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We study the kinetics of orientational processes in an ensemble of Brownian dipole particles in a 
viscoelastic medium (a Maxwellian liquid). Such a medium constitutes a simple model of a 
polymer solution; its main feature is the allowance for a time lag in mechanical stresses. We 
construct the frequency dependence of the magnetic susceptibility of the system. Finally, 
we show that the absorption spectra have a complicated rake-like structure whose parameters are 
determined by viscosity and the stress relaxation rate in the suspension matrix. O 1996 
American Institute of Physics. [S 1063-7761 (96)017 1 1-81 

1. INTRODUCTION a complete statistical description of the problem. In Sec. 4 
we obtain a general expression for the linear dynamic sus- 

Let us describe a simple scheme for classifying the dis- ceptibility classify the possible types of viscoelastic 
persions of magnetic nanoparticles in liquid matrices that magnetic suspensions. Finally, in Sec. 5 we present and ana- 
reveals the essential features of the liquid carrier. We divide ly, the results of calculations of the susceptibility within a 
suspensions into three categories: broad range of values of the material parameters of the fer- 

suspensions in Newtonian liquids, which are corn- romagnetic suspensions. 
monly known as magnetic liquids or ferroliquids; 

suspensions in liquid crystals, also known as ferroliq- 
uid crystals; and 2. A DIPOLE PARTICLE IN A VlSCOELASTlC LIQUID 

suspensions in non-Newtonian liquids (complex mag- 
netic liquids). 

Of these three classes of nanocomposite media, fer- 
roliquids have been intensively studied in the last 30 years 
(see, e.g., Refs. 1 and 2 and the related bibliographies3). 
Ferroliquid crystals, whose possible existence was suggested 
in 1970 in Refs. 4 and 5, have been thoroughly studied both 
theoretically and e ~ ~ e r i m e n t a l l ~ . ~ ' ~  As for the last item in 
the above list, the study of complex magnetic liquids is only 
beginning, with the field of activity being extremely broad. 
One can easily imagine how diverse the properties of such 
suspensions can be, depending on the properties of the car- 
riers (polymer solutions, liquid biological systems, et~.) .  The 
magnetic response of such media is largely determined by 
the mechanical mobility of the particles and hence by the 
hydrodynamic properties of the suspension matrix. 

In the present paper we study the dynamic susceptibility 
of an ensemble of Brownian particles in a Maxwellian liquid. 
The latter can be interpreted as the simplest model of a poly- 
mer solution. Of course, in view of its simplicity the theory 
does not take into account a number of details that are im- 
portant for real polymers, but it allows for what we believe 
to be the main viscoelastic effect: the effect of the time lag in 
mechanical stresses on the frequency dependence of the 
magnetic response. The approach we develop is a direct out- 
growth of the studies in the statistical mechanics of suspen- 
sions based on complex liquids, started by Refs. 8 and 9. 

In Sec. 2 we describe the model and derive the equations 
of orientational motion of a single-domain Brownian ferro- 
particle in a viscoelastic liquid. In Sec. 3 we calculate the 
correlation function of the moments of random forces and on 
was it to derive a system of Langevin equations that provides 

Let us examine the rotational motion of a particle with a 
rigid dipole moment in a viscoelastic (Maxwellian) liquid. 
The choice of a two-dimensional model is determined by the 
simplicity of such a model. In similar problems the three- 
dimensional variant of the theory, which leads to consider- 
able mathematical complications, yields results that differ 
from the two-dimensional case only by factors of order 
unity.'' 

The particle in this model is a rigid disk of radius a 
positioned in the plane of the external magnetic field H, 
whose direction fixes the polar axis of the system of coordi- 
nates. The particle's dipole moment y has a constant abso- 
lute value and a direction that is fixed in the disk's plane. 
The orientation of the vector y in relation to the polar axis is 
specified by the angle 19. 

