
Vortex dynamics of a solution of two superfluid liquids 
S. I. ~ i l 'ch insk i~~)  and P. I. ~ o r n i n ~ )  

Institure of Theoretical Physics and Institute of Applied Physics, Ukrainian National Academy of Sciences, 
244030 Sunly, Ukraine 
(Submitted 20 May 1996) 
Zh. Eksp. Teor. Fiz. 110, 1866-1872 (November 1996) 

We show that in solutions of two superfluid liquids, the number of hydrodynamic theorems 
triples and there can be three types of vortices. Allowing for dissipative processes, we derive the 
equations of vortex motion of the system using a phenomenological approach based on 
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1. INTRODUCTION p I and p2 are the chemical potentials of the solution's com- 
ponents; v, , v l ,  and v2 are the velocities of the normal and 

In this paper we derive the equations of the vortex dy- 
two superfluid motions; and nik is the momentum flux ten- 

namics of a solution of two superfluid liquids. We base our 
sor, which has the form 

reasoning on the phenomenological equations for such a sys- 
tem obtained in Refs. 1-4. 

The aim of the present paper is, first, to corroborate the 
existence of three types of vortex excitations in such systems 
on the basis of the statement (proved below) that the number 
of hydrodynamic theorems in this "three-velocity" system 
triples in comparison to that in ordinary "one-velocity" hy- 
drodynamics, and, second, to derive, using a phenomenologi- 
cal approach based on conservation laws, the equations of 
vortex motion of the system, allowing for dissipative pro- 
cesses (a similar derivation for He I1 was done by Bekarev- 
ich and ~halatnikov'). 

Analysis of conservation laws shows that the complete 
system of equations of "three-velocity" hydrodynamics has 
the following form': 

where P is the pressure, 

T and S are the temperature and the entropy density, and E is 
the internal energy density. 

Note that to simplify the formulas we assume the effect 
of mutual drag of the two superfluid motions predicted by 
Andreev and   ash kin^ to be small, so that in what follows all 
quantities describing this effect are set to zero, i.e., 

12- 21- 
Ps -Ps -0 .  

2. TRIPLING OF THE NUMBER OF HYDRODYNAMIC 
THEOREMS AND THE THREE TYPES OF VORTICES IN 

(1) SOLUTIONS OF TWO SUPERFLUID LIQUIDS 

One of the corollaries of Eqs. (1)-(4) is the tripling of 
the number of fundamental hydrodynamic theorems. Indeed, 
these equations for superfluid motion imply 

(2) ( I )  the validity of Kelvin's theorem, which states that the 
circulations of the superfluid velocities along the contours 

(3) formed by the respective particles of the superfluid compo- 
nents (1 = 1,2) remain constant: 

dv2 whereDIIDt= d/dt+vl .  V; 
-+(v2.V)v2+Vp2=0,  
dr (4) (2) the validity of Lagrange's theorem, which states that 

if initially curl vl=O everywhere, curl vl=O for all time; and 
curl vl = curl v2 = 0. (3) the validity of Bernoulli's theorem, which states that 

Here p = p I + p2 is the density of the solution, p I and p2 are 
the component densities ( p  I = p c  and p2 = p( I - c ) ,  with c 
the solution's concentration); j= p l  + p2+ pv,, is the liquid's 
momentum per unit volume; p l  and p2 are the relative mo- 
menta of the two superfluid motions in the reference frame in 
which the normal (nonsuperfluid) part of the liquid is at rest, 

the quantities dQl ld t  + pl+ fv; + 0 remain constant along 
the stream lines of the corresponding superfluid component . 
(Here @ I  is the phase of the corresponding wave function 
describing the related superfluid motion, whose gradient de- 
termines the superfluid velocity, VI- VQI,  and fl is the ex- 
ternal force potential.) 

Next, representing the momentum flux tensor rIi, in the 
P I = P I ( V I - V , , ) ,  P ~ = P ~ v I - v , , ) ;  form 
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where A=  p , , ~ - L v , - p , l l ~ - l v l  - p , , 2 ~ - 1 v 2 ,  p n = p n ,  + p n 2  is 
the total normal density, with p n l  and p,, the corresponding 
components of p,  , j l  = p ,  v, ,+ P I V I ,  and j2= P,,zv,+ ~ 2 ~ 2 .  

we arrive at the following equation for A: 

which has the same form as the equation for A in two- 
velocity hydrodynamics.6 One can easily verify that Eq. (5) 
leads to all three theorems for A. In particular, Bernoulli's 
theorem has the form T +  v, . A= const along the stream lines 
of the normal component. 

The fact that the number of hydrodynamic theorems 
triples when the system contains n~ultiply-connected regions 
implies that there can be three types of vortex excitations 
coexisting in the system: two superfluid excitations with 
quantized circulation described in Ref. 7, and what became 
known as temperature A-vortices described in Ref. 8. 

3. PHENOMENOLOGICAL EQUATIONS OF VORTEX MOTION 

Bearing in mind that dissipative effects violate the con- 
servation of the circulation of the vector A (Ref. 8), we as- 
sume that only the vortices of the superfluid velocities are 
nonzero in the system. As is known? vortex motion differs 
from vortex-free motion in terms of the dependence of the 
internal energy s of the liquid on the absolute value of the 
curl of velocity, which can be expressed in differential form: 

where the coefficients A ,  as the microscopic treatment of 
vortex filaments implies? are 

Here 75 is Planck's constant, nzl is the mass of the corre- 
sponding atom, and Ri / a i  is the ratio of the vortex separation 
to the effective vortex radius. 

