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The stationary solutions of the Rayleigh-Taylor instability for spatially periodic flows with 
general symmetry are investigated here for the first time. The existence of a set of stationary 
solutions is established. The question of its dimensionality in function space is resolved on 
the basis of an analysis of the symmetry of the initial perturbation. The interrelationship between 
the dimensionality of the solution set and the symmetry of the flow is found. The 
dimensionality of the solution set is established for flows invariant with respect to one of five 
symmorphic two-dimensional groups. The nonuniversal character of the set of stationary 
solutions of the Rayleigh-Taylor instability is demonstrated. For flows in a tube, on the contrary, 
universality of the solution set, along with its independence of the symmetry of the initial 
perturbation, is assumed. The problem of the free boundary in the Rayleigh-Taylor instability is 
solved in the first two approximations, and their convergence is investigated. The 
dependence of the velocity and Fourier harmonics on the parameters of the problem is found. 
Possible symmetry violations of the flow are analyzed. Limits to previously studied 
cases are investigated, and their accuracy is established. Questions of the stability of the solutions 
obtained and the possibility of a physically correct statement of the problem are discussed. 
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1. INTRODUCTION 

The Rayleigh-Taylor instability plays an important role 
in hydrodynamics, the physics of high energy densities, as- 
trophysics, etc. Such an instability arises in a compressible 
medium when the pressure and density gradients are oppo- 
sitely directed.' The simplest case of the Rayleigh-Taylor 
instability is the instability in a uniform gravity field of the 
free surface separating a heavy upper liquid from a lighter 
lower liquid. The density of the lower liquid is frequently 
taken to be equal to zero, and the upper liquid is assumed to 
be incompressible. Then (see Ref. 2) the linear stage - of the 
development of this instability with growth rate J g k ,  where 
g is the acceleration, k =  27rlA, and A is the wavelength of 
the perturbation, is quite brief, and even for amplitudes of 
the perturbation of the order of A110 nonlinear effects begin 
to act: a periodic systpm of bubbles and jets forms (see Fig. 
I ) ,  where the motion of a bubble becomes asymptotically 
stationary.2 The problem of finding the stationary solution of 
the Rayleigh-Taylor instability is considered to be one of the 
classical problems of fluid dynamim3 The question of its 
uniqueness, first posed by ~ a r a b e d i a n , ~  received quantitative 
treatment only recently by Inogamov and ~hekh lov?  who 
established the existence of a one-parameter family of solu- 
tions of this problem for a two-dimensional periodic system 
of bubbles and jets. The bulk of previous ~ t u d i e s ~ - ~  were 
restricted, however, to planar flows in light of the difficulties 
that are met in the three-dimensional problem.6 The first ana- 
lytical study of spatial flow and proof that it has a one- 
parameter family of stationary solutions was carried out by 
Abarzhi and ~ n o g a r n o v ~  who emphasized the importance of 
the symmetry of three-dimensional flow in the stationary 

problem. The present paper is dedicated to a general analysis 
of the question of the uniqueness of stationary spatial flow in 
the Rayleigh-Taylor instability. 

2. THE SET OF STATIONARY SOLUTIONS OF THE 
RAYLEIGH-TAYLOR INSTABILITY 

Let us consider the asymptotic ( t j m )  stage of develop- 
ment of the Rayleigh-Taylor instability, namely stationary 
flow of the incompressible liquid with potential @ ( x , y , z )  
satisfying 

and the conditions on the free surface of the liquid 
z = z * ( x , y )  

Let the perturbation at time t=O be periodic in the x y  
plane. This translational invariance leads in the limit t - t a  to 
the formation of a spatially periodic flow of bubbles and 
jets2,3,5-7 (see Fig. 2). The condition of periodicity of the 

flow is very important for the question of uniqueness of the 
stationary solution of system of equations (1). Indeed, the 
problems flow in a tube and spatially periodic flow, despite 
their equivalence from the point of view of finding the solu- 
tion, are physically different. For example, the spatially pe- 
riodic, stationary solutions turn out to be unstable against 
period doub1ing,2~~ which in principle is impossible for flow 
in a tube. The correct transition from periodic flow to flow in 
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FIG. 1 .  Stationary motion-the nonlinear stage of the Rayleigh-Taylor in- 
stability. 

a tube consists in introducing an infinitesimally small viscos- 
ity, which at once limits the number of possible solutions.' 

We further assume that the initial perturbation at the 
time t=O is invariant with respect to any symmetry group 
G. The total number of such two-dimensional Fedorov 

FIG. 2. Spatially period flow. Spatial two-dimensional group G of  flows 
~ ) I I I I I I ~ .  Independent translations k ,  , k, ,  where k, # Grk,]. 

groups containing the subgroup of translations in the plane is 
equal to 17 (Ref. 9). It is clear that the symmetry of the 
spatial flow at times r = O  is determined by the star {k*} of 
that one of the wave vectors allowed by G that is associated 
with the largest growth rate. A general study of the further 
development of the Rayleigh-Taylor instability for all 17 
spatial groups, however, goes beyond the scope of the 
present work. 

Let us analyze the changes in the symmetry of a flow 
that is invariant at t=O with respect to one of the five sym- 
morphic two-dimensional groups 

p l ,  p2, pmnl2, p4mm, p6mnz. ( 2) 
It is easy to show that for any of these groups the largest 
growth rate of the initial perturbation will correspond to the 
star of the wave vector, k* = 0. If at t  = 0 there is only one 
point per unit cell, with a maximum extremal value of the 
velocity, then at times t-0 the symmetry of the flow will not 
change. Moreover, under the natural condition that different 
representations of the group G not mix at times t-+m the 
stationary three-dimensional flow will be invariant with re- 
spect to the same spatial group G. 

We will now adduce some qualitative arguments in favor 
of the existence of a continuum of solutions of the problem 
which are invariant with respect to one of the groups (2), and 
on behalf of a connection between its dimensionality and its 
symmetry. 

