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Experimental data are presented on the degree of molecular orientational ordering, S ( T ) ,  for two 
thermotropic liquid crystals in the thermodynamically stable and metastable discoidal 
nematic phases, N D  , and in the discotic phase D h d .  The Landau-de Gennes theory is shown to 
be valid for describing S ( T )  for the N D  phases of both types of liquid crystal. The N D - I  
phase transition (I is the isotropic liquid) is simultaneously close to the isolated Landau critical 
point and to the tricritical point, as is the N  - I  transition in ordinary calamite nematics. 
The difference in the local symmetry of the N  and N D  phases shows up as a difference in the 
relationship between the direct correlation length to of the spatial fluctuations in the 
order parameter S and the molecular dimensions. The relation between the susceptibilities 
s(")= (a"Sldh")T,h,o of the nematic phase to the field h ,  thermodynamically conjugate to the 
modulus S with the temperature dependence S ( T )  in zero field and its derivative with 
respect to temperature is found. The critical behavior of S ,  s('), s ( ~ ) ,  and the correlation length 
5 in the nematic phase N D  are studied and an explanation is given for the controversial 
empirical values of the exponents for these quantities in thermo~opic calamite and micellar 
discoidal nematics. It is shown that the N d -  Dhd  phase transition is a strong first-order transition 
with a large jump AS and strong coupling between the orientational and translational 
ordering of the molecules. Here the low entropies A E  and enthalpy AH of the N d - D h d  phase 
transition are caused by an increase in the conformational mobility (orientational melting) 
of the flexible chains of molecules in the Dhd phase. O 1996 American Institute of Physics. 
[S 1063-776 1 (96)O 19 1 1-71 

1. INTRODUCTION phenomenological theories developed for ordinary calamite 

Liquid crystals consisting of disc-shaped molecules are 
characterized by a large variety of structures and interesting 
physical properties, which have stimulated intense research 
on them.' A key to understanding their molecular nature and 
optimizing their properties may be provided by information 
on the parameters of the orientational and translational order- 
i n g ~  of the molecules (of their fragments) in the limits of the 
isolated liquid crystal phases and on the changes in these 
properties during phase transitions. However, the mixed 
orientational-translational ordering parameters of the mol- 
ecules in discotic liquid crystals1** have not yet been deter- 
mined experimentally, and the most important parameter is 
the degree of orientational ordering of the molecules, S. 
Most work on the physical properties of discotic liquid crys- 
tals and their orientational ordering concern the discoidal 
columnar phases Dh,r , r  (intrinsically discoidal phases), while 
the discoidal nematic phases N D  have been studied very 
little. Only recently have the first experimental data been 
obtained on the magnitude of S and variation S ( T )  in the 
N D  phase of liquid crystal mixtures3 and pure components,4 
as well as on the features of the discoidal nematic-isotropic 
liquid ( N D - I )  phase transition: on the magnitude of S in 
the recovered phase N D ,  , and on the change A S ( T N D )  dur- 
ing the N D R -  Dhd  tran~ition.~ 

Besides extending the above mentioned data, developing 
a theory of 1 - N D - D  phase transitions and the phase dia- 
gram of d i ~ c o t i c s ' . ~ . ~ - ~  requires clarification of such basic 
questions as the applicability of the molecular-statistical and 

nematics N  (consisting of rod-shaped molecules) to the de- 
scription of S ( T )  and the N D - I  transition; the general fea- 
tures of and differences between N  - I  and N D  - I  transitions; 
the change AS(TND) during an N D - D h d  transition; and, the 
relationship of the behavior of S ( T )  and I  - N D  - D h  transi- 
tions to the conformational degrees of freedom of the mol- 
ecules and their flexible end chains, whose presence is a 
necessary molecular property for the existence of discotic 
mesomorphism.' 

On the other hand, the dependence S(T)  determines the 
susceptibility x of the nematic phase to changes in S under 
external influencest0 and is important for practical applica- 
tions of N D  nematics. It has recently been observed" that the 
birefringence An cx S a xi of the isotropic phase of a discoid 
nematic in a shear flow is several orders of magnitude greater 
than for the calamite nematics. This suggests a need for a 
theoretical and experimental study of the nonlinear suscepti- 
bilities ~ ( " ) = ( d " ~ l d h " ) ~ , ~ , ~  of N D  nematics to the field 
h ,  conjugate to the order parameter S, as well as a need to 
establish an interrelationship between s(") and S ( T )  analo- 
gously to the case of the linear susceptibility ,y. 

The critical change in the parameters S,  X, and s ( ~ '  in 
the N D  phase is also of interest because of the difference in 
the local symmetry of the N  and N D  phases.8 Whereas in the 
isotropic phase of a discoid nematic the reciprocal suscepti- 
bility varies as X , ~ l  cc T-T*  with a differenceI2'" 
T,.-  T*= 1-2 K (T,. is the temperature of the N o -  I transi- 
tion and T* is the temperature of maximum supercooling of 
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FIG. 1. Structural formula of the molecule and the temperatures ("C) of the 
phase transitions of LC- I. (Cr denotes the crystalline phase). 

the isotropic phase) that is of the same magnitude as for the 
calamite nematics, the change AH=20-300  Jlmole in the 
enthalpy during the N D -  I  is anomalously 
small compared to the N - I  transition. Since we have 
AH = US:T,M, where S,= S ( T , ) ,  the anomalously low 
value of AH may correspond to small S,  and strong fluctua- 
tions in the order parameter S ,  or to a small parameter a  and 
a large bare correlation length to;= Jw in the fluctua- 
tions of S  in the isotropic phase. Information on AH and S  
for the thermotropic N D  phases makes it possible to investi- 
gate the question16 of the relationship between to and the 
molecular dimensions and to establish the interrelationship 
between the local symmetry of the nematic phase and t o .  It 
is knownI7 that in lyotropic micellar N D  phases a  is tens of 
times smaller, while to is several times greater, than in the 
thermotropic N  phases. Based on the same local symmetriess 
of the N D  phases in thermotropic and lyotropic liquid crys- 
tals, we can expect an analogous relationship between the 
parameters a and to in the thermotropic N  and N D  phases. 
On the other hand, it is interesting to compare the critical 
behavior of the order parameter S  in thermotropic ND nem- 
atics with the available data for micellar N D  n e m a t i c ~ . ' ~ - ~ ~  

This paper is devoted to a study of the orientational or- 
dering of molecules and I -  N D -  Dhd phase transitions in 
two thermotropic liquid crystals of different chemical classes 
and to investigating the questions raised above. In Sec. 2 the 
temperature dependence of the order parameter is presented 
and compared with the molecular-statistical theory and com- 
puter simulations. Section 3  includes a quantitative interpre- 
tation of S ( T )  in the N D  phase in terms of the Landau-de 
Gemes theory and a comparison of N D - I  and N -  I  transi- 
tions. The response of a nematic to external influences and 
the interrelation of the susceptibilities s(") with the function 
S ( T )  are examined in Sec. 4. The critical behavior of S ,  X, 
and s ( ~ )  for the samples studied here is discussed and this 
behavior is compared with published data for thermotropic 
calamite and discoid micellar nematics in Sec. 5. The main 
results of this work are summarized in the Conclusion. 

