ion spin, and i and j are unit vectors 
aligned with the a and b axes, respectively. 

The Hamiltonian of conduction electrons, taking into ac- 
count the s-f exchange interaction with the mean ionic hol- 
mium spins, has the form 

Here ~ ( k ) ,  a: (k), and a,(k) are the dispersion relation and 
second quantization operators for electrons in the paramag- 
netic phase, I,-f is the integral of the s-f exchange interac- 
tion, a ,  p= I,  2 correspond to the electron-spin projections 
on the c axis ( + 112 and - 1/2), and a' = ax+ iu,  (ax and 
uy are Pauli matrices). 

Helicoidal magnetic order mixes states with different 
spin projections on the c axis, lifts the spin degeneracy of the 
electron spectrum, and generates new Bragg planes, which 
differ among the resulting dispersion relations.14 

The Hamiltonian (3) can be diagonalized in the represen- 
tation of the new electron states described by the wave func- 
tions 

where @a,k(r) are Bloch functions in the paramagnetic phase 
( a  is the spin index), 
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The corresponding dispersion relations are: 

with discontinuities corresponding to wave vectors gi+Q 
and g,- Q, respectively (g, is the reciprocal lattice vector in 
the paramagnetic phase, and ~ ( k )  = ~ ( k +  g,)). The signs in 
Eqs. (7)-(9) are selected so as to obtain the original disper- 
sion relation in the limit S+O.  

In the commensurate phase, the antiferromagnetic order 
vector is half of one of reciprocal lattice vectors of the para- 
magnetic phase (c* = go/2), so the electron dispersion rela- 
tion remains spin degenerate. 

Since the magnetization is modulated in the direction of 
the a axis in the incommensurate phase, the locations of the 
Bragg planes in the incommensurate and commensurate 
phases are radically different. 

3. SUPERCONDUCTIVITY IN THE CASE OF HELICOIDAL 
MAGNETIC ORDER 

We now examine the effect of helicoidal magnetic order 
on superconductivity resulting from electron-phonon cou- 
pling. Since T, is of the order of T,, the superconducting 
energy per elementary cell -T:IE~,  where E F  is the elec- 
tron Fermi energy, is much less than the corresponding mag- 
netic energy -T,, and the back influence of superconduc- 
tivity on magnetic order is negligible. 

The magnetic subsystem affects superconductivity in 
three ways: 

1 .  repulsion between electrons in the s-channel due to 
their interaction via spin fluctuations; 

2. modification of electron wave functions due to the 
emergence of new Bragg planes generated by magnetic or- 
der. This effect changes matrix elements of the electron- 
phonon interaction and the electron density of states at the 
Fermi surface; 

3. decoupling action of nonmagnetic impurities in the 
region where superconductivity and antiferromagnetism co- 
exist, which is also due to the modification of electron wave 
functions and resulting violation of the Anderson theorem. 

If the first of these factors were the most important, the 
suppression of superconductivity would be the strongest at 
T=  T, , where spin fluctuations are most intense, the super- 
conducting order parameter, if interactions with the magnetic 
system are neglected, is not so high as at T<T,, . But the 
suppression of superconductivity is strongest (provided that 
it survives) in the incommensurate phase at T-+TM (Fig. 1). 
In materials where superconductivity is destroyed, this hap- 
pens at Tc.2< TI,, .3-5 

We therefore conclude that the second and third factors 
are the most important. But they are also active in the com- 

mensurate phase. A natural question arises: why is their ef- 
fect not so strong in the commensurate phase? 

We start with a simple model in which the electron- 
phonon interaction in the paramagnetic phase is described by 
the Hamiltonian 

.Xe-ph=gph x aZ(kr)aa(k)[b+(k-  k ')  + b(kr  - k)], 
k , k f , a  

(10) 

where gp,=const, and b+(q) and b(q) are second 
quantization operators for phonons. For simplicity we con- 
sider only one phonon branch. 

Since the Eliashberg equations contain screened matrix 
elements of the electron-phonon interaction, which have no 
singularities at small transmitted wave vectors, this approxi- 
mation describes the actual situation fairly well. 