We assume that we have stationary flow, periodic in the 
xy plane, that this flow is unbroken, and that the free bound- 
ary z*(x,y) is smooth. Since one of the boundary conditions 
of the problem (Val,= + , = O )  is degenerate, such a flow is 

A 

completely determined by prescribing the spatial period k 
and the velocity of the stationary flow.' Equations ( I ) ,  how- 
ever, contain another independent physical parameter-the 
acceleration g ,  which has the dimensions v2k  and is there- 
fore This means that the stationary periodic solution 
is not unique. Each of this set of nonunique solutions has its 
own Froude number v /  a. From physical considerations it 
is clear that of these solutions those that are singular and 
"finite" will be first of all those whose Froude numbers are 
bounded by values of order unity, and secondly "isolated jet 
flows." 7'5 

What is the dimensionality of the set of stationary solu- 
tions? Note that the problem (the Laplace equation with 
boundary conditions) allows, generally speaking, the exist- 
ence of solutions of the most general type. Their number can 
be restricted only by requiring invariance of the flow with 
respect to one of the groups (2). Obviously, the flow (or 
solution) will be symmetric with respect to one of the groups 
(2) (call it G) if both the potential @ and the free surface 
z*(x,y) are invariant with respect to this group. The lower 
the symmetry the group G possesses, the larger, generally 
speaking, should be the set of possible solutions. Thus, to 
describe plane-periodic flow that is invariant with respect to 
either the group containing a fourth-order axis (p4mm) or 
the group containing a sixth-order axis (p6mm), requires 
that we prescribe one independent translation k. The condi- 
tions for invariance of the potential @ and the free surface 
z*(x,y) with respect to any of these groups lead to the result 
that the continuum of stationary solutions will be described 
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by three independent physical parameters: the acceleration 
g,  a unique, characteristic period k, and the velocity v.  The 
set of stationary solutions thus turns out to be a one- 
parameter set.' Each of these solutions is prescribed by its 
free surface z*(x,y), with which its Froude number v l  a 
in Eqs. (1) is uniquely associated. It is possible (see Ref. 7) 
to parametrize these free surfaces by one of the radii of cur- 
vature at the top of a bubble (the second radius is connected 
with the first by a relation that depends only on the symme- 
try). Then one of the two end-points of the one-parameter 
family of stationary solutions will restrict the Froude num- 
bers to values of order unity, and the other will correspond to 
an isolated jet with close-to-infinite radius of curvature of the 
bubble. 

If the periodic flow is invariant with respect to the 
groups p 1, p2, pmm2, then its description will require the 
assignment of two independent translations k , ,  k2 
(k2# G[k,]) in the xy plane (see Fig. 2). The set of station- 
ary solutions in this case turns out to be a two-parameter set: 
among the physical dimensioned parameters of the problem, 
besides the acceleration g and velocity u ,  there will be not 
one, but two independent periods k l  and k2. How do the 
stationary ~ ~ l u t i ~ i l s  of this two-parameter family differ? As 
in the previous case of high-symmetry flows, the free surface 
in Eqs. (I), as before, is not uniquely determined by k l  and 
k2 ; however, now the symmetry relations do not impose any 
restrictions on its form. If, for example, we parametrize the 
family of stationary solutions by the radii of curvature at the 
top of the bubble, then they will not be connected by a sym- 
metry relation (see Fig. 2). The points in the plane of these 
two independent variables will completely describe all pe!- 
mitted (by Eqs. (1)) free surfaces. Each of these points will 
have uniquely associated with it its own potential and, by 
virtue of Eqs. (I), its own velocity and Froude number. In 
analogy with the single-parameter family, the two-parameter 
family of stationary solutions should have two end-regions 
(not points, as for a one-parameter family). One of them will 
correspond to flows with close-to-zero isolated-jet Froude 
numbers. The region of physically permissible parameter 
values will be restricted, as before, by the terminal solutions 
with Froude numbers of order unity. 

Also note that the previously investigated planar 
where the absence of an initial perturbation along 

one of the independent translations in the xy plane leads in 
the asymptotic stage to a periodic chain of bubbles and jets, 
may be considered as a limiting case of three-dimensional 
flows with symmetry p l ,  p2,  pmm2. These planar flows 
are symmetrically distinct (their group is pm 11) and should 
form a one-parameter subfamily of the two-parameter set. 

Finally, the importance of translational invariance in the 
stationary problem (I) must be emphasized: in contrast to the 
periodic problem, flow in a tube, like viscous flow, is 
uniquely determined by one linear dimension and its geom- 
etry, i.e., by the ratio k2 /k l  (Ref. 8). Therefore the dimen- 
sionality of the solution set for flow in a tube with broken 
symmetry should remain unchanged. 

That a stationary periodic flow (1) should not be 
uniquely determined by the values {g,k) is of course un- 
physical and shows that the problem has been incorrectly 

formulated. In our above description of the asymptotic stage 
we proceeded from general considerations based on the sym- 
metry of the initial perturbation. This, however, does not 
allow us to draw any conclusions about the connection be- 
tween any of the stationary solutions and the initial data 
(roughly speaking, that is to say, the amplitude of the initial 
perturbation, in analogy with a Stokes wave9). In addition, a 
determination of the stability of each of the stationary solu- 
tions with allowance for the surface tension (questions which 
are not considered in this work) will possibly permit a physi- 
cally correct statement of the problem. 

3. STATIONARY FLOWS 

Let the initial perturbation be invariant with respect to 
the group pmm2, see Fig. 2. We seek the stationary solution 
of (1) in the form of an expansion of the potential in eigen- 
functions of the Laplace operator. In a coordinate system 
comoving with the bubble with constant velocity v 

exp( - J m n T z )  
cos mklx cos nk2y .I- 

where k, and k2 are the wave vectors along the x and y axes, 
respectively, and 6 is the matrix of Fourier amplitudes, with 
Qmn Z Qnm and Qoo=O. In the comoving coordinate system, 
the vertices of the bubble are the braking points, and the 
rising speed of the bubbles in the laboratory frame is 

,,,Q,, . The symmetry pmm2 leaves arbitrary the 
value of k,-the inverse length in the z direction. In Eqs. (1) 
and (3) it is easy to take limits to arrive at the csses investi- 
gated in Refs. 5 and 7, of planar flow (kl=k,  k2=0, and 
@,,=O for all n # 0) and flow with p4mm symmetry 
(kl=k, k2=k, and (Dm,=@,,). 