2. ORIENTATIONAL ORDERING OF MOLECULES IN THE ND 
AND Dh PHASES 

Test samples. In order to account for the factors which 
influence the orientational ordering of the molecules in liquid 
crystals and are important for solving the problems stated 
above, the compounds LC-12' and ~ c - 2 ' ~  with the structural 
formulas and phase transition temperatures shown in Figs. 1 
and 2 were selected. 

Unlike the low temperature N D  phases3 in liquid crystal 
mixtures with nonideal phase diagrams, LC-I and LC-2 are 

FIG. 2. Structural formula of  the molecule and the temperatures ("C) of the 
phase transitions of LC-2. (Cr denotes the crystalline phase). 

pure components. Precision data on the refractive indices 
n, , , ,  (h=589 nm) are available for these materials for use 
below in determining the S ,  ND , and Dh phases. Because of 
the nonpolarity of the molecules and the absence of low tem- 
perature D phases for LC-1, it is natural to propose that the 
associates and cybotactic groups which affect S  and S ( T )  in 
the N D  phase are The nematic phase of LC-1 is 
strongly supercooled, which ensures a wide range of varia- 
tion in S ( T )  for comparison with theory. In LC-2, both the 
low temperature phases, I  and N D  , are m e t a ~ t a b l e ' ~ ' ~ ~  and 
are of interest for comparing the difference T,-  T* with the 
observed interval of the N D  phase. Data on AH are 
available14 for all the transitions of LC-2 and, when data 
exist on S , = S ( T , ) ,  they can be used to estimate to. The 
polar LC-2 molecules form dimers whose stability depends 
on the conformation of the m o l e c ~ l e s . ~ ~ r o m  the extent of 
the change A S ( T N D )  and the degree of influence of the fluc- 
tuations in the column ordering of the molecules on the be- 
havior of S  in the N ,  phase near the transition temperature 
T N D  it is possible to ascertain the character of the Nd- Dhd 
transition in LC-2. 

Orientational ordering and birefringence of the ND phase 

Let us consider a uniaxial, nonpolar, uniformly oriented 
nematic N D  with disc-shaped molecules whose symmetry 
axes IIIC, ( n a 3 )  are normal to the molecular planes and 
oriented along the directrix n. The orientational order param- 
eter of the molecules, S =  ( 3  cos2 01,- 1)/2 is the modulus of 
the macroscopic order parameter of the N D  phase,'6 
S i j = S ( n i n j -  a i j / 3 ) ,  where the niPj  are the components of 
the directrix n. While the global symmetry of the N  and 
N D  phases is the same, we note that their local symmetries 
differ.' If in the N  phase the vector n is perpendicular to the 
direction of the minimum intermolecular separation that co- 
incides with the transverse dimension of the stretched mol- 
ecules and tOi , I 3  then in the N ,  phase the direction of n 
coincides with the direction of the minimum intermolecular 
separation in the direction transverse to the flattened mol- 
ecule. In addition, the molecules forming the N  phase have a 
biaxial form and polarizability tensor y, while the discoidal 
molecules are uniaxial and the molecular biaxiality does not 
contribute to the intermolecular interaction energy. For the 
same reason, the anisotropy of the dietectric tensor E of the 
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N D  nematic is determined solely by the value of S. 
We introduce the parameters 

where 

nk are the refractive indices of the N D  phase for the light 
waves polarized with Elln and E l  n. Given the anisotropy of 
the local field of the light wave in a light crystal;4 the pa- 
rameter S has the form 

1 +(&-  l ) ( P -  1)/3f 
SAS=Q 

1 +&,(P- 1)(1+2Q/3)/9f 
= Q ( l + u ) .  (I) 

Here a is a correction for the anisotropy of the local field, 
P= TI T ~ = c o ~ s ~ ; ~  T= (L ,~  - ~ ~ ) / 3  is the anisotropy of the 
Lorentz tensor L of the liquid and 

Given the inequalities 2 Q 4 3  and ca49 f ,  to first order in 
E, the expression for a reduces to 

For P >  1 the increase in Q > 0  with increasing S in the 
N D  phase is accompanied by a weak reduction in a as op- 
posed to the growth in a in the N  phase with Q<O. How- 
ever, in both phases this change in a is small, since usually 
Q 4 3  and ( E  - 1)1 f-const. 

The samples selected here differ substantially in the cor- 
rection for the anisotropy in the local field. The LC-I mol- 
ecules have a strongly polarizable aromatic core and large 
An=n, -rill. For the N  phase of these liquid crystals, the 
components Lj (Tr L=  I) derived from experimental data24y25 
are in good agreement with calculations using the model of 
Ref. 25, according to which for the N D  phase when S=  1 the 
component Li0) is determined by the ratio rn = a , la l  of the 
semiaxes of the molecular spheroid and is given by 

The interval 1 S m < w  corresponds to the interval 
0 s  TO= 113 - L I P ' <  113, which is twice that for the calamite 
liquid crystals. In the N D  phase for S< 1, the dependence 
T(T) is given by r= rkrO/rkO ,24 where rkO= rk (Q = QO, 
s= I). 

For real discogenic molecules the spatially-branched lo- 
cation of their fragments and the substantially nonlocal char- 
acter of the molecular polarizability must cause a reduction 
in r.24 Thus, for LC-I the model (4) can be used only to 
obtain upper bound estimates for T, a ,  and the range of 
variation of u(T) in the confines of the N D  phase. We obtain 
the values 

FIG. 3. Temperature variations in the orientational order parameter of the 
molecules, S (solid circles), the product SA (1) (hollow circles) and param- 
eter Q (I) (squares) in the nematic N ,  phase of LC-I. The smooth curves 
are calculated from the equation of state ( I  1) (curve 1 )  and by interpolation 
(curves 2 and 3). The dashed curve is the theoretical S M s ( T )  curve accord- 
ing to the Mayer-Saupe theo~y .~ . '~  

where dl,=4.5 A is the average of the typical intermolecular 
distances along n for disc-shaped molecules such as LC-1 in 
the uniaxial N D  and biaxial N B  phases according to x-ray 
scattering data,26227 M is the molecular weight, N A  is the 
Avogadro number, and p= 1 g/cm3 is the density of the liq- 
uid crystal. Substituting rn=6.86 in Eq. (4) yields 
r0=0.235 (Ref. 4). 

