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1. INTRODUCTION 

Self-similar solutions are used in the search for approxi- 
mate solutions of partial differential equations. Much work 
has been devoted to self-similar  solution^.'.^ However, up to 
now it has been uncertain to what extent self-similar solu- 
tions are asymptotically correct or whether they are nothing 
more than particular solutions to a problem. It is unclear how 
to give an answer in the most general form. A small number 
of analytic solutions can be used only for guidance. They 
show that self-similar solutions of the first kind (according to 
Zel'dovich's classification) with self-similarity coefficients 
derived from dimensional considerations can be asymptotic, 
i.e., independent of the initial conditions in the limit, while 
the picture is most likely the opposite for self-similar solu- 
tions of the second kind (although, of course, there may be 
exceptions). 

2. SELF SIMILARITY OF THE FIRST KIND 

2.1. The propagation of heat 

The problem is completely solved for the linear heat 
conduction equation both in the case of a point, instanta- 
neous (a-function) source and for sources in an arbitrary 
region with an arbitrary time variation. 

It can be shown that for t P t o  (where to is time the 
source is active) at distances R S r o  (where ro is the charac- 
teristic size of the source) the solution actually does not de- 
pend on the initial conditions and satisfies the requirements 
for asymptotic behavior. 

For example, for the spherical problem with an instanta- 
neous source the correction to the temperature T ( r , t , r o )  ow- 
ing to finite dimensions has the form 

for all r < D t l r o ,  where the overwhelming bulk of the en- 
ergy is concentrated. Here D is the coefficient of thermal 
diffusivity. 

2.2. Point explosion (Sedov problem) 

this, a pressure P develops discontinuously, which differs 
from the pressure Po in the surrounding medium (for air 
Po= 1 atm; see Fig. 1). 

In other words, the substance changes from state A to 
state B .  Later this part of the substance equilibrates with the 
surroundings, i.e., returns to a pressure P o ( C )  through adia- 
batic pressure relief. At point C there will be a reduced den- 
sity and elevated temperature. The internal energy in this 
state differs from the initial value by the difference between 
E and the work done by the pressure forces: 

The integral is taken along the adiabatic. Points C can be 
reached by other means, by slowly heating the material along 
the P= Po isobars. The heat expenditure Q then is 

The difference E o - Q  is the energy of the hydrodynamic 
motion beyond the confines of volume V 2  

We can introduce the concept of a hydrodynamic efficiency 
E'  and the fraction of "frozen" energy, q: 

Then, for an ideal gas ( P  = PI Po is dimensionless and y is 
the adiabatic index) we have 

The dynamic effect is more marked for higher P :  q+O for 
 PA^ and q-11 for P+ 1. We now return to a point explo- 
sion. Here, also, it is possible to introduce the concept of 
"frozen" energy, as Taylor did.4 Using the fact that all the 
entropy originates in the shock wave and the subsequent ex- 
pansion is adiabatic, we obtain 

In part of the discussion and numerical tables given be- Here the index p denotes the degree to which the explosion 
low we follow ~ u b k i n . ~  is localized at a point, P f  and pf are the dimensionless pres- 

Let us assume that the release of energy Eo takes place, sure and density at the shock front, and the volume is ex- 
not at point in the air, but in some volume V I  . Because of pressed in dimensionless units, regardless of the geometry: 

996 JETP 83 (5), November 1996 1063-7761/96/110996-04$10.00 O 1996 American Institute of Physics 996 



A TABLE 11. 

jump and BC is the subsequent isotropic release. 

P' 

Po 

( 4 1 3 ) ~ ~ ~  -spherical case 

V - - =  oPE0  { ITR -cylindrical case 
Po 

2x -planar case 

R ,m p f - P o  PI-",  - R R = -  
Po P o  Ro 1 5 54000 

55000 0.023 
10 6700 6800 0.046 
20 840 860 0.093 

A C 30 247 250 0.14 
50 55 55 0.23 
100 7.7 8.7 0.46 
200 1.5 1.6 0.93 
300 0.66 - 0.69 1.4 

where Eo is taken to mean the amount of energy released by, 
respectively, a point, unit length of a cylinder, or unit area 
(from the energy entering one side) of a plane. Equating 
q ( P  = Pf) = qT(V), we obtain an integral relationship which 
gives the Pj(V) dependence. The most surprising thing is 
that here the results are close to reality. 