The stationary flow (1) is assumed to be unbroken, and 
the free surface continuous. Therefore the potential (3) and 
boundary conditions (1) can be expanded near a braking 
point in the unit cell. We note at once that such an approach 
to a solution does not allow us to consistently introduce sur- 
face tension and viscosity into the problem or to obtain (in 
contrast to Ref. 5, also see footnote in Ref. 7) an analytic 
solution in higher approximations. 

The expansion of the boundary conditions near the ver- 
tex (0,0,0) of the bubble has the form 

respectively for the Bernoulli equation and the equation de- 
scribing the absence of flow through the free boundary. We 
next expand the free surface in an even power series in x and 
y. Let z , l=~i , jYi j~2iY2J correspond to the first, and 
zk= z ~ , ~ / ~ ~ ~ x ~ ~ ~ ~ ~  to the second of Eqs. (4). Then the equali- 
ties yij=Pij  for all i and j determine the values of the matrix 
elements Q,,,,, and the shape of the free surface 
Z*=Z,[= zk .  
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In what follows it will be convenient to transform to 
dimensionless coordinates k [x+x, k2y 4 y, k32+ Z, 
ul m + u ,  @,,/ fi+@,,. 

As in Ref. 7, we introduce the moments {M) as func- 
tions of the Fourier amplitudes: 

We then have 

As can be easily seen from Eqs. (I), the coefficients (G) 
are quadratic in the moments, and the coefficients (spq)  
depend on Pij and linearly on the moments (see Appendix 
A). We choose from among the moments {M) the 
linearly independent moments M(2,0, - 1 )= M 
M(0,2, - I ) =  M ,, , M(2,0,0)= M2, , M(0,2,0)=M2, (first- 
order moments) and M (4,0,0), M(0,4,0), M (2,2,0), 
M (2,2, - 1 ), M (4,0, - I ) ,  M(0,4, - 1) (these moments ap- 
pear in the second order of the expansions (4)). Expressing 
the functions (G) and (spq)  entering into expansions (4) 
in terms of them, and then Pii and yij (see Appendix B), we 
easily obtain expressions for the equations yij= Pii. 

Note that the dimensional expressions for the moments 
{M), the equations yii=Pii for all i and j ,  and their 
solutions-the radii of curvature, Fourier amplitudes, and 
ve loc i ty40  not contain any dependence on the free (for 
pmnl2 symmetry) inverse length in the z direction k3. 

Thus, 

The equations yii= Pii for i + j = 2 are derived in Appendix 
C. In the system yi i=Pi j ,  i+ j = n  = 1 ,  2, . . . ,w ,  Eqs. (7) 
for i +  j= 1 are inhomogeneous in the moments. As in Ref. 
7, it is easy to show that the equations of the higher approxi- 
mations for i +  j a 2  are homogeneous in the moments. Set- 
ting k,  =k2=k3 and M ( a , P ,  y ) =  M ( P , a ,  y) in the system 
y. 11 .= P 11 * i + j= N = 1, 2, . . . ,m (see Eqs. (7) and Appendix 
C), we arrive at the flow with symmetry p4mm (Ref. 7). For 
M(a ,P ,  y)=O for arbitrary P # 0, y # 0,- 1 and k ,  = k, , 
k2 = 0, the equations yii= Pii describe planar flow. 5 

Thus, we will seek the solutions of problem (I)  by suc- 
cessive approximations in the function space @. The equa- 
tions y i j=Pi i ,  i +  j c N ,  derived in terms of the moments 
{M), do not contain any additional parameters. Free param- 
eters can be introduced in them only through the choice of 
variables-the Fourier amplitudes for approximation of the 
boundary conditions to Nth order. The number of these pa- 
rameters (0, l ,  2, . . . ) should be such that, first, the solutions 

of the systems of equations yij= P i j ,  i +  jS N converge with 
increasing N and, second, the limits of planar flow and spa- 
tial flow with symmetry p4mnz exist. The choice itself of 
additional variables is, of course, arbitrary. The solutions, 
therefore, corresponding in each approximation to a different 
choice of variables should not differ too much. 

For fixed values of g, k, , and k2, the velocity and radii 
of curvature of the free surface at the braking point 
(R, ,R,) are the measurable physical quantities that describe 
the pmm2-invariant stationary flow. Their connection with 
the Fourier amplitudes is easy to determine and is given by 
the identities R,= - 1/2Plo,  R, = - 1/2Pol (see Appendix B) 
for the radii of curvature and relation (5a) for the velocity 
u (the dimensional values of the radii of curvature are related 
to their dimensionless values by the transformations 
~ , k ,  l k f + ~ ,  and ~ , , k ~  /k:+~,). As was mentioned above, 
the physical values of the parameters R, and R, in the two- 
parameter set of solutions of (I) are R , , , ~ R , ~ ~ ,  
R , rr< Ry S w ,  where R,v ,, and R , ,, restrict the Froude num- 
bers allowed by ( I )  to values of order unity. 

Let the number of equations N, at each order of approxi- 
mation N be linked with the number of variables N, (the 
number of Fourier amplitudes) by the relation N,=N,+ 2. 
We solve any N,- 1 equations of such a system for N , -  l 
of the N, variables. Transforming in the remaining equations 
from the Fourier amplitudes to the velocity u and radii of 
curvature R ,  and R,, we obtain an expression 
f(u,R, ,R,)=O from which we find the velocity u and there- 
upon the harmonics @,, as functions of the parameters R, 
and R,, i.e., a two-parameter solution set in the Nth approxi- 
mation. If the radii of curvature R, and R, are related in any 
way, e.g., by a symmetry relation or a geometrical relation, 
then the solution set will be a one-parameter set (the number 
of independent variables in this case N, = N, + 1 ). For a zero- 
parameter solution, obviously, we have N,= N, , and the val- 
ues of the radii of curvature R, and R, are fixed. 

4. TWO-PARAMETER FAMILY OF SOLUTIONS 

4.1. First approximation; analysis 

We will now solve the problem of finding the stationary 
solution of the Rayleigh-Taylor instability in the first order 
of the expansion of Eq. (1) in powers x2jy2j near a braking 
point: y i j=Pi j ,  i + j = N = l ,  N,=2 [see Eqs. (7)]. 

We introduce the velocity u as a "length": 
m ( a , P , ~ ) = M ( a , P , ~ ) l u ,  ~n,n=@n,nlv.  