As can be seen from Fig. 3, the Q(T) curve for LC-I can 
be described by Haller's formula28 

+0.015 with the parameters Qo= 0.687-o,,o, TH- T,= 0.7'- 0.1 K, 
+ 0.008 and pH = 0.255-0,001 . With a measurement accuracy for the 

refractive indices of ql,l = ? 1 . (Refs. 14 and 21), the 
accuracy in determining the parameters Qo, p H ,  and 
TH-T, depends mainly on the accuracy of determining 
T,, which is limited by the presence of the two-phase region 
of the N D - I  transition. Here and in the following we take 
S(T,) = t 0.1 K when indicating the accuracy of all the pa- 
rameters for both liquid crystals. The labels on the values 
denote the experimental error and correspond to 
T,,- T,= 0.7+0.1 K for the superscripts and 
TH- T,= 0.7- 0.1 K for the subscripts. For A = const the 
ratio Q(T)/Qo gives S(T) in the approximation of u=O. 
Substituting Qo in Eq. (2) gives rko=0.O99 and 
P = TO 1 rko= 2.374. For T= P T ~  the parameter a in Eq. (2) 
changes from 0.44 near T, to 0.39 for AT= T,- T= 40 K. 
The temperature dependences AS(T) and S(T) are shown in 
Fig. 3. AS(T) in Eq. (I) well approximated by Eq. (5) 

+0.016 with ASo=0.943-0,,7, TH-T,=0.7-+0.1 K, and PI, 
=0.247+::gi. For So= 1 the anisotropy in the local field 
shows up as a large increase in A =0.943 compared to the 
case Ai=Qo,  but has little effect on p,, and the relative 
values of S(T) in the N D  phase owing to the small variation 
in the factor 1 +a in Eq. (I). Over the entire range of the 
N D  phase, the difference satisfies S ( u )  - S ( a =  0)  
= const=O.O I .  

Since LC-2 is characterized by the absence of 
7~-electron conjugation of the R fragments in the molecular 
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FIG. 4. Temperature variations in the parameters S= QIA,(N,) (hollow 
circles) and Q(N,,) (solid circles) in the nematic N, and discotic D,,, 
phases of  LC-2. The N,- D,, phase transition takes place at a temperature 
TN,>=T,- 15.1 K. The continuous curves have been calculated from the 
equation of state ( I  1) (curve 1 )  and by interpolation (curve 2). 

core, by weak birefringence, and by a more friable molecular 
structure than that of LC-I, it has a small anisotropy in the 
local field.24 In fact, as can be seen from Fig. 4, in the ND 
phase the change in Q(T) is well approximated by Eq. (5) 
with parameters Q, = 0.215+::F5, TH- T,= 2.52 0.1 K, and 
pH=0.228_+::::. ~,,=0.026 for LC-2 is a factor of four 
smaller than for LC-1. Since for fixed X and S the parameter 
r falls off more rapidly with decreasing E ,  than E ,  and rk 
because of the change in the chemical and electronic struc- 
ture of the m0lecules,2~ we have u(LC-2)Ga(LC-1) and the 
local field correction in Eq. (1) can be neglected for LC-2. 

The contribution of the polarizability of the flexible 
C8HI7 end chains to the parameters E ,  and y, for the LC-I 
molecules is negligibly small and the resulting S character- 
izes the orientational ordering of the molecular cores. For the 
LC-2 molecules, with a weakly polarizable core, the long 
flexible C17H35 chains could make a significant contribution 
to E ,  and y, when they undergo a rigid trans-conformation 
and are oriented radially in the plane of the core. However, 
the equilibrium conformation of the LC-2 molecule for the 
trans-state of the chains corresponds to their leaving the 
plane of the core,23 while a lengthening of the chains in LC-2 
molecules rapidly increases the free volume attributable to 
them in the ND phase, which is accompanied by orientational 
disordering of their fragments and a drop in the contribution 
from the polarization anisotropy to A and Q. Thus, we can 
assume a slow variation for A(T) within the relatively nar- 
row interval of the ND phase of LC-2. 

The nematic phase and the N,- 1 transition 

Figures 3 and 4 show that for equal reduced tempera- 
tures AT= Tc- T, S is higher for LC-2 than for LC- 1. The 
probable reason for this is the presence of cybotactic clusters 
of the Dh phase in the nematic phase of LC-2 with a higher 
value of S. This kind of behavior of the local structure of the 
I and ND phases is characteristic for liquid crystals consist- 
ing of polar molecules with low- or high-temperature D 

The parameters TfI- T .=  1.8 K, PI,= 0.225, 
and A=Qo=0.270 in Eq. (5) and the values of S for the 
N ,  phase in the liquid crystal mixturebre close to those 

obtained here for LC-2. Note the close values of 
PH=0.23-0.25 for the three samples discussed here with 
their different chemical structures and values of the param- 
eter A ,  which characterizes the anisotropy in the dispersive 
intermolecular interactions. This suggests that steric intermo- 
lecular interactions play a controlling role in the orientational 
ordering of the ND phases, as for the calamite nematics. 

The value of S(AT) for the discoid nematics is close to 
that for the calamite nematics and is less than that predicted 
by the molecular-statistical theory: especially near T, . The 
theory of Ref. 7 is a generalization of the MacMillan theory 
for A (N- S,) nematic-smectic transitions and yields the 
universal Mayer-Saupe dependence SMs(T) in the N and 
ND phases. A molecular-dynamics model of a system of el- 
lipsoidal particles29730 predicts a sequence of I-ND-Dh, 
transitions with S,=0.5-0.7 and high values of 
S=0.7-0.95 in the ND phase. This differs substantially 
from experiment. The same sequence of transitions has been 
obtained by a Monte-Carlo method for an athermal system of 
disc-shaped particles (sliced spheres with diameter D and 
thickness L) for LID<O. 14 [Ref. 91. The I- ND phase tran- 
sition in this kind of system is a weak first-order transition 
with S,=0.3-0.4. For a system of discs with L=O and an 
effective density p =  N D ~ I V  (Ref. 3 I), the I - ND transition 
point for p=  p, corresponds to S,=0.37 and the S(p) depen- 
dence in the ND phase is well approximated by 
Sm (p- p H ) P ~  with pH= 0.23 + 0.03. Here pH is analogous 
to TH in Eq. (5). The good agreement between PH and the 
experimental value confirms the role, mentioned above, of 
steric intermolecular interactions in the ordering of the ND 
phase, but a noticeable discrepancy in the values of S, re- 
mains, especially with LC-1. 

The quantity to calculated using the same model of in- 
finitely thin discs3' in the isotropic phase far from the 
I-ND transition was small compared to the diameter of a 
disc. It is interesting to compare this with experimental data 
for LC-2. Taking an upper-bound estimate AH = 200 J/mole 
for this sample,14 Sc=0.322 (Fig. 4), and p-0.8 g/cm3 (Ref. 
32), we obtain an upper-bound estimate of a=4.24. 
J/cm3 K, which is a factor of 22 smaller than for MBBA" 
with the same value of S, and comparable to a typical value 
a = 2.9. J/cm3 K for the micellar nematic discoid phase 
of DACI.'~ In the one-constant approximation the parameter 
Ll  in the formula tOi= d m  is related to the elastic 
deformation modulus of the nematic by the formula 
K = 2 s 2 ~  I . Since the elastic moduli for thermotropic calam- 
ite and discoid nematics (in particular, for LC-2 and the 
members of its homological series) are as are the 
values of S, for LC-2 the parameter tOi must be at least 
a - 5  times greater than the value toi=6 for MBBA 
(Ref. 23), i.e., tOi>30 A. This is comparable to the diameter 
2a,-42 A of the LC-2 molecule modelled as a spheroid with 
aI=2.25 A for pz0.8 g/cm3 (Ref. 32). Thus, the anoma- 
lously low AH for the ND- I t rans i t i~n"~ '~ . '~  mentioned in 
the Introduction is related to the smallness of the parameter 
a ,  so that the thermotropic nematics form a bridge between 
the thermotropic calamite and micellar discoid nematics. 
Note that toi is comparable to the molecular size in a direc- 
tion perpendicular to the directrix n for the thermotropic N 
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and ND phases, on one hand, and for the ND phases in the 
thermotropic and lyotropic liquid crystals, on the other. This 
establishes a relationship between tOi and the local symme- 
try of the nematic phase. 