By expressing aZ(k)  and aa(k)  in terms of the new 
creation, and annihilation, operators c ( k )  and &(k) which 
are related to the wave functions (4) and (3, we obtain an 
expression for Me-ph in the magnetically ordered phase: 

+ v ( -  k)u(- k')]a;(kr)Z2(k)[b+(k- k ')  

+ b ( k r  -k ) ]+[u(kf )v ( -k)+v(kr)u( -  k)] 

We assume that conventional s-type singlet coupling 
takes place in the paramagnetic phase. In the helicoidal 
phase, generally speaking, anomalous means like both 
( a + ( - k ) T + ( k ) )  ( i=  1,2) and (a;(-k)Z:(k)), as well 
as their linear combinations, can occur. We denote the super- 
conducting order parameter corresponding to the first type of 
anomalous means as A,, and that corresponding to the sec- 
ond type as A21.  

We now consider the self-consistency equations for 
them in the weak-coupling approximation: 
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where is the elementary cell volume, E~ and el are Mat- 
subara frequencies, and [; = e ( k ' )  - p ( p  is the chemical 
potential of electrons). The integration over d k r  is performed 
over one of the parts of the Fermi surface resulting from the 
intersection of the appropriate dispersion relation and the 
Fermi level; the F;(~,E[)  are anomalous electron Green's 
functions. The matrix elements ri j (kr ,k)  of the electron- 
phonon interaction, according to Eq. (I I),  are 

r2, (k ,kr)=gph[v(-  k)u(kl )  + u ( -  k)v(kr)] .  (17) 

The phonon Green's function D(q ,ek-  e l )  in our ap- 
proximation is 

where w, is the characteristic phonon frequency. 
For simplicity the terms due to direct Coulomb interac- 

tion and interaction via spin fluctuations are omitted in Eqs. 
(12) and (13). 

The normal, Gij(k,el), and anomalous, F $ ( ~ , E , ) ,  elec- 
tron Green's functions are derived from the following 
Gor'kov equations: 

~ 2 : ( k ' & k ) = ~ ; 2 ( - k , -  &k)[A21(k9&k)G 1 ~ (k ,&k)  

+A22(k~&k)G21(k~&k)l. (22) 

Here G : ( ~ , F  k )  are bare normal electron Green's functions: 

An analysis of Eqs. (12), (13), and (1 9)-(22) shows that 
there is no linear relation between A;; and A21 ,  i.e., if one of 
these parameters is nonzero, it does not automatically mean 
that the other is also nonzero. Since A2, transforms to the 
order parameter corresponding to the common singlet pairing 
in the paramagnetic phase as T j T , , ,  it cannot vanish 
abruptly below T,, , since the parameter S is small near 

Tm . 
At the same time, hi; transforms to the order parameter 

corresponding to triplet pairing in the paramagnetic phase as 
T+ T, . Since we have assumed that the pairing in the para- 
magnetic phase is singlet, the temperature T, can coincide 
with the temperature at which superconducting pairing oc- 
curs with an order parameter like Aii only accidentally. Thus 
there is no reason to suppose that A,, is nonzero at tempera- 
tures below T, . 

We now consider the conditions for pairing of this type, 
assuming that A,, is a vanishing parameter. We then derive 
the following well-known expressions from Eqs. (19)-(22): 

along with 

After substituting Eq. (26) into the self-consistency 
equation (12), one can easily prove that the presence of the 
superconducting order parameter A21 makes the existence of 
Aii less likely, since it leads to a cutoff in the lower logarith- 
mic divergence in the sum over e l .  

As the magnetic order parameter S increases, the split- 
ting l g ( k )  - c ( -  k)l widens, which makes the emergence 
of nonzero Aii even less likely, since this splitting has the 
same effect on this type of pairing that ferromagnetic split- 
ting of the dispersion relations of electrons with opposite 
spins has on the usual singlet pairing. 

We conclude that the pairing in the helicoidal phase is of 
the (a:(- k)Z:(k)) type. Bulaevskii et al.,I5 who consid- 
ered the superconducting pairing in terms of the BCS theory, 
suggested that in the helicoidal phase near TI,, the anomalous 
means have the form ( a ; ( -  k)a:(k)), where a'(k) are 
electron creation operators in the paramagnetic phase. If the 
a'(k) are expressed in terms of the modified creation opera- 
tors ZT(k)  according to Eqs. (4) and (5), it turns out that 
this coupling corresponds to a superposition of anomalous 
means like ( a + ( -  k ) a + ( k ) )  and (a:(- k)a:(k)) .  As 
was demonstrated above, this kind of coupling does not oc- 
cur. 