Then we have identically ([u] = m )  
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FIG. 3. Solutions of the problem of stationary flow in 
the first approximation in the physical region; 
k,= k,/2; a) the velocity v ( R ,  ,R,) as a function of 

/ f i e  parameters; b) decrease of the absolute value of 
Y the harmonics @,,,(R, ,R .) with growth of m +  n in 

the physical region; a= 0.8 for dimensional 
values of R ,  and R ,  ; I@,,,(R, ,R .)1+0 as R,+=.  
Units are as follows: [ " I =  &. [@",,,I= m, 
[ R , ] =  Ilk, ,  [ R , ] =  k, /k ; .  

a 

I 
2Y 

Relations (8) allow us to transform from the third-order sys- (10) 
tem of inhomogeneous equations y i j=P i j  with i+ j= 1 to 
the linear equation (5a) 

m(O,O,O) = - 1 (9) 

and, in line with relations (8), to the relation k2 1 
k ~ m ~ , ~ , =  k ; m i y R y .  ( 9 4  

Let us now construct the two-parameter solution set. We 
choose the Fourier amplitudes Q l o ,  Q o l  and Q Z 0 ,  Q O 2 ,  as 
our variables. Then 

From relations (8) and (9) it is easy to find the velocity and 
Fourier amplitudes: 

As could be expected, expressed in terms of dimensional 
quantities, the solution (10) is seen not to depend on k 3 .  As 
is easy to see from Eqs. (lo), the limiting values R,+m and 
R y + m  are associated with planar flows (in the x and y di- 
rections, respectively) whereas for k t  = k2  and R,,= R y  the 
solution (10) describes flows with p4mm symmetry. Expres- 
sions (10) give the solution of the problem to the first ap- 
proximation in the entire physical region of parameter values 
R ,  ,,G R , S m ,  R y  c r G R y S m  (Fig. 3) even though, strictly 
speaking, a valid description of the free surface in the limit 
R,+m, R , + m  requires the assignment of a large number of 
harmonics in expansion (3) (see Ref. 7). Indeed, it is easy to 
see from the solution (10) that the absolute values of the 
amplitudes @,,, , ,(R, ,R,,) decrease with the order of the har- 
monic for arbitrary values of R ,  and R,, in the physical re- 
gion: 
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I @ m n ( ~ x . ~ y ) I % I @ ( m + ~ ) n ( R x * R y ) I r  

where 

The falloff shown in relation (1 1) is exponential (see Fig. kl 
R, ,,=RX ,,=(2.5+0.5) - for k2- k 

3b): k3 

I@(m+~)n(Rx Jy)I=I@rnn(Rx . ~ ~ ) I e x p ( - a l ) ,  a>O, We will now show that for arbitrary values of k l  and 
Let us analyze expressions (10). k2 in the first of Eqs. (10) (the equation for the velocity u as 
In the limit R,t--t a, Ry -+ w for all k , and k2 for isolated a function of the parameters R, and R,) there are no singular, 

jet flows we find geometrically distinguished values of k2 lk ,  in the given re- 
gion. 

(12) Indeed, let the velocity be extremal on some curve 
u(R, ,Ry) = 0. Then 

For definiteness, from here on we will only consider flows 
with natural conditions (Fig. 2): for k 1 2 k 2  in Eqs. (1) and 
(3), first R,tSRy and, second, @,, 2 an, for m 2 n . We now 

~ ~ ( R , , R , ) I ~ ( ~ I J R , )  - MR, , ~ , ) l d ( l l J R , )  
- 

expand expressions (10) in the limit k2-+0, l/Ry-+O in pow- d w X  ,~ , ) ld ( l l@)  , R ~ ) I ~ (  ' 

ers of the small parameters lIR, and k2 (see Ref. 5): 

With the help of the latter expansion it is easy to deter- 
mine the accuracy of the passage to the limit of planar flow5 
with k 2 = 0  from spatial flow. A flow will be planar if the 
dimensionless radius of curvature at its braking point di- 
verges, l/Ry+O (see Fig. 4a). In other words, a flow with 
dimensional radius of curvature tending as k 2 4 0  to infinity 

From Eq. (10) we easily find that 

- 

faster than llki. i.e., for Rx<Ry and kl > k2 
For kt-k2-k and R,=R,-R, Eqs. (10) easily yield 

(see Fig. 4b) 

where 

In the first approximation the critical parameter values 
R,t ,,, R, ,, will be those for which 

I@mtl(Rx cryRy cr)I=I@(m+ ~)tl(Rx cr Jy  cr)I- 

As can be easily estimated from Eqs. (lo), for k l d k 2  the 
conditions R,<R,, and @mo>@ot, are necessarily fulfilled 
for J ~ c  k2 l k ,  . For such flows, it follows from Eqs. 
(10) that R, ,,=(2.5?0.5)(kl lk3) with Ry , ,3(2.5t0.5) 
X(k21k3)(kl It should be emphasized that for such an 
estimate the accuracy of the asymptotic limits (13) and (14) 
of planar flow and flow having symmetry p4mm is neces- 
sarily fulfilled in the critical region: 

It is also easy to sh w that for any k l  # k2 the points 
(R, ,,, ,R, ,,,) at whic the velocity attains an extreme value 
[see Eq. (lo)] lie outsi \ e the limits of the region in question. 

Thus, pmm2 symmetry does not distinguish between pa- 
rameter values of any singular (dependent on the ratio 
k2 /k l )  points or curves, It can be easily seen from Eqs. (10) 
and (15) that for flows with p4mm symmetry and 
k2 = k, = k for given k the extreme (maximum) values of the 
velocity u(R, ,R,) lie on the line R,-R,=O [in (14) 
AR, = - AR, , see Fig. 4b]. The lowest velocity in the rec- 
tangular geometry for k1>k2  always belongs to the flow 
with the boundary condition l/Ry = 0 (Fig. 3a). 

Thus, even in the first approximation (4) the accuracy of 
the limits (12)-(14) and the absence of singularities in the 
velocity as a function of the parameters (15) serve to confirm 
that the solution set with symmetry pmm2 is a two- 
parameter set. Indeed, we will now show that one- and zero- 
parameter sets cannot be solution sets of this problem. 