The smallness of a  corresponds to high values of the 
nematic susceptibility xi= l l a (T-  T * )  in the isotropic phase 
and x in the N D  phase. This explains the above-mentioned 
high birefringence Anmxi of the isotropic phase in a shear 
flow for a discoid nematic with anomalously low 
AH= 205 10 ~ l rno le . '~  

The discotic phase and the ND-D,, transition 

The values of S=Q(Dhd)IQo(ND)  for the discotic 
phase of LC-2 shown in Fig. 4 show that the ND-Dhd  tran- 
sition is accompanied by a large change AS-0.1,  as is the 
D h d - N D ,  transition into the recovered nematic phase in 
other compounds of the same homological ~ e r i e s . ~  The value 
of S  in the Dhd phase of LC-2 is noticeably lower than 
S-0.85-0.95 for the Dho phase with translational ordering 
of the molecules along the axes of the  column^.^,^^^^^ This is 
evidence of strong coupling of the translational ordering of 
the molecules in a column with the orientational ordering of 
their I axes relative to the axis of a column coinciding with 
n. In the ND phase of LC-2 near TND there is no anomalous 
rise in S  of the sort that is characteristic for first order 
N - S A  transitions close to the tricritical point.13.35 An 
ND - Dhrl transition is not accompanied by strong pretransi- 
tion fluctuations of the local discotic ordering in the nematic 
phase. This explains the lack of fluctuation growth in the 
K ,  , modulus near TND in LC-2 [Ref. 141 and other homologs 
of this series32 that might be expected when the N D - D h d  
transition is close to a second-order transition.2x8336 

The large magnitude of AS(TND) is in qualitative agree- 
ment with the data of Refs. 6, 7, and 9  and differs substan- 
tially from a molecular-dynamics s i m ~ l a t i o n ~ ~ . ~ ~  which pre- 
dicts a jump AS-0.01 for S(TND)  =0.9-0.95.  For the 
N D -  Dh( , , d ,  transition the order parameter S  is noncritical 
and the change AS(TND)  is caused by its interaction with the 
critical order parameter for this transition, the multicompo- 
nent vector $ which fixes the two-dimensional lattice.192v8 
The lower order invariant which takes this interaction into 
account in the thermodynamic potential of the D h  phase has 
the form A @ ( S i j , $ ) =  -Al~Ii ,bl2 (Refs. 8 and 12), where 
Al=const>O. Thus, in the D h  phase 

s = s N + A I x I $ I ~ ,  (6) 

and the large magnitude of AS when T , -  TND is large is 
evidence of a large value of A1 .' This provides a qualitative 
distinction between the ND-Dh(( , , ( / )  transition and the first- 
order N -  SA transitions, for which the analogous coupling 
constant A ,  of the nematic and one-dimensional smectic or- 
dering~ of the molecules is sma l l ' bnd  AS is large only in 
the neighborhood of an N-I  transition for low S N ,  a strong 
dependence S N ( T ) ,  and large susceptibilities x." Substitut- 
ing S  from (6) in the expression8 for A @ ( S i j , $ )  shows that 
the coupling of S  and $ leads to a shift in T N D ,  to renor- 
malization of the expansion coefficient for the invariant 
x 1 $I4 in the one-parameter potential @(P,T,I G ' / [ ) ,  and to a 
change in the equilibrium value and temperature dependence 

of I $ [ ,  but does not affect the order of the ND - D h  transi- 
tion. It is clear from Fig. 4 that in the Dhd phase, the S ( T )  
dependence is an extension of the dependence S N ( T )  shifted 
upward by a constant amount AS(TND) .  With Eq. (6) this is 
evidence of a weak change in I $ ( T ) [ ,  of a value of 
I $ ( T ~ ~ ) ~  close to saturation, and of a strong first order 
ND - Dhd transition. 

On the other hand, calorimetric data14 indicate that 
AH(TND)  is small and that the N D -  Dhd transition is close 
to second order. The apparent contradiction in the structural 
data is eliminated if we note that AH(TND)  
= ~ ~ l $ ( ~ ~ ~ ) 1 ~ ~ ~ ~ / 2  and the smallness of AH may be 
caused by a smallness of the parameter a D  in a way similar 
to the smallness of AH(T,)  for an ND-I  transition. The 
change in the entropy of the liquid crystal during an 
ND - Dhd transition is equal to 

H H A B ( T ~ ~ ) = E ~ - z ~ = ~ ~ ~ $ ( T ~ ~ ) ~ ~ / ~ .  
The microscopic reason for the smallness of A= and a D  is 
the following: the ND - D h  transition is characterized by lay- 
ering of the nematic phase with segregation of the molecular 
aromatic cores and aliphatic chains. Because of a major limi- 
tation in the freedom of the orientational fluctuations of the 
molecular axes I relative to the column axis, here the in- 
crease AS(TND) for the cores causes a reduction in the en- 

H 

tropy cD along with the reduction owing to the discotic 
ordering of the molecules. However, because of the friability 
that is intrinsic to discogenic molecules, the columnar order- 
ing of the molecules greatly increases the free volume at 
their free ends compared to the nematic phase. This reduces 
the steric limitation on the spectrum of possible conforma- 
tional states of the chains and explains their high conforma- 
tional mobility and the orientationally molten state in the 
discotic phases,1~33~34 including for the homologs of the LC-2 
series.26p37 We note the analogy between the orientational 
melting of peripheral fragments of the molecular chains in 
N  - SA transitions3' and ND-  Dh(o,d)  transitions. Since the 
D h  phases are formed by molecules with rather long chains' 
and a large set of possible conformational states in the ab- 
sence of steric limitations, the conformational disordering of 
the chains in an ND-Dhd  transition enhances the entropy 
zD and reduces the entropy jump A  z ( T N D ) ,  thereby lead- 
ing to small AH(TND) .  

Thus, unlike the structural phase transitions in systems 
of rigid particles, where the fact that AH and A= are small 
is related to a small jump in the ordering parameter, in the 
case of first-order phase transitions in liquid crystals, their 
closeness to second-order transitions in the thermodynamic 
sense (small AH and A = )  does not always correspond to 
weak structural changes-a small jump in the corresponding 
critical order parameter and in the noncritical order param- 
eters which interact with it.38 

The high value of the parameter A in Eq. (6) is also 
related to the presence of peripheral chains of molecules. In 
fact, the tendency to layering of the ND phase is enhanced as 
the chains become longer, and this is accompanied by a nar- 
rowing of the region where the N D  phase exists.' The latter 
corresponds to a growth in A, (Ref. 8) or in the ratio dlclo of 
the column diameter d to the diameter do of the molecular 
core. For sufticiently long chains,' large interaction constants 
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A ,  (Ref. 8) or parameters a= 2 exp[- ( 2 ~ ~ d ~ l ~ ~ ] > 0 . 6 4  
(Ref. 7), the Dh phase develops directly from the isotropic 
liquid, as happens for LC-2. 