Note that in the helicoidal phase c ( k )  # c ( -  k), and 
coupling modes like both ( Z  + ( - k ) a  + (k)) and 
( a ; ( -  k ) C  :(k)) are neither purely triplet nor purely sin- 
glet (lAij(k)l # [Aij(-  k)l).  But in the commensurate anti- 
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ferromagnetic phase, where G(k)  = E^;.(- k), the coupling 
( a + ( -  k )Z+(k) )  is purely triplet and the coupling 
(Z:(- k ) Z  :(k)) is purely singlet. 

We now turn to the superconducting order parameter 
A2](k,ek). The substitution of Eqs. (24) and (25) into Eq. 
(1 3) yields the following Eliashberg equationI4 (hereafter the 
subscripts on A are omitted): 

Here we have used the relation 
F ; ( ~ ' , E ~ )  = - F:,(- k '  ,&,). In the commensurate phase, 
when the factor preceding A(kr,&,) in the integrand of Eq. 
(27) is invariant under the substitution kt-, - k t ,  only solu- 
tions even with respect to k' and corresponding to singlet 
coupling are nonzero. 

One can easily prove that 

Thus, in our model (gph= const), the gap in the spectrum 
of electron quasiparticles vanishes at the boundaries of 
breaks in the Fermi surface due to the Bragg planes gener- 
ated by the magnetic order (if the Bragg planes intersect the 
Fermi surface). The electron density of states V(E) in this 
case is nonzero at all energies E .  At & 4 A 0 ,  where 
A,= at lekl<w,, the density of states can be esti- 
mated to order of magnitude to be 

where v0 is the density of electron states at the Fermi surface 
in the normal phase (see also Ref. 13). 

The statement is that the gap is nonzero over the entire 
Fermi surface at temperatures near T,, if Is-f<Ao derives 
from an incorrect assumption about the nature of the pairing. 

If gpll # const, the function A(k) has a more complex 
form, but nonetheless, near the discontinuities in the Fermi 
surface, A(k) will be considerably reduced. 

We have 

A ( E ~ ) K w , ,  exp(- Ilk), 

where 

We first consider the configuration in which the new 
Bragg planes do not intersect the Fermi surface that exists 
paramagnetic phase. In this case A is reduced by AX due to 
the factor [u2(k)- u2(k)]: 

A X I A - ( I , - ~ S I Q V ~ ) ~ ,  (32) 

where U F  is the Fermi velocity of the electrons. We estimate 
I,-f from 

where S,, is the saturated holmium spin and T,, is ex- 
pressed in energy units, yielding 

AAIA-(~O-~-  1 0 - ~ ) r ,  

where r= (T,- T)/T, . This negligible change in A cannot 
lead to suppression of superconductivity. This is precisely 
the case in the commensurate phase. 

If the new Bragg planes intersect the Fermi surface, 
which, in our opinion, occurs in the incommensurate phase, 
each intersection reduces A by Ah such that 

AA/X-I , -~S /QV~.  

Therefore 

and the suppression of superconductivity is stronger at lower 
temperatures and higher 7. Hence, it follows that the strong 
suppression of superconductivity in the incommensurate 
phase is due to discontinuities in the Fermi surface resulting 
from magnetic order. This, however, is not sufficient for the 
total elimination of superconductivity and transition to the 
normal state. In pure samples with a low concentration of 
nonmagnetic impurities, superconductivity  survive^.^.^ In 
heavily contaminated materials superconductivity is totally 
suppressed and a transition to the normal state  occur^.^-^ In 
our opinion, the differences in behavior among various 
HoNi2B2C samples directly attest to the important role of 
impurities in suppressing superconductivity. 

4. EFFECT OF NONMAGNETIC IMPURITIES ON 
SUPERCONDUCTlVlTY 

Suppose that the interaction between electrons and non- 
magnetic impurities in the paramagnetic phase is described 
by the Hamiltonian 

Here the sum is taken over impurities, R,,, are their 
coordinates, Vo=const is the potential of the electron- 
impurity interaction, and 6(r )  is the Dirac delta function. 

(31) In order to express the Hamiltoninn .Ke.,,,,, in terms of 
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modified electron wave functions in the anti- 
ferromagnetic state, we substitute Z , V o  exp[i(k- k1)R,,] 
for gp,[b+(k- k') + b(k1 - k)] in Eq. (1 1). 