The equation of orientational motion of a particle in a 
liquid matrix is 

I ~ + Q ( ~ ) + ~ H  sin 19=y(t), (1) 

where the dots stand for time derivatives, I is the particle's 
moment of inertia, Q(t)  is the frictional torque, and y(r) is 
the random torque (which allows for thermal motion in the 
liquid). 

In the model of a viscoelastic Maxwellian liquid the fric- 
tional torque, with which the carrier liquid acts on the rotat- 
ing particle, is determined by the following equation: 

where ( is the friction coefficient, and TM is the characteris- 
tic time of relaxation of elastic stresses. Here ( is propor- 
tional to the viscosity 7 of the liquid and depends on the 
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particle size and shape. In low-concentration suspensions the 
time TM and the viscosity are characteristics of the liquid 
proper and are insensitive to the particle's presence. 

In order to clarify the meaning of the relaxation equation 
(2) we plug the harmonic angle-time dependence, 
6= 6(0)exp(-iwr), into it. For the amplitude of the frictional 
torque Q = Re Q - iIm Q we obtain 

Clearly, at low frequencies (OrM< 1) only the imaginary 
part of the resistance is important. Indeed, Q =  - i Im Q 

a 8 implies that in this limiting case the frictional torque is 
determined primarily by the liquid's viscosity. According to 
(2), for a Newtonian liquid, which corresponds to r M - + O ,  we 
have Q=Qo.  At high frequencies Q-ReQ a 6 with a high 
accuracy, so that the medium resembles a rigid body with an 
elastic modulus 17/57,,,, . In this limit the reaction of the sys- 
tem to an external perturbation is of a reversible, nondissi- 
pative, nature. Thus, in the intermediate frequency range the 
Maxwellian medium is characterized by a combination of 
viscous (liquid) and elastic (rigid-body) responses. 

3. THE LANGEVIN EQUATIONS 

We examine the statistical properties of the random 
torque y (t)  in Eq. (1). While (y ( t))  = 0 can be assumed to be 
given a priori, the correlations function (y(t)y(O)) requires 
a definition. The calculation can be conveniently done ac- 
cording to the well-known scheme (see, e.g., Ref. 11, Chap. 
11). 

We start by noting that the statistics of y(t)  is deter- 
mined solely by thermal motion, i.e., by the orientational 
diffusion of the particles in the liquid matrix. This means that 
we can put H =  0 in Eq. (1). Denoting the angular velocity of 

a particle by R = 6 and applying a Fourier transformation to 
the systems of equations (1) and (2), we arrive at the follow- 
ing relationship between the spectral amplitudes of the ran- 
dom moment and the angular velocity: 

According to the Wiener-Khinchin theory, for any station- 
ary random process f ( t )  the correlation function of the Fou- 
rier components can be written as 

where the last relationship is definition of the spectral den- 
sity. Combining Eqs. (3) and (4), we arrive at a relationship 
between the spectral densities of the fluctuations y and R :  

(y2),=K(o)K(- w)(R2), . ( 5 )  

To obtain the function ( r2 ) ,  we use the Onsager prin- 
ciple (see, e.g., Ref. 1 1 ,  Chap. 13). This principle makes it 

possible, starting at Eqs. ( I )  and (12), to write a system of 
equations determining the time evolution of the respective 
correlation functions: 

For the initial conditions for such a system it is natural to 
take (R2(t)) = (R2(0)) = TII,  which represent a corollary of 
the equipartition theorem. (Note that here and in what fol- 
lows the temperature T is expressed in energy units, i.e., 
k ,  = 1 .) Applying to (6) a one-sided Fourier transformation 
according to 

we find (a2): = K - ' ( w ) ~ ,  where the impedance K(R)  is 
defined by Eq. (3). The spectral density of R is related to 
(a2): as follows: 

which follows directly from the definition of ( a 2 ) ,  . Substi- 
tuting (7) in (5) yields 

which shows that the spectral density of the random torque is 
frequency-dependent and is reduced to white noise only in 
the ~ ~ 4 0  limit, i.e., in the case of a Newtonian liquid. If we 
perform the inverse Fourier transformation, from Eq. (8) we 
obtain the correlation function 

which shows that the random torque with which the Max- 
wellian liquid acts on the particle has a correlation time 

T ~ .  