We assume that the dimensionality of the solution set 

1017 JETP 83 (5). November 1996 S.I.Abarzhi 1017 



does not depend on the symmetry, that the flow is not gov- 
erned by the geometry k 2 / k l ,  and that by varying this ratio 
it is possible to go from the spatial ( p 4 n i m )  to the planar 
( p n ~  11)  periodic solution. Thus, as can be easily seen, in the 
limit k l = k 2 = k  the corrections to the absolute values of the 
velocity and Fourier amplitudes should not depend on the 
sign of k , - k , .  

In the first approximation a relation between R, and R,, 
that depends on k  and k 2  can be obtained from the condition 
that one of the amplitudes (10) equals zero for the one- 

FIG. 4. The velocity v ( R ,  ,RY)  in the first approximation: a) in 
the limit of planar (pml I) flow: k 2 = 0 ,  IIRy-+O; b) in the 
limit of spatial flow with symmetry p4mni: k , - k z ,  
R -  " 2 , ~ ;  Ii2+R- 1i2/2, A R -  I'Z=R; Ii2-Ry 'i2/2, AU = " ( A R  

Y 
= 0 )  - u ( A R - 0 ) ,  [ R ] =  l l k l ,  [ A R ] =  Ilk,  ; c) as a function of 
one parameter for k2=  k ,  ( I ) ,  k ,=  k l / 2  (2). k2=  k , / 1 0  (3) .  The 
zero-parameter solutions are indicated by small filled squares. 
Curves 2 0  and 3 0 ,  correspond to one-parameter families of 
solutions for periodic planar flow with symmetry pm I I and 
spatial flow with symmetry p4mn1, respectively. 

parameter family of solutions, as well as the solution of the 
system of equations 0, QO2= 0 )  for the zero-parameter 
family (see Ref. 7). We immediately throw out the solutions 
I/R,,.= 0, l/R,.= 0 of the kquations Q2,=0 and Q02= 0 as 

not depending on k l  and k2 ; as before, we normalize the 
dimensionless velocity by k 3 .  The expressions thus obtained 
for the velocity and Fourier harmonics are quite lengthy and 

are not given here. For the zero-parameter solution in the 

limit k I = k 2 = k  we find ( A k , = k - k I ,  A k 2 = k - k 2 )  
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In the second limit, k 2 p m ,  this solution goes over to 

In analogy with Eqs. (16) and (17), irrespective of the 
choice of variable, that is, Fourier amplitude, the functions 
describing the one-parameter family of solutions have the 
form (Fig. 4c) 

in the limit k, =k2=k and the form 

in the limit of planar flow we have k2-+m.  In expressions 
(1 8) and (1 9) A ,  B, C, and D are functions of the indicated 
arguments. 

Thus, when p4mm symmetry is broken, corrections to 
the velocity and Fourier amplitudes for the zero- and one- 
parameter solution families are linear in the small quantity 
k l  - k2,  and as k I  - k2 grows so does the velocity (see Ref. 
7). This means that when the symmetry is lowered from 
p4mm to pmm2 both the zero- and the one-parameter solu- 
tions of (I), even in the first approximation, move into the 
unphysical region (Fig. 4c). 

As was already mentioned, the choice of additional 
variables-the Fourier amplitudes-to approximate the 
boundary conditions in each order is, of course, arbitrary. If, 
when solving problem (1) in the first order of the expansion 
of (1) in the terms xZiy2j near a braking point, we choose as 
the harmonic variables @ l o ,  @,, , and @20, @ , then the 
velocity as a function of R, and R,, will have the form (see 
Ref. 7) 

- 
((k,  lk3)b(kl  , k 2 ) ~ , ~ y +  (k 

where 

The first-order approximations (19) and (20), as expected, do 
not differ much. For physical values of the parameters R ,  
and R, , the difference between the magnitudes of the veloci- 
ties for a different choice of variables is quite insignificant 
and amounts to around 0.1 - 1 % . We will not adduce expres- 
sions for the amplitudes @,,(Rx ,R,), but note only that the 
difference between the corresponding values of the Fourier 
harmonics in (10) and (20) reaches levels ranging from 1 to 
10%. Finally, cases (1 1)-(19) easily carry over to the choice 
of variables @ l o ,  Qol , and Q20, @ I I in (20). 

4.2. Second approximation; analysis 

We will now construct a two-parameter set of solutions 
of (1) in the second order of the expansion in terms ~~~~~j 

near a braking point yij= P i j ,  i + j s  N =  2, wherefore 
N e = 5  (see Eqs. (7) and Appendix C) and the number of 
variables N,= N e +  2 = 7. We choose the following Fourier 
amplitudes: Qlo,  cPol , cPll, @20, QO2, and Q30, aO3. AS 
in the first approximation, invoking relations (8) and (9) we 
lower the order of the inhomogeneous equations of system 
(7). After a number of lengthy transformations, transforming 
from the variables Qlo ,  Q o l ,  @20, a O 2 ,  a 3 0 ,  and 
QO3, with the help of Eqs. (5) and (8), to the variables 
~ I X ,  m2r- 9 1 1 7  m l y ?  1722,3 9 3 0 7  and 9037 we solve any 
three equations of the resulting system for the variables 
q l l  , 930, and 903, and transform with the help of Eqs. (8) 
and (9a) in the remaining equation from the variables m 
m,,, , rn l y ,  and m2, to the variables v ,  R,, and Ry : 

where P(R, ,R,) and Q(R,y ,R,) are polynomials in &, and 
whose coefficients depend on k l  lk3 and k2 /k3 (Fig. 5). 

Exact expressions for the velocity and amplitudes are ex- 
traordinarily involved and are not given here. 