For y =  2 the solution V(P) is analytic 

y % " Note. The second column is a numerical calculation using the hydrodynamic 

equations; the third, a calculation using the approximate formula; R is the 
FIG. 1 .  The pressure change in a particle of a substance of volume V l  with dimensionless radius of the front. 
instantaneous uniform energy release over the volume. AB is the pressure 

Using the limiting expressions for V as P - t w  and P-+ 1, we 
can write a generalized solution for arbitrary y which is an 
approximation for all values, but is exact for y =  2 

For example, for y = 1.4 

- 
where R is the so-called reduced radius 
R= (Eo /(4/3) n P o )  ' I 3 .  Calculations with the approximate 
formula differ from a numerical calculation by less than 
1-2%. 

(a) The limiting (self-similar) solution for Pf-tm: 

This solution is compared with the numerical solution to the 
self-similar spherical problem in Table I. The quantity 

TABLE I. Comparison of approximate and numerical calculations. 

Y 1.1 1.2 1.3 1.4 513 2 3 
X=P,V 0.19 0.35 0.51 0.66 1.02 1.43 2.53 
A 0.19 0.37 0.53 0.69 1.07 1.5 2.67 

Nore. Thc second row is the equivalent of the combination /1= PIV from thc 
numerical calculation and the third. A = ( y' - I )I y. 

a= EIEo (where E is some auxiliary energy) is introduced in 
Ref. 2. It is calculated by introducing the quantity A for the 
three symmetries: spherical, cylindrical, and planar. This 
yields 

which is in very good agreement with Fig. 75 on p. 252 of 
Ref. 2. 

(b) The pressure at the front of a spherical shock wave 
obtained numerically is compared with our approximate 
method in Table I1 (Eo=4.2- 10'' erg, y =  1.4, P o =  lo6 
erg/cm3). The middle two columns are an expression of the 
universal coupling Pj(R)/Po, which is independent of gz- 
ometry. Based on this fact plus the circumstance that this 
result was attained by comparing two solutions which apply 
to energy release in a finite volume and from a point, we may 
conclude that the self-similar solution is universal (for 
R 4  ro ,  t 4  t o ,  where ro is a characteristic dimension which 
is independent of the shape and energy source and to is the 
energy release time). 

Note that the solution is roughly true in the region where 
the pressure is not too high, but also for moderate pressures 
where it is impossible to neglect the back pressure. And this 
is despite the difference in the behavior of the pressure at 
large distances for AP-+O, e.g., 

where in the approximate solution 

For example, we have P= 0.28 atm at R = 500 m, while the 
approximate expression given above implies that P = 0.24. 
Thus, a new procedure emerges for determining the pressure 
at a shock front over a wide range of variation in the param- 
eters in place of the standard empirical formula of 
sadovskii.' That the pressure curve is independent of the 
shape of the energy release volume expressed in dimension- 
less form reveals, in particular, the following fact: a pancake 
shaped (i.e., flat and bounded by a circle) charge creates the 
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same pressure drop in its epicenter (at a level of 
P = 0.3 - 0.5 atm) and the same impulse as a point charge at 
300 times the power. 

Both of the problems examined here confirm the physi- 
cal significance of self-similar solutions, their asymptotic na- 
ture, even if not proven entirely rigorously. On the other 
hand, not one counterexample has been found. At first it 
seemed that the problem of a substance expanding into 
vacuum might contain a counterexample. 

(c) Expansion into vacuum. Let us suppose that some 
material loaded to a pressure P o  is released into a vacuum. 
After some time the pressure in the material falls to zero and 
the material will move by inertia. On the one hand it might 
seem that all the conditions for self-similarity are satisfied 
when the size of the cloud greatly exceeds the initial size. On 
the other hand, since the expansion is adiabatic the expres- 
sion for the entropy, initially specified as a function of the 
Lagrange point, retains its form until the end. The solution 
cannot "forget" the initial conditions and, in this sense, is 
not universal. 

It turns out, however, that the solution can still be given 
a self-similar form. For spherical expansion it is 

(if ( =  1 defines the boundary of the cloud, then uo is the 
velocity of the boundary). The contradiction is removed be- 
cause the equations of hydrodynamics are satisfied for arbi- 
trary functions 6 ( 5 )  and A(,$) and it is they which carry the 
"stamp" of the initial conditions. 