The nature of the recovered polymorphism of the discot- 
ics can be related to the above-mentioned dependence of the 
conformational state of the peripheral molecular chains on 
the temperature and phase state. It can be shown by analogy 
with earlier papers35.39 that the opposite effect of the nematic 
and columnar orderings of the molecules on the orientational 
order (conformational state) of the molecular chains R leads 
to a reduction in the interaction constant A and to the ap- 
pearance of an additional invariant A@(S, $) = h2s21 $I2, 
where A2>0, in the thermodynamic potential of the Dh 
phase. For an appropriate ratio of A and A 2  this ensures the 
possibility of a Dh- NDR transition into the recovered nem- 
atic phase with a drop in temperature by analogy with the 
S, - NR transition.I3 

3. S(T) AND THE LANDAU-DE GENNES THEORY 

In the N phase the increase in the conformational mobil- 
ity of the chains and the reduction in the anisotropy of the 
molecular form on approaching T, take place in conjunction 
with a reduction in S.13,39 This shows up in the temperature 
dependence S(T) and in the character of the ND(N) -I tran- 
sition or in the functional dependence of A@(T,S), the den- 
sity of the thermodynamic potential of the ND phase. Thus, 
in the framework of the Landau-de Gennes theory for a uni- 
formly oriented nematic ND we write A@(T,S) in the form 

(7) 

which makes it possible to account for the possible closeness 
of an ND- I transition to an isolated Landau critical point 
(B = 0) and a tricritical point (C=  0). When a term s3 is 
present, the term m s 5  is unimportant.I3 We now switch to 
the variable y = SISl and introduce the parameter 

where S I  = S(TI),  TI is the maximum temperature for sta- 
bility of the ND phase, and y,= y(T,). The coefficients in 
the expansion (7) can be written in the form 

from which it is clear that the parameter R determines the 
relative magnitude and sign of the coefficients B and C and 
the character of the ND-I transition. Values of S>O corre- 
spond to B < O  and R> 1. The reciprocal susceptibility of the 
ND phase equals 

and the conditions ~ ( y  ,) > 0 and D 2 0 imply the restrictions 
y,<4/3 and lIR>O. Given Eq. (9), the equation of state 
takes the form 

(y- 1 ) 2 [ ( y + 1 ) 2 + ~ -  l ]=Rtl t*,  (1 1) 

where t =  1 -TITl and t*= I -T*ITI 

We now investigate the feasibility of describing the ex- 
perimental S(T) curve in the ND phase of LC-1,2 by Eq. 
(1 1). Differentiating both sides of Eq. (1 1) with respect to t 
and then multiplying by t and using Eq. (1 I), we obtain 

d In y (y- l ) [ ( y + l ) 2 + ~ -  I ]  p;ff= - = 
d In t 2y[2y(y+ l ) + R -  11 ' 

Dividing Eq. (1 1) by Eq. (10) and using the first of Eqs. (9) 
yields 

On approximating the experimental S(T) curve by Eq. (5) 
with Q replaced by S, we have 

d In S PH - P;~~(  T) 
dT TH-T TI-T '  

When TI - T9TH- TI holds the equation /3:ff-pH is satis- 
fied and establishes the relationship of the experimental val- 
ues of pH to the character of the N(ND) -I transitions. For 
T,- Tp+ TH- T, , where T, is a reference point, P i f f (~ , )  
depends on the number and form of the terms in Eq. (7), but 
the form of the series (7) that describes the experimental 
S(T) curve within the interval T,-Tp for a given sample can 
be judged from the experimental value of P,.JP;~~(T,) for a 
specific compound. The inequality T,- TpB TH- T, is 
clearly satisfied at Sp= S(Tp) = 2S, for all the known me- 
sogenic compounds which form N and ND phases. The spe- 
cific form of the series (7) with a range of variation 
0 s  11R < 1 corresponds to the interval 5/24< P:~'(~S,) 
6 5/16, which includes the experimental PH for LC-1, 2. A 
description of the S(T)<2S, curve for nematics with P, 
- ~ : ~ ~ ( 2 ~ , ) ~ 0 . 2  requires that higher order terms be included 
in the expansion (7). The reduction in the range of variation 
of S(T) S 2S, when the inequality T, - T p 9  TH- T, is satis- 
fied makes it possible to use Eq. (7) for describing S(T) in 
nematics when Ph<0.2, since the function P;'~(s,,) falls off 
as Sp decreases for fixed R. 

Setting pH=p;ff(~p) in Eq. (12), using y =py, and 
p = Sp/S,, together with R(y,) from Eq. (8), we obtain the 
following equation: 

whose solution yields y,, R, and the coefficients in Eq. (9). 

The nematic phase of LC-1 

+ 0.007 For  iff(^,- 38.2 K)= p H =  0.247-0.003 and 
~ , = 0 . 2 1 2 1 ~ . ~ ~  the physical root of Eq. (15) is 

+ 8:80" ' 0.003 y,= 1.284-0,007, which corresponds to S1 = 0. 16510,002, 
+ 2.492 R = 6.159- 1.208, and the following parameters: 

+ 0.062 CID = 0.086- ,,,, . (16) 

Substituting R in Eq. (11) for the extremal points 
T= T,-38.2 K and T= T, yields T,- T*= 1.344':::;; K 
and TI - T,.=0.211'~::~ K, which are typical for thermody- 
namically stable N and ND nen~a t i c s . ' ~ .~~  Note that the 
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SMs(T) curves in Fig. 3 correspond to a difference 
T,- T* = 34 K. For intermediate values O<AT<38.2 K, Eq. 
(1 1) yields good agreement between the calculated S(T) and 
the experimental curve, as well as with the approximation (5) 
for S(T) given the anisotropy of the local field and 
PH=0.247. The greatest difference in the values of S(T) 
given by Eqs. (1 1) and (5) occurs for T,- T= 1 - 2 K and is 
-0.004, which corresponds to the accuracy with which S is 
determined. For T=O, we obtain So= 1.013;!::: from Eq. 
(1 I), in agreement with the expected value, So= 1, if we note 
that the relative interval for extraction to T=O is equal to 
(T, - 38 K)l38 K= 8.8% 1. 

When the correction for the local field is not included in 
Eq. (1) and we take /?tff(~,- 38.2 K)= pH = 0 . 2 5 5 f  and 
~ , = 0 . 2 1 2 1 ~ . ~ ~  the physical root of Eq. (15) is 

+ 8:% ' - 0.003 y,=1.293-, ,, which corresponds to Sl=0.156-o,,, 
+3.4% R = 8.345-0,,6,, and the following parameters: 

+ 0 076 CID = 0. 130-o:022, (17) 
+0.371 + 0.040 T,-T*=1.443-o,324 K and TI-T,=0.216-o,047 K. For 

T= 0, Eq. (1 1) gives So= 1.009;!:::. A comparison of these 
data with those given above shows that the magnitude of a 
and the dependence a(T) in Eq. (1) have slight effect on the 
parameters which characterize the behavior of the ND-I 
transition. The values of yc , R, TI - Tc , and T,- T* do not 
depend on the absolute magnitude of S, but depend strongly 
on pH and TH-T,. The values of S l  and the parameters of 
Eq. (9) depend on the absolute magnitude of S. 