As in the previously investigatedx7 cases of planar and 
highly symmetric flows the second approximation (21), in 
contrast to the first (lo), does not give solutions of ( I )  over 
the entire physical region of parameter values.') Thus, ac- 
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FIG. 5. Two-parameter set of solutions of  the Rayleigh-Taylor instability in 
the approximations N= 1 ,  2. The velocity v(R,  ,R,) for a) for all k2<k , ,  
1/R,-0, b) k2=k,14, C=0.05, c) k2=k, /4 ,  C=0.10 and k2=k, /2 ,  
C=0.10, d )  k2=3k,/4,  C=0.15, e) k,=k,/2,  C=0.20, f) k2=3k,/4,  
C=0.30, g )  kz= k ,  , R,=R, , C =  ( k ,  /k , ) -  with dimensional values 
of R, and R, ; ovals denote critical values of R,, . 

cording to Eq. (21) ,  for arbitrary values of k l  and k2 the 
absolute values of the amplitudes will fall off with growth of 
the harmonic index for 

R,,y cr< Rx,y s R:y and R:,; < R,,y s w , (22)  

where 

and, in analogy with the first approximation (see Fig. 5 )  

For isolated jet flows in the limit R,+w, R y 4 w  for all 
k l  and k 2 ,  with the help of Eq. (21)  we find that 

Let us now expand the second-order approximation of 
the velocity (21)  in the small parameters l / R y  and k2 in the 
limit of planar flow k 2 4 0 ,  l/Ry-+O. Since as in (13)  for 
l/R,,=O the velocity does not depend on k 2 ,  this expansion, 
generally speaking, does not contain terms of the form kj , .  
For small l / R y ,  k 2  and R,,(k2 l k 3 j 2 +  l we have 
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Let us now consider the limit of highly symmetric flow 
kl -k2-k, R,-R,-R (the expression for 
v ( R , k l k 3  ,R ,k lk3)  is given in Ref. 7 ) :  

In analogy with the inequality (15) ,  for arbitrary values 
of k ,  and k2 there are no geometry-dependent distinct values 
in the allowed region (22)  for the velocity v ( R , , R , )  in the 
second approximation (21) .  For k 2 =  k l  the correction to the 
velocity (21), (25)  will be quadratic in  the deviations of R,  
and R ,  from the line R, - R ,  = 0 and for values of R 2 R * 
and R-R,, are numerically small and negative. Planar flow 
( p m l l )  with 1/R,=O for arbitrary k l > k 2  is the slowest. 
The zero- and one-parameter families of solutions of the sec- 
ond approximation of (1) for k ,  Z k2 are found in the un- 
physical region of phase space. 

Like the solution ( l o ) ,  after transforming back to dimen- 
sioned variables the solution (21)  does not depend on k 3 .  

4.3 Questions of convergence 

Thus, we have found solutions of the problem ( I )  in 
successive approximations N = 1 ,  2:  the velocity and Fourier 
amplitudes ( 1 0 )  and (21)  are functions of two parameters, 
and in each approximation in the allowed region of param- 
eter values the amplitudes fall off in absolute value with 
growth of the harmonic index. 

If the solutions of the problem ( 1 )  form a two-parameter 
set, then as the number of approximations grows there 
should exist a functional limit over the parameters for all the 
quantities describing the flow. So let us analyze expressions 
(10)  and (21)  from the standpoint of the convergence. 

For any nonzero k ,  and k2 in the allowed region of 
variation of the parameters the surfaces v ( R , , R y )  are 
densely grouped together, and their convergence with growth 
of the approximation is shown in Fig. 6. It is easy to compare 
the limiting expansions of the velocity (12) ,  (23) ,  (13) ,  (24) ,  
and (14) ,  (25) .  In each of them the expressions correspond- 
ing to different approximations have the same functional de- 
pendence on the expansion parameters, and the difference 
between corresponding coefficients in the allowed region is 
not great (Fig. 7). 

In the symmetrically distinct cases k 2 = 0  and k I = k 2  the 
nature of the convergence of the solutions obtained in differ- 
ent approximations varies, see Figs. 8a and b. Let us first 
consider flows with k 2 = 0 .  From Eqs. (13)  and (24)  we eas- 
ily find that for small l IRy-0  for arbitrary values of R,  in 
the allowed region the difference between the approxima- 
tions grows with 1 / R ,  as 1/6R,, . This leads to an abrupt 
deterioration of the convergence even for moderate devia- 
tions of IIR,, from zero (note that the dimensional radius of 
curvature, equal to R ,,k3 l k i ,  remains infinite). Therefore in 
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FIG. 6. Convergence of the surfaces vN(RI  .Ry )  with increase in the order of the approximation N, k,= k,/2. 

the case k 2 = 0  the only possible value of R ,  at which con- 
vergence of the solutions of the successive approximations 
of (1) exists is l /Ry=O (Fig. 8a). 

Also, p4mnt symmetry with k ,  = k 2  lowers the dimen- 
sionality of the solution set of (I), (3). In this case the ve- 
locity u ( R ,  ,R,) is extremal on the line R,-R,=O, where 
also the successive approximations achieve the best conver- 
gence (Fig. 8b). 

Note that the behavior of any of the amplitudes is similar 
to that of the velocity. 

It should be stressed that for arbitrary values of k ,  and 
k2 the zero- and one-parameter solutions of problem (I), 
obtained in the first two orders of the expansion near a brak- 
ing point, N =  i +  j= 1, 2, obviously diverge (Fig. 8c, in- 
equality (15), Eqs. (16)). 

FIG. 7. Expansions of the set of two-parameter solutions in the approxima- 
tions N =  I ,  2. Here f iR and f are the coefficients of the temls 
-I/= and - I/K (dimensioned coordinates) of the expansion of the 
velocity as functions of the parameters in the limit k , - 0 ,  l/Ry-.O; F~ and 
I : ~  are the cocfticicnts of the telms - A ( k ,  - k , )  and -A(K,-K,.) of the 
expansion of the two-pammetcr solutions in the limit k , - . k , ,  K,-K,, . 

5. DISCUSSION AND CONCLUSIONS 

As has been shown above, stationary, spatially periodic 
solutions of problem (1) in the Rayleigh-Taylor instability 
form a set whose dimensionality is determined by the sym- 
metry of the initial perturbation. 