3. SELF-SIMILARITY OF THE SECOND KIND 

Self-similarity of the first kind occurs during outward 
propagation of a wave; the perturbation encompasses only 
the interior of the material. In view of the finiteness of the 
volume encompassed by the motion, all the physical quanti- 
ties (energy, impulse, mass) are also finite and have their 
ordinary physical significance. Since they are dimensional, 
they are used to determine the self-similar coefficients and 
powers. The problem acquires a closed, unique character. 

With self similarity of the second kind, the motion is 
inward. The region which supports this motion extends to 
infinity. Because of this, the quantities which are significant 
for the problem diverge or go, as does the impulse, to zero. 
Thus, it cannot be said that they are conserved and no use 
can be made of their dimensionality. The self-similarity in- 
dex is not derived from physical considerations, but from 
requiring a solution exist and the integral curve pass through 
a singular point, i.e., from the finiteness of the self-similar 
functions. In the problems of a shock wave converging to a 
center, cavity collapse (the Rayleigh problem), and sudden 
impact, the self-similarity index is transcendental and is 
sometimes not unique, and there is no basis for preferring 
one power to another. The singular point lies on the limiting 
characteristic separating the perturbation regions: anything 
outside it has no effect on the leading edge. The space en- 
closed between the limiting characteristic and the leading 
perturbation line can be considered "pure," as if shut off 
from external perturbations. However, this does not mean 
that a solution is formed every time in the same way, regard- 

FIG. 2. An (r,r)-diagram for a self-similar solution. ( I )  Shock front, (2) line 
of singular points. 

less of the initial conditions. But even if the self-similar so- 
lution does not contain in itself an element of universality, it 
can be reliably applied to a small region of a size which also 
goes to zero as the shock converges to the center (see Fig. 2). 

Two examples are investigated in the following: the col- 
lapse of a cavity under the two extreme assumptions of an 
incompressible and an infinitely compressible substance. 

3.1. Incompressible substance 

(a) Spherical cavity. There is no need to turn to a direct 
solution of the problem. It is sufficient to keep in mind the 
expression for the velocity, 

2 2 u = u l r , I r  , 

(the subscript 1 refers to the inner boundary with the 
vacuum) and use an expression for the total kinetic energy, 

We find that 

u rn l ~ r ? ' ~  

Here the solution itself has a fully self-similar form in the 
limit r , -+W.  This happens for the simple reason that the 
energy is finite and this determines the self-similarity index. 
It may be said that we have not acted entirely correctly in 
calling this case self-similarity of the second kind. It should 
be kept in mind that an incompressible substance is an ab- 
straction and that for any, arbitrarily (but not infinitely) rigid 
material the expression for the energy applied to an infinite 
region will converge owing to the work done by the pressure 
forces, which vanish only in the limit y+m. 

(b) Cylindrical cavity: incompressible substance. In 
terms of all its external features, the problem is completely 
analogous to the spherical problem. Because of the slow re- 
duction in the velocity with increasing radius ( u  = u , r , l r ) ,  
however, the integral of the kinetic energy, 

now diverges as r 2 + m .  Here r 2 ,  the outer boundary of the 
shell (it is determined by the mass of the material), can no 
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longer be displaced to infinity. But if we go over to the 
self-similar equations in accordance with the generally ac- 
cepted procedure, then the solution is 

where 

is the desired self-similarity index. 
In order to proceed correctly to the limit r+O, 6 4 0 ,  

(without taking I1 to infinity), it is necessary to set a= 1 .  
Then Il = ( I - t 2 ) / 2 .  There is no logarithm in this solution. 
Why? In fact, two different problems have been solved: one 
is the exact problem which described the free flight of a shell 
of finite mass and finite dimensions and the other is a prob- 
lem with a rapidly rising pressure at infinity in synchrony 
with the collapse, i.e., rather meaningless (this last statement 
follows from the fact that nls-o= 112 and P l l r f ) .  The 
problem with a cylinder is of interest from two standpoints. 
It suggests that, first, the behavior of the integral curves is 
not a guarantee that the problem itself is physically correct. 
In obtaining a set of many self-similar solutions of the sec- 
ond kind, which contain diverging integrals as an obligatory 
condition, we cannot be certain that the initial statement of 
the problem and the final result agree with one another. The 
presence of external signs of self-similarity ( r - 1 0 )  still does 
not mean that a self-similar solution actually exists (or al- 
ways exists). Second, the question arises of whether the pres- 
ence of a logarithm in a given solution is a specific manifes- 
tation of the particular statement of the problem or has a 
more general significance. It is not clear why the self-similar 
solution of the second kind has the form of a power law 
dependence 

and not of a more complicated expression 

r a t a  lnP ( t ) .  