The coefficients (16) of the potential (7) are small com- 
pared to the case of calamite nematics (roughly a factor of 
four smaller than for MBBA'~) and the ND-I transition in 
LC-1 is simultaneously close to an isolated Landau critical 
point and to a tricritical point. The reason why B is small is 
not yet clear, since the biaxiality of the polarizability tensor 
y (molecular form), which leads to a reduction in B and 
makes the I- N transition close to a second order transition 
in the calamite liquid ~ r ~ s t a l s , ' ~ ~ ~ ~  is absent in this case. One 
of the reasons why C is small, as for the calamite nematics, 
may be the interrelated variations in S and the conforma- 
tional mobility of the molecular 

The nematic phase of LC-2 

+ 0.006 For p e f f ( ~ ,  - 15 K) = pH = 0.228-0.002 and 
S ,=0 .322-0 .~  Eq. (15) has the physical root 
y,= 1.3 1 1 i8"; which corresponds to the parameters 

8.886 +6352 + 0.530 S l  =0.246~0,001, R =  18.119-2:603, Tc-T*=9.036-0.608 K, 
T, - T,= 1.232+!:!;; K, and the following coefficients for 
the series (7): 

As can be seen from Fig. 4, over the entire range of the 
mesophase the values of S(T) given by Eq. (I I )  are in good 
agreement with experiment. For T=O, Eq. (1 1)  gives 

+0.012 So = 1.132- o,oo5 for a relative extrapolation interval of 
(T,.- 15 K)/15 K -23. The resulting value of T,.- T", 

which is comparable to the region over which the ND phase 
of LC-2 exists, correlates well with the metastable character 
of this phase in this ~ o m p o u n d ' ~ , ~ ~  and reveals the absence of 
any interrelation between the value of pH-0.23, which is 
close to 0.25, and the closeness of the ND - I transition to a 
tricritical point.3' In fact, for Ph=0.25, Eq. (25) takes the 
form ycp=2R(y,)l[R(y,)-31, and y, and R(y,) depend 
on the width of the interval S,<SSS, and the value of p. 
When we go from Eq. (16) to Eq. (18) the relative values of 
BID and CID increased by a factor of 1 1, while aT, ID only 
increased by a factor of two for similar values of T, for both 
liquid crystals. This indicates the existence of common 
causes for the changes in and smallness of the coefficients 
B and C in thermodynamically stable N and ND phases. 

Thus, the Landau-de Gennes theory describes S(T) 
quantitatively over the entire interval of the ND phase and 
provides a justification for the empirical approximation of 
Haller (5) for the liquid crystals discussed here, as for the 
calamite nematic~.~' Neglecting the weak anisotropy of the 
correlation lengths t,,, along and transverse to the directrix, 
when the gradient term L , ( V S ) ~ / ~  is included in Eq. (7) it is 
possible to obtain42 an expression for the correlation lengths 
5= a of the equilibrium fluctuations in the modulus of 
S. In the nematic phase, given Eq. (13), we have 
to= JL l / 3 e t t ( ~ = ~ ) l a ~ 1  and to = SO, d m .  For similar 
L, and in the thermokopic N and ND phases, the anoma- 
lously low values of a for the discoid nematics correspond to 
large 50. The root mean square long-wavelength fluctuation 
( ( 6 ~ ) ~ ) ~  in a given volume V of a sample is given in the 
gaussian approximation by42 

( ( s s ) ~ ) ~ =  R ~ T ~ I V .  (19) 

Let us approximate the functions S(t) and ~ ( t )  by the ex- 
pressions 

with temperature dependent exponents PI and y ' .  Accord- 
ing to Eq. (19), in the correlation volume of the sample, 
v*= 4.rrt3/3, we have 

with E = ( y' - 4P1)/2. For LC-12, over the entire interval of 
the ND phase, we have t"= 1 and, because to is large, the 
Levanyuk-Ginzburg criterion42 x< 1 is satisfied, which jus- 
tifies the use of the Landau-de Gennes theory in the nematic 
phase. This fact greatly simplifies the problem of obtaining 
quantitative information on the susceptibilities s(") of the 
nematic phase. 

4. NONLINEAR RESPONSE OF NEMATICS TO FIELD 
INTERACTIONS 

A large group of interactions can be correlated with a 
tensor field hij that is thermodynamically conjugate to the 
order parameter Sij ,  where the components hij  are deter- 
mined by the physical nature of the perturbation (hij 
K E , E ~ ,  ViEj, V,TVjT, etc.). We shall consider fields hij 
which lead produce a change in S for a uniform orientation 
n. 
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We write the thermodynamic potential density of the 
nematic in the form 

where it is understood in both parts that cP depends on the 
pressure. The equation of state 

for h#O and h =O has the solutions S(T,h)  and 
S,(T) = S(T,  h = 0 )  , respectively. Expanding the left hand 
side of Eq. (23) as a series in a= S- S, in the neighborhood 
of S, for fixed T ,  we obtain 

4 
m 

where @(")(s , )  = [ ~ " @ ( S , T ) I ~ S " ] ~ = ~ , .  Inversion of the se- 
ries (24) gives 

m 

where the coefficients pm are expressed in terms of the co- 
efficients an by solving the system of sequential equations 
obtained by equating to zero all the coefficients for all pow- 
ers of 6 (p = 1,2,3,. ..) in the equation 

Here the polynomial coefficient is 

C m ( m l  ,..., mp)=nz!  

and the summation is taken over all possible sets {mk) of 
nonnegative integers mk = 0,1,2,. . . satisfying the conditions 

For the following discussion we introduce the first of these 
coefficients: 

Comparing Eq. (25) with the expansion 

* ) ,  

yields the desired relationship 

In order to make the physical nature of the interaction 
specific or to compare the s("') for different samples with a 
certain type of interaction, we must replace h in Eq. (22) by 
Kh, where the parameter K is defined by the nature of the 
interaction and the physical properties of the sample. Then 
we have SY'= K"'s'"", which is an indication of high non- 
linear susceptibilities for samples with large K. Furthermore, 

it is evident from Eqs. (26) and (28) that choosing a nematic 
with a large X =  l / a l  ensures high susceptibilities s("') for all 
types of field h conjugate to the modulus S. Thus, discoid 
nematics with small a in Eq. (13) and large x are promising 
materials for technical applications. 

The Landau-de Gennes potential AQ(S,T) 

Let us consider a potential with the specific form 
N 

in Eq. (22) with a 2 = a ( T - T * )  and the remaining coeffi- 
cients an  independent of temperature. Here a n ( n -  I ) !  
= [ ~ " ~ P ( s , T ) I ~ s ~ ] ( ~ , ~ = @ ( ~ ) ( o ) .  For an isotropic phase 
with S,=O, the coefficients of the series (24) and (29) are 
related by a n = a n +  and in Eq. (28) s ( ~ )  (T- T * ) - ~ ,  while 
the higher-order susceptibilities are not power-law functions 
of ( T -  T*) .  As can be seen from Eq. (26) the presence of 
odd powers of the order parameter in the potential (29) en- 
sures that the even susceptibilities s ( ~ )  are nonzero in the 
isotropic phase. 