The simple form of the frequency dependence of 
(y2), , which is specified by (8), makes it possible to intro- 
duce an auxiliary stochastic equation, 

and to consider y a dynamic variable on which the white 
thermal noise f ( t )  acts. Note that the linear lag operator R on 
the left-hand side of Eq. (9) coincides with the operator in 
Eq. (2) for Q. In other words, the fluctuation and frictional 
torques have the same frequency dispersion. Applying the 
operator R to Eq. ( I )  and employing Eqs. (2) and (9), we 
arrive at the stochastic equation 

989 JETP 83 (5), November 1996 Yu. L. Raikher and V. V. Rusakov 989 



which together with the white-noise correlator in (9) and the 
kinematic relationships 

form a closed system of Langevin equations. We can use it 
to develop any convenient statistical description, say, derive 
the corresponding Fokker-Planck equation. Some results 
pertaining to the derivation and solution of the kinetic equa- 
tion can be found in Refs. 12 and 13. This route proves 
universal but is extremely formidable. 

Below we use Eqs. (10) and (I I) to calculate the dipole 
correlation function determining the initial dynamic suscep- 
tibility. Note that in the r M j O  limit the model describes the 
orientational Brownian motion of dipole particle in an ordi- 
nary (Newtonian) liquid. Here the set of dynamic variables is 
reduced to 6 and Ln. If viscoelasticity is taken into account, 

the set broadens and includes the additional quantity d. 

4. DYNAMIC SUSCEPTIBILITY 

Setting the goal of studying the initial susceptibility, we 
employ the linear-response approximation. According to the 
Kubo-Tomita theory (see, e.g., Ref. 14), the dynamic sus- 
ceptibility is expressed in terms of the equilibrium of the 
correlation function of an observed quantity. For this quan- 
tity we take the projection of the magnetization of the system 
on the direction of the applied linearly polarized field H: 

where c is particle number density. Here the basic formula 
becomes 

where X o = c p 2 / 2 ~  is the static susceptibility of the en- 
semble of independent magnetic dipoles, and the angular 
brackets stand for statistical averaging over the equilibrium 
state with H=O. 

We transform the second relationship in (12) according 
to standard trigonometric formulas, we obtain 

1 
+ p l s ( t ) + s ( O ) l ) = ,  p(A9)7 (14) 

where A 6 = 6 ( r )  - 6 ( 0 ) ,  and in a stationary random process 
the function of p of the sum of angles vanishes. To calculate 
the equilibrium correlation function (14) we must know the 
statistical properties of the ensemble. Obviously, the angle 
19 is a Gaussian random quantity: according to (lo), in an 

equilibrium system with H=O this angle is described by a 
linear equation whose right-hand side contains the white 
noise f. Then averaging in (1 4) yields 

To calculate the mean-square angular fluctuations we write 
Eq. (10) with H=O in the following form: 

where R ( 0 )  and d ( 0 )  are the initial values of the angular 
velocity and acceleration, and the decay constants X + can be 
found by solving the characteristic equation 

Here we have introduced the inertial time 

which describes the rate of relaxation of the angular momen- 
tum of the particle with a moment of inertia I and a friction 
coefficient 5. Solving Eq. (17), we find that the phase decay 
constants are 

This implies that when rM9  71, the system experiences natu- 
ral oscillations whose frequency is determined by the inertia 
of the particle and the elastic response of the liquid surround- 
ing the particle. Multiplying Eq. (15) by 0 ( O )  and averaging 
over the ensemble of realizations of the random force f ,  we 
find that 

In deriving this equation we allowed for the fact that 

( n ( 0 ) d  (O))=O, while for the average value of the square 
of the angular velocity we have the equipartition theorem 