The logarithm is a distinctive function. With differentiation 
in the limit t+O or t 4 ~ ,  when only the principal term is 
retained, the logarithm can be regarded as a constant. In this 
case, the two formulas can not be distinguished. The class of 
possible solutions expands incredibly: besides the fact that 
p is arbitrary, other functional dependences of the form 
In In . . . In t  are permissible. Since a dimensionless expres- 
sion must appear in the argument of the transcendental func- 
tion, the presence of the logarithm means that the solution 
depends on the initial conditions, i.e., universality is lacking, 
although this dependence may be weak. Does this not ex- 
plain why attempts to obtain a power law self-similar solu- 
tion by numerical integration are sometimes unsuccessful? A 
logarithm is unacceptable in self-similarity of the first kind, 
since this violates the conservation laws. (In the point explo- 
sion problem, energy is not conserved.) 

3.2. Infinitely compressible substance 

Imagine a shell of ideal gas at temperature T=O flying 
freely toward the center of a sphere. It is clear that until it 
reaches the center, the pressure inside it will be zero. The 
absence of feedback means that the individual gas particles 
do not feel one another; they are independent. The problem 
is essentially kinematic. Evidently, the initial distributions of 
density and velocity are carried right up to the last moment, 
when the leading edge arrives at the center. There is no need 
to speak of any kind of universality, although the external 
conditions for self-similarity would seem to exist ( r - 0 ) .  
For example, assuming that the velocity of every point in the 
shell at the initial time is proportional to the distance to the 
center, a situation arises in which the entire shell arrives 
simultaneously at the center of the sphere; it might be said 
that superaccumulation takes place. Usually during spherical 
cumulation an infinitely small fraction of the material has 
infinite parameters. Here, on the other hand, the entire shell, 
i.e., a finite mass, acquires an infinite density. 

Despite their artificiality, these examples of incompress- 
ible and absolutely compressible shells converging toward a 
center can be regarded as opposite to one another and as 
limiting cases relative to reality. Self-similarity is not at- 
tained in either limit and it appears that this can be regarded 
as proof that it is absent in the intermediate physical cases, as 
well. 

4. CONCLUSION 

This article lacks mathematical rigor and absolute 
proofs. At the same time, the examples imply that solutions 
with self-similarity of the first kind are most likely to be 
limiting solutions to problems with dimensional initial con- 
ditions which vanish asymptotically. On the other hand, in 
problems involving self-similarity of the second kind, the 
initial conditions are often (if not always) "present" until 
the end, the self-similar solution has a special significance, 
which solution cannot be generalized to real physical prob- 
lems. 

'Ya. B. Zeldovich and Yu. P. Raizer, Tlre Pliy.sics of' Sliock Waves urrd 
Ffigh-rernperuture Hyclroclync~rrric Phetiornenu, Academic Press, N .  Y. 
(1966). 

'L. I .  Sedov, Sirnilcrrity arid Dirrim.siorru1 Metlro(ls in Mechuriics, CRC 
Press, Boca Raton, FL (1993). 
K.  E. Gubkin, in Pro/~ugutiori oj'Ex~11~1,siotr Wuves. 50 Yeurs oj'Meclrtrtric:s 
iri the USSR [in Russian], L. I .  Sedov, ed. (1970). Vol. 2, p. 271. 

4 ~ .  Taylor, Proc. Roy. Soc. 201, 175 (1950). 
5 ~ .  A. Sadovskii, in Pliysics ~ f . E , r / ~ k ) ~ i o r i ~  [in Russian], Academy of Sci- 
ences of thc USSR, No. 1 ( 1952). 

Translated by D. H. McNeill 

999 JETP 83 (5), November 1996 L. P. Feoktistov 999 