For h=O the equation of state (23) with the potential 
(29) has the form 

N 

a ( T -  T*)  = - C 
n = 3  

(30) 

Furthermore, Eq. (29) implies that 

@ ( 2 ) ( ~ , ~ )  = a ( ~ -  T*)+C ( n -  l ) a n s n p 2 .  (31) 
n 

Siibstituting Eq. (30) in Eq. (31) gives 

Q ( ~ ) ( s , )  = ( n -  ~ ) u ~ s : - ~ ,  (32) 

where the equilibrium value of S,(T) is the solution of Eq. 
(30) and minimizes the potential (29) in the nematic phase. 
Differentiating both sides of Eq. (30) with respect to T ,  mul- 
tiplying then by S,  and comparing with Eq. (32) for S 
= S,(T),  we obtain an expression 

which is independent of the number and form of the terms of 
the series (30) for an= const. Given Eq. (32), the expression 
for the derivative 

can be written in the form 

from which, using Eq. (33), we obtain 

Using Eq. (33) yields a recurrence relation for the higher- 
order derivatives in Eq. (24),  
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which, along with Eqs. (33) and (34), can be used to express 
a n ,  Pn,,  and s ( ~ )  in terms of the function Se(T) and its 
temperature derivatives. For the c a ~ a m i t e ~ ~ ' ~ " ~ ~  and discoid 
thermotropic nematics (Ref. 4 and the present paper), the 
experimental S(T) curve is described by the equation of state 
(30) when the appropriate number and type of expansion 
terms are included for each specific sample. Thus, the experi- 
mental S(T) curve can be used in Eqs. (24), (26), (28), and 
(33)-(35) to determine the nonlinear susceptibilities s ( ~ )  
similarly to X. lo This makes it possible to avoid separating 
the contributions from different orders of h in S(h),19343,44 
shifts in T,(h) in strong fields, and other difficulties involved 
in the direct experimental determination of the s ( ~ ) ,  which is 
important for studies of the critical behavior of the sim) in 
the neighborhood of an N(ND) - I  transition. 

5. CRITICAL BEHAVIOR OF DISCOID NEMATICS 

The critical behavior of nematics in the neighborhood of 
an N(ND) - I  transition is characterized by temperature de- 
pendence in the exponents PI and y' in Eq. (20) and in the 
indices p and A' defined by the equations 

For the correlation length (=(ot-" we have v' = y1/2. The 
isobaric specific heat of the nematic phase 
AC,,= -aTS(dSldT), can be written using Eq. (33) in the 
form AC = a 2 ~ ~ 2 X = a 2 ~ i X o ~ t - a ' ,  with a'= y' - 2P1 
and xo= &(T=O)/~T~. Equations (26) and (28) imply 

The proper exponents in Eqs. (20) and (36) are given by 

They cannot be determined directly from experimental data 
if So, ,yo, fo ,  and T- T, are not known in advance. How- 
ever, these exponents can be calculated when the equation of 
state which describes the experimental S(T) curve is known 
for a specific sample. Thus, the equation of state (1 1) implies 
that 

( Y - 1 ) 2 [ ( y + 1 ) 2 + ~ - ~ ]  
t = 

(yo- 1 ) 2 r ( ~ o + l ) + ~ -  11' 

while the expression for @(3)(y) has the form 

Substituting these formulas in Eq. (38) yields an expression 
for the exponents as functions of y =Sy,./S, and R. 

For t 4  1 and y +yo the asymptotic behavior of the ex- 
ponents (38) is given by the formulas P ~ = P : ~ ~  (12). 
P= Perf, y=  y:ff, and A ' = Aiff, where 

and 

d In ,y d piff 
Y;ff= - - = l -y-  

d In t dy ' 

d l n f  A'  =--= Q ( ~ ) ( Y  1 
eff d In t 2 ~ L r r -  yPiff . j q j q  

Here in deriving Eq. (42) we have used Eq. (13). For a 
known value of TI - T, the exponents pelff, yLff, and A:, 
(the effective exponents) can be determined at each tempera- 
ture point of the mesophase from the experimental S(t),  
~ ( t ) .  and f(t) curves. Substituting Eq. (34) in Eq. (37) 
yields the expression 

from which, together with Eq. (42), we obtain 

Equations (42), (44), and (45) are independent of the number 
and form of the terms in Eq. (30) with a n =  const, while Eqs. 
(41) and (43) are independent of the form of A@(S,T). Us- 
ing Eqs. (12), (40), (42), and (43), for the potential (1 1) we 
obtain4 

and 

For D = 0 in Eq. (7), IIR = 0, small S I  , and y 1, the expo- 
nents approach their asymptotic values p;ff=pff= ~ : ~ ~ = 0 . 5 ,  
yLff=l, atf -0, and ALff=1.5 for second-order phase 
transitions.6:For D t 0, y S 1, and y2% R - 1, the exponents 
approach the tricritical values42 p:"=/Fff=0.25, 

yLff=l, and ALff=1.25. 
For t&+O and y~ 1 the asymptotic behavior of the ex- 

ponents p and y' also obeys Eqs. (41) and (42) and for 
t = 0 we have PI = 0, Peff= yLff=a:ff=0.5, uLff=0.25, and 
A ' = 2 yLff= 1. Unlike A ' (38), the effective exponent ALff 
(47) varies nonmonotonically as y --+ 1 and has a minimum 
within the interval 1 < y < y, . Since PI , y' , and A' increase 
with rising r, the inequalities piff<pl ,  yLff< y', and 
ALff<At are satisfied over the entire mesophase interval, but 
Peff>P holds. 

The experimentally determined exponents ma (the ap- 
parent exponents), which correspond to the linear portions of 
the logarithmic dependences In M(t)=rn,(At)ln t within a 
limited temperature interval At, l3  differ from the true or ef- 
fective values of these exponents and depend on the location 
and width of the interval At. On the other hand, the values of 
the exponents m,(At) obtained by linearizing13 the functions 
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FIG. 5. Temperature variations in the 
0.9 true (circles and curves 1-5) and effec- 

tive (squares and curves 1'-5') expo- 
''' % nents A '  (,,,'), y r  (2,2'), a' (?), fl 

(4,4'), and P ,  ( 5 5 ' )  in the nematic N, 
0.7 phase of LC-I (a) and LC-2 (b). The 

points are calculated using Eqs. 38-40 
and (12). (41), (46). and (47) with 
R=6.159(a)andR=18.119(b)andthe 

0.5 experimental values of y = y,SIS, . The 
P- pQ continuous curves are calculated with 

the values of y which satisfy the equa- 
0.3 tion of state (1 l ) .  