By definition, the phase and angular velocity are related as 
follows: 

which for the square of the equilibrium fluctuation of the 
phase yields 

990 JETP 83 (5), November 1996 Yu. L. Raikher and V. V. Rusakov 990 



Plugging (20) into (21) and doing elementary integration, we 
arrive at the expression 

which after simple algebraic transformations is reduced to 

where 

1 1 -3M 
wM=- J4M-1, tan cj/= 

27, ( I - M ) J ~ M - I '  
(23) 

with the dimensionless ratio M = rM / r1 . 
As is characteristic of a thermalized system, Eq. (22) 

acquires a Debye relaxation time 

which determines the rate of the differential diffusion of the 
particle. The ratio D = rD / r1 is one more dimensionless pa- 
rameter of the problem. For extremely short times ( A t 4  l )  
Eq. (22) leads to the following dynamic result: . 

while in the Newtonian-liquid limit ( ~ ~ 4 0 )  Eq. (22) yields 
the well-known asymptotic behavior (see, e.g., Ref. 15): 

2 
( ( ~ 6 ) ~ ) =  +t-  r l ( l  -e-'"l)]. 

70 

Plugging (22) into (IS), allowing for (14), and using the 
Kubo formula (13), we arrive at an expression for the dy- 
namic susceptibility of a viscoelastic magnetic suspension in 
the form 

G ( t ) = e x p ( y [ l  -ePr2,M cos J/ 

(26) 

Note that the dipole correlation function (26) is nonlinear in 
the phase fluctuations. The fact that the transition (14) from 
the co~relator of a dynamic variable (the angle 6 )  to the 
correlator of an observable (p = cos6) is nonlinear suggests 

that resonant singularities in the susceptibility spectrum (16) 
may occur not only near the natural frequency wM but also at 
multiple harmonics. 

Even an approximate analysis of the above expression is 
complicated. The reason is primarily the large number of 
characteristic times that enter into Eq. (16). Indeed, in addi- 
tion to the three parameters r l ,  r M ,  and rD this equation 
contains another time scale, the natural frequency 
wM= 6 of the rotational oscillations of the particle. To 
simplify our discussion, we select the inertial tine rl as the 
unit of measurement. Note that even for large granules 
(a-103nm) and such nonviscous liquids or water 
(7 -  l o 2 )  this scale is extremely small 
( ~ ~ - a ~ / 1 0 ~ -  lo-%). Next, since we are interested in the 
effects caused by viscoelasticity, we put 

714 6 4  TM . (27) 

In these conditions the specific form of the frequency depen- 
dence of the susceptibility is determined by the relative po- 
sition of the Debye time rD on the time scale (27), which 
suggests the following classification of suspensions by the 
degree of the viscoelasticity of the matrix: 

( 1 ) weak, i.e., 6 6  rM4 rD , 

(2)  developed, i.e., r14 &G rD< r M ,  (28) 

(3)  strong, i.e., 714 rD< G4 rM . 
Below we show that the susceptibility spectra differ dramati- 
cally from case to case. 

5. ABSORPTION SPECTRA 

The integral in (25) is fairly complicated and cannot be 
evaluated analytically, but its form is suitable for approxi- 
mate integration. We have developed a computation algo- 
rithm that operates satisfactorily in all three ranges of the 
above classification (28). The families of curves describing 
the imaginary part of the dynamic susceptibility (absorption) 
are depicted in Figs. 1 and 2. But before discussing the re- 
sults of numerical calculations let us analyze the asymptotic 
behavior. To this end we expand the dipole correlation func- 
tion (16) in a a power series in r M / r D  and restrict our dis- 
cussion to the case important from the practical viewpoint: 
M ,  D+ 1. As a result we obtain 

where 

r~ 1 k  3 
q =  -, yk=-+-, tan @=- 

70 70 27, 2&' 

Using the complex-valued expression for the cosine, we ar- 
rive at the following formula: 
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where q=qlcost,b, a=w,t-t,b, and ~ f = k ! l ( k - l ) ! l !  is a 
binomial coefficient. We transform the double sum in (30) to 
order the exponentials according to the multiplicity of the 
natural frequency o, . Introducing the notation 

we can write (30) in the form 

Grouping the terms in this series by the powers of the expo- 
nential eia, we get 

FIG. I .  Absorption lines for D =  lo2 at 
M =  10 (a), lo2 (b), 10' (c), and lo4 (dl. 