As in Eq. (27), we obtain the following Eliashberg equa- 
tion in the presence of impurities: 

In antiferromagnetic superconductors, Anderson's theorem 
does not hold, and nonmagnetic impurities suppress super- 
conductivity in the same way as paramagnetic impurities in 
conventional superconductors. ' ' * I 2  

Before estimating the critical impurity concentration x,, 
at which superconductivity is destroyed, we make several 
remarks. 

The typical reciprocal time of electron-impurity scatter- 
ing, T ~ ' - X V ; V ~ ,  is much larger than Is-fS near T , .  Buz- 
din and ~ulaevskii" therefore concluded that in this case 
electron motion is entirely diffusive, and is not affected by 
the anisotropy of the magnetic structure, while the gapless 
band at the Fermi surface disappears. 

Because of damping due to impurity scattering, the main 
contribution to the integral over 5; in Eq. (13) is produced by 
the regions where 5;- 70'. Therefore the integrands in Eq. 
(36) are averaged over a range of 5 of order 70'. But this 
averaging does not affect the factor u2(k) - v2(k) preceding 
the integrals on the right-hand side of Eq. (36) and does not 
lead to a finite gap at the boundary of the new magnetic 
Bragg planes, i.e., to the disappearance of the gapless band. 

The values of u2(k')  - v 2(k ' )  averaged over 5 are es- 
sentially the same as the nonaveraged values, since near the 
new Bragg plane, VE(kl) is parallel to this plane, and 
u (k1)=v(k ' )  at the intersection. Therefore the decoupling 
action of impurities does not saturate as their concentration 
rises. It is described by the parameter T,:', which is similar 
to the corresponding parameter in the case of paramagnetic 
impurities in traditional superconductors.16 

In the commensurate phase, where the magnetic Bragg 
planes do not intersect the Fermi surface, 1 v ( k ) l 4  I ,  and if 
the condition ~ , . 7 ~ @  1 is satisfied, A(k,ck) can be consid- 
ered independent of k.'29'7 In this case Eq. (36) takes the 
form 

similar to the equation for the order parameter in a supercon- 
ductor with paramagnetic impuritiesI6 and rs given byf2 

where z is the number of new Bragg planes. Therefore, as in 
a superconductor with paramagnetic impurities, gapless su- 
perconductivity emerges at < '> exp(- d 4 ) A o ,  and at 
rS-'>0.5A0 it is completely destroyed (here A. is the gap 
with no impurities).16 But this must occur at the impurity 
concentration 

hence xc$ 1 at 7-0.1. Thus, at realistic impurity concentra- 
tions of 1 0 - ~ - 1 0 - ~  superconductivity is negligibly sup- 
pressed by nonmagnetic impurities in the commensurate 
phase. 

In the incommensurate phase, where magnetic Bragg 
planes intersect the Fermi surface, the major contribution to 

- 1 .  
rs IS due to the regions close to discontinuities of the Fermi 
surface, where v(k)- 1. In this case Eq. (36) does not have 
a simple solution. The result is similar to the case of the 
commensurate phase, but the characteristic value of is 
much greater: 

and 

At 7- 0.1 we have xc,- lop2. 
Since the decoupling effect of impurities increases with 

decreasing temperature, i.e., increasing 7, like the effect 
leading to lower A owing to the modification of the wave 
functions, the superconducting state is destroyed at 
Tc.2 < TI,, - 
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5. CONCLUSIONS 
1. Superconducting pairing in the helicoidal phase has 

the form (a:(- k ) ~  :(k)). 
2. The experimentally observed suppression of super- 

conductivity in the incommensurate phase of HoNi2B2C can 
be consistently accounted for in terms of intersections be- 
tween new Bragg planes arising due to magnetic order and 
the paramagnetic-phase Fermi surface. 

In the commensurate phase the magnetic Bragg planes 
are far from the Fermi surface because of the difference be- 
tween the wave vectors of magnetic order in the commensu- 
rate and helicoidal phases, so the effect of magnetic order on 
superconductivity in the commensurate phase is considerably 
weaker. 

3. The superconductivity is gapless, i.e., the gap van- 
ishes at the intersections with the new Bragg planes through- 
out the temperature range where the helicoidal phase occurs, 
up to T ,  . 

4. Nonmagnetic impurities suppress superconductivity in 
the case of long-range antiferromagnetic order. The ampli- 
tude of the effect of magnetic order on superconductivity is 
different in different HoNi2B2C samples because of vanish- 
ing impurity concentrations. 

5. There is no temperature range in which the decoupling 
action of impurities is saturated and independent of the im- 
purity concentration. 
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