40 30 20 10 0 I5 10 5 0 
T , - T , K  T , - T . K  

In M(t)=m,(At)ln r within an interval At= tp- t, while vary- 
ing T, - T, (Ref. 13) also depend on At and are not associ- 
ated to the character of the N(ND) - I transition, while the fit 
values of TI do not correspond to the actual values. Thus, it 
is natural that the exponents m,(At) found in this way for 
the nematic phases are often not included among any of the 
theoretical schemes.I3 

For example, using Eq. (36) with the fit 
parameters18-20*45-47 S , ,  So-S,,  T I ,  and /? makes it pos- 
sible to approximate the experimental S(T) curve over a nar- 
row interval AT= T,- T only at the cost of very or 
nonphysical negative values of S ,  .18,45 The latter corre- 
sponds to P=const-0.25. Positive parameters S I  for the 
thermotropic calamite and micellar discoid nematics usually 
correspond to values P= (0.34- 0.40) k0.06 whose nature is 
still c o n t r o ~ e r s i a l . ~ ~ - ~ ~ , ~ ~  

Figure 5 shows the temperature of the true and effective 
exponents calculated using Eqs. 38-40 and (12), (41), (46), 
and (47) for LC- 1,2 using the parameters given in Sec. 3. For 
both liquid crystals the systematic error in the calculated ex- 
ponents corresponding to an uncertainty S(TH - T,) = + 0.1 
K is & a r )  = + 0.01 over the entire range of the ND phase 
and is less than the size of the squares in Fig. 5 for the other 
exponents. For both samples the exponents (38) very little 
over the limits of the mesophase. Including the local field 
anisotropy for LC-1 has a negligibly small effect on the val- 
ues of the exponents. For LC-1 with small S I  and large y far 
from T .  the asymptotic values of the exponents (38) are in 
good agreement with the effective values (41)-(43). The 
other asymptotic region of small r,  where we have P-Peff 
and y' - yLff, is not accessible to experiment. 

The weak dependence yr(AT) shows that on going to 
the scale of reduced temperatures TI/ - T, with T,,> TI , one 
can, within a limited temperature interval below T,., ap- 
proximate the experimental x ( T )  and t(T) curves by 

expressions of the form ,y(T) a (TH- T) -7' and t(T) 
a (TH- T)-" with constant yr  = 1 and v'-0.5. This proce- 
dure is analogous to the approximation (5) and explains 
data48.49 for the thermodynamically stable calamite nematics 
with a narrow interval TI - T*, while the empirically estab- 
lished interval (TH - T,)I(T, - T*) = 0.5 - 0.6 which applies 
for a wide range of materials49 (in the notation of Ref. 49, 
TH= T') includes the value 0.526 for the LC-1 studied here. 

For both liquid crystals the inequality A:,&T,)<l indi- 
cates that ALff varies nonmonotonically within the interval 
T,< T< T, . We note the reduction in a' (AT) on approach- 
ing T, and the nonmonotonic variation in a r (T ) .  For LC-2 
and LC-I, respectively, a r (T )  has a smooth minimum at 
T,- T= 1.5 K and a sharp maximum within the narrow in- 
terval T,< T< TI , since a' (TI) = 0.5. 

The P(AT) curve is of general interest. This dependence 
is very weak for both liquid crystals and the change 
P(AT) over the entire range of the ND phase is less than the 
error in determining the fit parameter  c con st.'^-^^ For 
LC- 1, with a narrow interval TI - T* and small R ,  we have 
P-0.35k0.03, which corresponds to the fit values of /3 for 
micellar d i s ~ o i d ' ~ . ~ ~  and thermotropic calamite n e m a t i c ~ . ~ ~  
For LC-2, with a large R ,  the value of P-0.4250.02 is 
essentially the same as the fit value P=0.40%0.06 for a 
micellar discoid nematic.'' Thus, the values 
P= (0.34- 0.40) -+ 0.06 for the isotropic ND phases, which 
are associated with highly developed fluctuations in the order 
parameter S in the neighborhood of the ND-I tran~ition,"'~~ 
have obtained a natural explanation in terms of the 
Landau-de Gennes theory. This also makes it possible to 
eliminate the contradiction between the proposed fluctua- 
tional nature of the N ,  - I transition in micellar nenlat ic~ '"~~ 
and the experimental value of y= 1 in the isotropic 
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6. CONCLUSION 

The above discussion shows that S  in the N D  phase is 
close to the values for the calamite thermotropic nematics 
and differs greatly from the values predicted by the 
molecular-statistical theory or computer simulation, espe- 
cially near the temperature T ,  of the N D -  I  transition. The 
Landau-de Gennes theory provides a quantitative descrip- 
tion of S ( T )  over the entire range of existence of both the 
thermodynamically stable and metastable reversible N D  
phases. This justifies the well known empirical approxima- 
tion procedure of Haller for S ( T ) .  

The applicability of the Landau-de Gennes theory in the 
N D  phase means that the nonlinear susceptibilities s(") of the 
nematic phase to fields which are thermodynamically conju- 
gate to the order parameter S  can be expressed in terms of 
the experimentally determined S ( T )  curve in zero field and 
its temperature derivatives. This opens up the possibility of 
choosing nematics with large s(") for technical applications. 

As for the N  phases, the N D - I  transition in a thermo- 
dynamically stable nematic is simultaneously close to an iso- 
lated Landau critical point and to the tricritical point. The 
question of why the coefficients B (and C) are small remains 
open, since the molecules of the discoid nematics do not 
have the biaxial molecular form (or polarizability) which is 
usually associated with a weak first-order N -  I  transition. 
The distinct feature of the N D  - I transitions is the anomalous 
smallness of the coefficient a  compared to s'. This makes 
for a small change in the transition enthalpy AH and large 
direct correlation lengths to (tOi) for the equilibrium fluc- 
tuations S  in the nematic (isotropic) phase. An estimate of 
to (tOi) is substantially greater than the minimum intermo- 
lecular distance (the radius of the maximum intermolecular 
interaction), so that the Lavanyuk-Ginzburg criterion for va- 
lidity of the Landau-de Gemes theory is satisfied over the 
entire range of the nematic phase. The relationship of tOi to 
the molecular dimensions in the N  and N D  phases reflects the 
difference in the local symmetries of these phases. 

The N D - D h d  phase transition is a strong first-order 
transition with a large jump AS and no pretransition fluctua- 
tional growth in S  for T s T , ,  . For the D  phase there is a 
strong coupling of the orientational ordering of the molecular 
cores with their one-dimensional translational ordering 
within the columns and the two-dimensional translational or- 
dering of the columns themselves. Here orientational melting 
of the molecular chains during the N D - D h d  transition 
causes a reduction in the entropy AH (enthalpy AH) of the 
transition and in the coefficient a D  in front of 1 $I2 in the 
Landau-de Gennes potential for the D  phase. All these fea- 
tures of the N D -  Dhd transition are related to the very nature 
of discogenic molecules, for which the presence of periph- 
eral chains is a necessary condition for the development of 
discotic mesomorphism. 

The values of the true and effective exponents for S,  
S - S ,  , X ,  5, and f = ~ ( ' ' / ~  obtained above from the equa- 
tion of state for the N D  phase explain the known empirical 
fitting values of these exponents for the calamite thermotro- 
pic and discoid micellar nematics. This is evidence of similar 
critical behavior in all types of nematics with the same mac- 
roscopic symmetry, despite differences in their local symme- 

try, the nature of the ordering structural elements (molecules, 
micelles), and the character of the interactions among them. 
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