Equation (31) clearly shows that the expansion amplitudes 
are even functions of the index n ,  a fact taken into account in 
(32). For the dipole correlation function we have 

The same result can be obtained directly from the expansion 
(30) if we put n = k- 21 and change the summation limits 
appropriate1 y. 

We plug the correlator (33) into the Kubo formula (25) 
and integrate with respect to time, which is now an elemen- 

FIG. 2. Absorption spectra for (a) 
D= lo9 and M =  lo8, and (b) D = 3 X  10' 
and M = lo9. The dashed curves represent 
the results of calculations by formula (35). 
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tary operation. After summing the terms with equal (abso- 
lute) values of the index n we arrive at a formula for the 
susceptibility: 

This expression is convenient for qualitative analysis. We 
start with weak viscoelasticity ( r M +  TD ; see (28)). Equation 
(34) then implies that to within second-order terms, 

This result coincides with the one obtained in Ref. 9 by 
directly solving the Langevin equation (4) by Coffey's 
method." The first term on the right-hand side of Eq. (35) is 
the ordinary Debye susceptibility with a small correction due 
to the viscoelasticity of the matrix. The second term reflects 
the vibrational nature of the relaxation of the ensemble of 
magnetic particles in a medium with dynamic elasticity. 
Equation (35) implies that the height of the peak (the reso- 
nance) of the imaginary part of the susceptibility is of order 
T ~ J G T ~ ,  which means that the peak becomes indistin- 
guishable only when TM&i<< r D ,  SO that the latter relation- 
ship may be considered the condition for observing weak 
viscoelasticity in a magnetic suspension. 

Equation (34) suggests that as the parameter q ,  or vis- 
coelasticity, increases the peaks at multiple frequencies, 
2wM,  3wM,  etc., begin to be resolved. In the vicinity of 
each resonance the expression (23) simplifies considerably, 
so that the susceptibility can be represented by a combination 
of Lorentzians: 

with (an- w ( + o M ,  where an= J M = n w M .  The 
imaginary part of the susceptibility determined by Eq. (36) 
consists of a sequence of equidistant peaks. The envelope of 
the spectrum monotonically decreases for q < 2  and has a 
maximum at the thermal frequency WT= for q > 2;  note 
that w, does not depend on the rheological characteristics of 
the liquid. The shape of an individual peak also changes as 
viscoelasticity increases. While for q < 2  each peak can be 
considered, with high accuracy, a homogeneously broadened 
Lorentzian, for q > 2 each resonance is a packet of closely 
located Lorentzian lines with comparable amplitudes, which 
means that inhomogeneous broadening is predominant. 

As the viscoelasticity grows still further, the number N 
of distinguishable peaks grows without limit (N- 6) and 
their width remains practically constant, 
Awl,== l/rD(l  f n l q ) ,  where n is the number of the peak. At 

the same time, the distance between the peaks decreases like 
w,= oT&. This is concluded by the transition to the limit- 
ing shape of a line: the peaks merge into a smooth contour 
(see Fig. Id) with a maximum at o,. It is quite natural that . 

the condition for merging of peaks ( ~ ~ - 1 1 ~ ~ )  coincides 
with item (3) in (28). 