Next, starting with the equations of hydrodynamics of 
solutions of two superfluid liquids obtained in Ref. 1 and 
conservation laws, we proceed as follows. Into the momen- 
tum flux tensor nik and the energy flux Q we introduce 
additional terms, denoted by mik and q, respectively, in such 
a way that all dissipation processes are included in these 
terms. We define the mass flux vector j ,  the momentum of 
the liquid per unit volume, in such a way that the continuity 
equation retains its form. Then the equations of mass, en- 
ergy, and momentum conservation become 

where 

is the unperturbed energy flux, and E is the liquid's energy, 
which by Galilean transformations can be expressed in terms 
of the internal energy e of the liquid in the reference frame 
moving with the velocity v, of the normal fraction of the 
liquid as follows: 

The internal energy s satisfies the following thermody- 
namic identity, which allows for the above-noted variation in 
the liquid's energy caused by vortex motion: 

In addition to the conservation equations (7)-(9), the 
hydrodynamic equations incorporate the equations of super- 
fluid components and the equation for the increase of en- 
tropy: 

where the quantities f , ,  f 2 ,  and R (and mik and q, for that 
matter) are yet to be defined. 

To determine the form of the unknown functions, we 
find the time derivatives of the left- and right-hand sides of 
Eq. (11) and use the hydrodynamic equations (7), (9), and 
(12)-(14) to isolate all terms that are total divergences. The 
result is 

Expressing all time derivatives via Eqs. (7), (9), and 
(1 1)-(14) and using the expressions that follow from (6) .  
namely 
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curl{fl +[al X (v, 

dm2 dv2 
X 2  - = X2n2 -curl -= X2n2 .curl{f2 + [ y X (v, 

dt a t  

-n2)1)-A2n2 . cu r l [~2XvU1,  

where ni = mi / mi , we obtain 

- T div(Sv,) + R + {XInl - curl{fl+ [al X (v,, 
I= 1 

- vl)]) - Xlnl . curl[ol X v,]). 

Isolating the total divergences and performing certain 
transformations, we find that 

Here ( r r ~ , , ) ~ =  
Comparing these expressions with the equations of en- 

ergy conservation and increase of entropy, we find that 
2 

s = ( r r v , ) + C  {XlCnl x{fl+[ml x (v , -v l ) l I l )~  (15) 
I =  1 

(16) 

Now we require that the dissipation functions be 
positive-definite quadratic forms. From Eq. (16) we then ar- 
rive at the following expressions for the vector terms: 

fl= - [ a I  x (v,,- vl)] + a,[al X (j-  pv,,+curl hlnl)]  

+Pl[nl x[o~x( . i -pv, ,+cur l  X1n1)Il- Y I ~ I ( ~ I . ( ~  

- pv,,+ curl X,nl)). (17) 

Here 1 = 1,2, P I 3 O ,  and yl>O in view of the condition that 
R3O.  

Reasoning along similar lines, we arrive at an expression 
for rrik : 

where rik is, as usual, the viscous stress tensor, which is 
generally expressed in terms of the viscosity tensor Vjkl,,,: 

Allowing for the fact that 

and transforming the expressions for the f, (1 = 1,2), we can 
reduce Eq. (13) for the superfluid velocities to the form 

= - p, l [ o l  Xcurl Xlnl] - (1 - aIpl)[ml X(V,- vI 

- p,'curl Xlnl)l-Pl~l[nl  X I a 1  X (vn-vl 

-PI Icul-1 Xlnl)ll+ ~ l ~ l n , ( ~ l ( v n  - vl 

- I curl Xlnl)). (19) 

Here the first term on the right-hand side, which coincides 
with the one introduced in Ref. 10, is the force of mutual 
friction emerging as a result of the interaction between the 
set of straight vortex filaments and the normal liquid moving 
with the mean-drift velocity v,, the term with yl is the lon- 
gitudinal (along the direction of the vortices) force of mutual 
friction between the respective superfluid vortex and the nor- 
mal component, and the terms of type h I ~ l i ~ I k / ~ l  can be 
interpreted as vortex tension. 

If we allow for the expression (18) for mi, and the fact 
that all phenomena related to entropy and momenta transfer 
by vortices are effects quadratic in velocity and are therefore 
small and can be ignored, the variation in energy flux can be 
expressed as follows: 

In the absence of a longitudinal component ( yl= 0 )  this can 
be interpreted as energy transfer in the direction perpendicu- 
lar to a. 

Thus, the complete set of equations of motion of the 
given system consists of the equations for the superfluid ve- 
locities (13), Eqs. (7), (8), (1  I), and (14) (where f l ,  R, and 
rrik are determined from Eqs. (16)-(I$)), and the thennody- 
namic identity (12). 
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In conclusion we note that in the limit in which one of 
the superfluid components is zero, the resulting equations are 
simply the equations of Ref. 5 for vortex motion in He I1 

* 

with allowance for dissipative processes. 
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