Thus, flow with symmetry pmm2 is described by the 
independent parameters {g,v,k, , k Z ) ,  and the solution set 
forms a double continuum (surface) in phase space @. Suc- 
cessive approximations to this ideal ( N - + m )  family of solu- 
tions have been obtained here for the first time (unfortu- 
nately, in contrast to Refs. 5 and 7, we were not able to 
advance beyond the second-order approximation of (1) due 
to technical difficulties). These approximations converge: 
first of all, in each approximation the harmonics {@,,,) fall 
off in absolute value as the combined index m + n  increases, 
and second, for all of the quantities describing the flow (1)  
there exist functional limits in the parameters as the order of 
approximation increases: 

@= lim Q N ,  U =  Iim U N .  
N + m  N-+m 

The exponential nature of the convergence in all these cases 
(Figs. 3 and 6) testifies to the smoothness of the ideal 
~o lu t ion .~ '~"  

Each of the solutions in the ideal two-parameter set cor- 
responds to an exact solution of problem (1) with its own 
free surface and uniquely associated Froude number. For 
pnim2 symmetry in ( 1 )  the inverse length in the z direction 
(3) remains indeterminate.8 However, the solution is smooth: 
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FIG. 9. Two-parameter set of stationary solutions and its end region for 
periodic flow that is invariant with respect to the space group pmm2,  in the 
phase space 6. The filled and empty circles denote points from the end 
regions of the solution set. 

In one of the boundary regions of the ideal two- 
parameter solution set with isolated jet flows (see Fig. 9) in 
the dimensional coordinates 

v 

the desired dependence of the velocity has the form 

FIG. 8. Properties of the convergence of the solutions with increase in the 
order of the approximation N: a) in the limit of planar flow pm 11, k,=O, 
l/R,-0, the numbers alongside the curves are the values of IIR, ; b) in the 
limit of spatial flow with symmetry p4mm. k l r k 2 ,  
R-u2=R-"2+R-I/2 , AR- 1 1 2 , ~ -  l /2-R-1/2 , the numbers alongside the 
curves ark the values of AR, [AR]= Ilk, , [R]= Ilk, ; c) one-parameter 
solutions in the limit k 2 4 0 ,  the curves labeled 2 0  correspond to planar 
periodic flow. 

and the main contribution comes from the first terms in the 
expansion (3): 

exp( - k l z )  exp( - k2z) 
I, cos k  ,x +@,, cos k2y 

k l  - 7 2  ' 

Note that in this boundary region 

where N is the order of the approximation (see Ref. 7). 
Near the other end-region of the ideal solution set, lim- 

iting the physical values of R,, Ry  , U ,  @ ,,,, , and Fr the 
convergence of the successive approximations deteriorates 
abruptly. In this critical region, roughly defined in the first 
two approximations (see Fig. 9), the velocity and radii of 
curvature of the free surface range from 

to 
so the characteristic length in the z direction is of order 
I l k  I , I l k 2 .  Without loss of generality, for k  2 k 2 ,  we will + + + +  
set k 3 = k l  and, in the dimensional quantities, we will set RS cr 'Ry cr >vcr(R., cr ,R:c,), 
Fr= V/  &. However, it must be emphasized again that the 
dimensional solution of problem (1)  (the velocity, Fourier 
harmonics, radii of curvature R,. , R,, , and the free surface) 'Dlfi,, C,(R.LTJ;C,). 
does not depend on k 3  [see Eqs. ( lo),  (20), and (21)]. 

(27b) 
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For k, > k2 in dimensional coordinates 

We emphasize that for Rycr=w (for all n f 0, cDmn=0) the 
solution becomes invar~ant with respect to the group 
p m l  I, not pnlm2. Flows with this value of R, are planar 
and form, as expected, a symrtetrically distinct one- 
parameter subfamily of the two-parameter set (Fig. 5). 

The location of the other boundary point of the end- 
region depends on the ratio k21k, in such a way that large 
values of k2 /k l  correspond to large values of 

+ + u,,(R,,,,R~,,) (see Refs. 5 and 7). Let ~ ~ , , = ~ ~ , , ( k ~ , k ~ )  
and R:,,= RtCr(k2 ,k l ) .  From the estimate outlined above 
for the physical region of parameter values it follows that the 
dimensional quantities R:,, and R:,, are linked by the rela- 
tion R:~,/R:,,-(~~ ~ k , ) ~ ,  with dR:,,/dk2>0 and 
dR;,,Jdk2<0 for k I > k 2 .  

+ In the limit k2-+kl,  for RTcr = 3.0/kl, R, ,, 
= (3.0/k2) (k ~ k ~ ) ~ ,  the Froude number satisfies F r 4  0.38 
(see Ref. 7) and the expansion of the critical values of the 
velocity in the small parameter (k,  - k2)lkl has the form 

+ But in the limit k2+0,  for R, , ,  
= 2.01k , R:,,-' c(k2)lk2,  where c(k2)= Ilk;+w, the 
Froude number satisfies Fr-tO.22 (Ref. 5), and 

Corresponding expressions for a:, , , (R~, , ,R~, , )  and the 
free surface are given in Appendix D. 

From Eqs. (28) and (29) it can be easily seen that the 
+ critical values R, ,, and R l C ,  weakly depend on the ratio 

k 2 / k l  in the limit k2+0, whereas in the limit k2+kl the 
value of the derivative dR,:,,/dk2 should be quite large (28), 
which finds itself in total agreement with the results obtained 
(see Fig. 5). 

If the symmetry of the flow is lowered from pnznz2 to 
pm11, then in the limit k 2 4 0  the surface of solutions in 
phase space degenerates into a curve.' Such flows are de- 
scribed by only three independent physical quantities 
{g,u,k,)  and the solution set is a one-parameter set, in com- 
plete agreement with Ref. 5.  Its end-points are R , ,=x ,  
R, ,,=2.0/k1 with u,,(R, ,,) = 0 . 5 6 m  and R,+cc with 
~c,(R.,)--- ,2 m l  a. 

In the limit k , 4 k l ,  p4mnz symmetry distinguishes in 
the two-parameter set solutions forming a simple 

c o n t i n ~ u m : ~  the one-parameter family prescribed by the val- . - 

ues {g,u,kl) R,= R,= R with end-points R,,= 3.0/kl, 
~ , , ( ~ , , ) = 0 . 9 6 f i  and R+m, u c r ( ~ ) + 4 ~ / J k , R  (see 
Ref. 7). 

Thus, families of stationary periodic solutions for planar 
flow with pm 11 symmetry and spatial flow with symmetry 
p4mnz are isolated curves in phase space 6 (Ref. 7). In order 
to make the transition in (1) via symmetry breaking from 
spatial flow to planar flow, it is necessary to enlarge the 
dimensionality of the solution set (Fig. 9). For a prescribed 
value of one of the characteristic translations, planar flows 
possess the lowest velocity (Froude number) and spatial 
flows with p4mm symmetry the highest allowed by (I)  
(Fig. 9). 