The condition for merging of resonance peaks means 
that period of natural oscillations of the particles exceeds the 
orientational (Debye) relaxation time. In other words, these 
oscillations do not noticeably contribute to the susceptibility. 
In this limit the above expansion in parameter q proves to be 
inconvenient. But if we go back to the expression (26) for 
the dipole correlation function, we can easily show that in 
this limit it is reduced to 

This expression reflects the fact that with strong viscoelas- 
ticity only the dynamic section of the phase fluctuations no- 
ticeably contribute to susceptibility. In such short time inter- 
vals each particle can assume to be rotating freely, and the 
spread of angular velocities in the ensemble is determined by 
the equilibrium distribution function, so that 
(A a2) = (a2) t2= ( T I I ) ~ ~ .  By plugging the correlation func- 
tion (37) into the Kubo formula (25) we arrive at the follow- 
ing simple result: 

with x =  m a w , .  Thus, in the limit of strong viscoelasticity 
the spectrum of the dipole susceptibility of the suspension is 
transformed into the well-known dependence for a system of 
independent rotators (see, e.g., Ref. 16). Note that as the 
elasticity of the liquid grows (rM-'~ at g=const), viscous 
damping becomes negligible. However, the X" vs w curve 
remains nonsingular and positive. To understand the nature 
of absorption in this case we note that in a thermalized sys- 
tem at any external frequency w there is always a fraction of 
particles whose angular velocities are close to w. It is this 
subsystem that interacts with the fields most strongly. Here 
the particles whose angular velocities are smaller than the 
external frequency accelerate (absorb energy), while the par- 
ticles with angular velocities exceeding w slow down (re- 
lease energy). Since in an equilibrium ensemble the energy 
distribution f ( E )  is a decreasing function of E, absorption 
always exceeds emission, and X" remains positive. Such ab- 
sorption is known as Landau damping. In relation to molecu- 
lar spectra theory, where the situation resembles the one 
studied here, the mechanism of Landau damping was exam- 
ined in Ref. 16. 

6. DISCUSSION 

The study done in Secs. 2-5 was based on a consistent 
use of kinetic theory. For a better estimate of the range of 
applicability of the results it would be interesting to compare 
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them with the predictions of another model. However, we 
known of no publications of this type, and so suggest a 
simple alternative, the more so that a phenomenological ap- 
proach seems at first glance fully feasible. We examine a 
model that can be called the dispersive viscosity approxima- 
tion. 

As is well known (see, e.g., Ref. 17), the equation of 
motion of macroscopic magnetization in a suspension of 
rigid dipoles can be written as follows: 

with TD defined in (24). When the inertial term is introduced, 
Eq. (39) becomes 

Now, allowing for the fact that the resistance 5 and hence 
TD are proportional to the viscosity of the matrix, we intro- 
duce dispersion into the viscosity. To this end in (40) we 
replace the torque with its instantaneous value: 

assuming that the stationary state is attained in a character- 
istic time interval TM . The simplest equation for finding 
has the form 

Equations (41) and (42) form a closed system, from which - 
Q can be excluded by differentiation. As a result we arrive at 
the equation 

Note that according to the principle of a phenomenological 
approach, Eq. (43), in contrast to (lo), can be assumed to be 
a final, or macroscopic, equation. 

Equation (43) leads to the following expression for the 
dynamic susceptibility: 

which coincides with our results in Ref. 9 for ,y obtained by 
applying Coffey's method and by solving the appropriate 
Fokker-Planck equation to lowest order in q.  Clearly, Eq. 
(44) always predicts only one peak in X" and does not con- 
tain a rake-like spectrum similar to the one in Figs. I b and c, 
i.e., agrees with the definition of weak viscoelasticity (item 
(I) in (28)). 

Thus, the assumption about simple dispersion of viscos- 
ity in the macroscopic equation of motion encompasses only 
the case of weak viscoelasticity in (28) and cannot be applied 
to other regions. On the other hand, although the results of 
the kinetic treatment do seem unconventional, under further 
analysis they appear to be quite logical. 

The semimicroscopic approach closely resembling the 
one developed in Secs. 2-5 has been recently employed in 
the theory of dielectric spectroscopy of molecular liquids. 
Coffey et al.18 studied the so-called wandering oscillator 
approximation.19 In this model a molecule and its immediate 
surroundings constitute a system of two coaxial classical ro- 
tators suspended in an effectively viscous medium. The inner 
disk of the wandering oscillator carries a constant dipole mo- 
ment, and its rotation is restricted only by the elastic bond 
with the nonpolar "rim." It is the rim that sustains viscous 
drag and Brownian jolts brought about by the surrounding 
liquid. The calculations of Coffey et a1.18 suggested that at 
least in principle such a rake-like structure of the dielectric 
absorption spectrum as the one in Fig. l c  is possible. But the 
estimates done in Ref. 18 showed that for molecular solu- 
tions the range of material parameters within which well de- 
veloped and strong viscoelasticities are possible (see (28)) 
lands into the nonphysical region, and hence there is no way 
in which a rake-like structure can be observed in the spec- 
trum. 

At first glance the above result is completely refuted by 
the results of measurements of the spectra of dielectric ab- 
sorption of HCI molecules in liquid inert gases.20321 The ex- 
perimental curves clearly resemble those in Fig. Ic, i.e., vis- 
coelasticity is fairly well-developed. The set of equidistant 
peaks and the respective envelope centered at o~ are also 
clearly visible. But the contradiction is illusory. The point is 
that the fine structure of low-temperature HCI spectra is of a 
purely quantum nature and is caused by transitions between 
the rotational levels of the molecule. The fact that the spec- 
trum is equidistant (just as it is in the classical effect describe 
above) is accidental. The difference becomes clear if one 
recalls that the observed molecular peaks are multiples of 
w-hl l ,  while the model of a viscoelastic suspension pre- 
dicts their multiplicity to be oM= The fact that the 
line profiles coincide in the high-temperature limit must be 
considered trivial since any rotation of molecules is of course 
semiclassical. 

We see that the absorption spectra corresponding to de- 
veloped and strong viscoelasticities (see (28)) cannot be en- 
countered in molecular systems. Let us show that the situa- 
tion is much more favorable for magnetic suspensions. For 
estimates we take a solid spherical particle of radius 
a-0.1 ,um in a Maxwellian liquid with a viscosity 7- I P 
and a stress relaxation time TM-0.1s. This yields 

which corresponds to dimensionless numbers M= lo9 and 
D = 3 X 1 0 R ,  and in dimensional form to a characteristic natu- 
ral frequency wM-3 X 1 rad- ' and a linewidth 
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Awl,- 10-100 rad- '. These values are not only accessible 
but are quite common in measurements of magnetic suscep- 
tibility. 

Examples of absorption spectra found numerically for 
suspensions with parameters used in the estimates (45) are 
depicted in Fig. 2. There is clearly a difference between 
spectra with M < D and M > D . In the first case (Fig. 2a) the 
initial peak is the highest, and the height of each subsequent 
peak decreases by a factor of almost &en in comparison to the 
height of the preceding peak (note that the log scale is used 
on the vertical axis, too). In the opposite case (Fig. 2b) the 
peaks first become taller, so that a certain inner peak (in our 
case the second) from the sequence of peaks is the tallest. 
Note that the peak heights decrease much more slowly than 
those in Fig. 2a. The dashed curves in Figs. 2a and b depict 
the frequency dependence of absorption predicted by the al- 
ternative model of dispersive viscosity discussed above. 
Clearly, as the elasticity of the liquid grows, the difference 
between the kinetic and phenomenological models become 
greater. 
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Note added in proof (August 28, 1996). When this article 
was in press, we discovered a phenomenological model simi- 
lar to the dispersive viscosity approximation discussed in 
Sec. 5 and suggested by L. A. Divalos-Orojco and L. F. del 
Castillo in J. Colloid and Interface Sci. 178, 69 (1996), who 
examined the rotational viscosity of suspensions of solid 
spherical particles in non-Newtonian liquids. 
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