The main results obtained here may be carried over to 
the case of p6mm-invariant periodic flow. Note that in this 
case the transition from spatial flow to planar flow will be 
accompanied by a lowering of the symmetry from p6mm to 
mm2 and, consequently, the transition in (1) from spatial to 
planar solutions should also take place in the two-parameter 
set in phase space. 

Thus, translationally invariant stationary solutions of the 
Rayleigh-Taylor instability are not universal in the sense of 
the dimensionality of their set. Stationary solutions of the 
Rayleigh-Taylor instability for flows in tubes, on the con- 
trary, should be universal: as was noted above, symmetry 
violations cannot affect the dimensionality of their set. Al- 
lowing for viscosity near the wall will have the obvious re- 
sult that these solutions will be a point (points) in phase 

1 space: 
Garabedian, who was the first to enunciate the hypoth- 

esis that the stationary solution of the Rayleigh-Taylor in- 
homogeneity is n ~ n u n i q u e , ~  assumed that only the fastest 
flow is realized in (1) and that all the others are unstable. It is 
interesting that in the investigated  case^^,^ only solutions 
with critical values of the Froude number were observed. 
Thus, for planar flow the experimental Froude number Fr2D 
was found to be equal to 0.22 (Ref. 2), and for spatial flow 
with a square lattice the value Fr3D,=0.38 was obtained by 

numerical e ~ ~ e r i m e n t . ~  The largest velocity in the one- 
parameter families of solutions597 corresponded to the Froude 
numbers FrzD= 0.26 and Fr3r,,= 0.48 for planar flow and 
"square" spatial flow, respectively. In the case of 
pmm2-invariant flow, it may be expected that some solution 
{u,,(R, ,, ,Ry ,,),R, ,, ,Ry ,,} in the critical region will be re- 
alized experimentally. However, the stability of stationary 
flows (I) has so far not been examined. The selection of 
solutions, their evolution and stability criteria remain as sub- 
jects for future study. 

Let us comment now on the solution method employed 
in this work. It should be emphasized that the nonuniqueness 
of the solution of the problem of stationary flow is dictated, 
primarily, by physical considerations. Let the dimensionality 
of the solution set be equal to P. If the number of additional 
parameters introduced in (3) is less than P, then the solutions 
obtained in successive approximations will not converge in 
phase space to any limit. If, on the other hand, the number of 
additional variables in (3) is greater than P, then functional 
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convergence of successive approximations will be realized 
on a P-dimensional surface of phase space. Note that in this 
case we may be talking not simply about the convergence of 
( P  + s)-dimensional approximations of (1) with s a O ,  but 
also about their best convergence. Indeed, the solution of the 
problem (1) is assumed to be continuous, and the physical 
values of 6 are such that I @ c m + l ) n 1 9 1 @ m n l .  Therefore, in 
any finite approximation, allowing for P + s additional vari- 
ables can give only small corrections in the physical region 
to the P-dimensional solution, and the ( P  + s)-dimensional 
solution set should be extremal on a P-dimensional surface 
of phase space. Will convergence of ( P  + s)-dimensional 
successive approximations be achieved on a P-dimensional 
surface of phase space or will their best convergence depend 
on the specific form of the approximation of the boundary 
conditions and its symmetry? Thus, if the dimensionality of 
the set of stationary solutions, determined by the symmetry 
of the initial perturbation, is equal to P ,  then the 
P-parameter solutions found in the successive approxima- 
tions will always be distinct in the physical region from the 
convergence point of view, irrespective of the particular so- 
lution approach, for arbitrary choice of the variables used to 
approximate the boundary conditions. 
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APPENDIX A 

After Eqs. (1) and (3) are transformed to dimensionless 
coordinates k l x 4 x ,  k2y--+y, k3z+z, V I ~ ~ V ,  
@,, i &7&@,, , the relations for the corresponding Ber- 
noulli functions (m) take the form 

(000) = 0, (001) = u r n ,  

where (spq) are functions that depend on P i j  and linearly on 
the moments and are defined by the condition that there be 
no flow through the free boundary. In the Nth-order expan- 
sion in the dimensionless coordinates this condition has the 
form 

N-I , 

where 

( - 1 )S+P+4 (q)2M(2s,2p+2,q-  l ) ,  

(Spq)2'(2s)!(2p+ 1)!q! k3 

APPENDIX B 

By virtue of symmetry, it is easy to obtain relations for 
yij and Pij  by making the substitutions ( ~ p q ) ~ + ( p s q ) ~  and 
(spq) 4 ( p ~ q ) ~  in the expressions for yij  and Pi j  , respec- 
tively. For yij and Pi, we obtain 
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APPENDIX C 

The equations of the system y i j = P i j  with i + j = N 2 2  
are homogeneous in the moments. Invoking relations (8), we 
can transform from the moments M I , ,  M  M2.\. , and 
M 2 ,  to the variables u ,  R ,  , and R ,  and velocity-normalized 
moments m ( a p  y )  = M ( a / 3 y ) l v .  The equations of the sys- 
tem y i j = P i j  then take the form 

7 2 0 -  P20=04: 

The equation y02- Po2= 0 is easily obtained from the equa- 
tion y2,- P2,= 0 by interchanging the subscripts, thus: 
k l @ k 2  and RX@R, ,  . 

APPENDIX D 

For k 2 j k l ,  A k = ( k l - k 2 ) ,  ~ : , , = ( d R . ~ , , l  
ak2)R:cr= 3 , 0 1 k , ,  the expressions for the Fourier harmonics 

take the form 

~ P ~ ~ ~ ~ ( R ~ ~ , , , R ~ , , ) I  Jglk,= - 0 . 2 9 4 + (  -0.035 

and the free surface is given by 

In the limit k 2 + 0  for R i  ,,= ( d ~ : , ~ d k ~ ) ~ : ~ ~ = 2 . 0 , k ,  the Fou- 

rier amplitudes take the form 

and the free surface is given by 

z * l k I = ( - 0 . 2 5 + 0 . 1 2 5 ~ : .  , , k 2 / k l ) x 2 + ( - 0 . 0 1 7  

+0.034R,:. ,,k2 l k ,  )x4+  (0 .250k2 l k ,  )x4 .  
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